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Abstract— We present a method for optimal phase control of
limit-cycle oscillators using strong inputs. Based on the phase-
amplitude reduction, which provides a concise representation of
the oscillator dynamics, we design an optimal control input that
quickly realizes the target phase while keeping the oscillator
state close to the original limit cycle by penalizing the amplitude
deviations. The derived scheme requires only a single one-
dimensional phase equation even for the control of high-
dimensional oscillators. We demonstrate the effectiveness of
the proposed method by comparing the control performance
with other methods, using the van der Pol oscillator and
Willamowski-Rössler oscillator as examples.

I. INTRODUCTION

Synchronization of rhythmic systems (self-sustained os-
cillators) is widely observed in the real world. It refers to
dynamical phenomena in which rhythmic systems, either
interacting or acting unilaterally, align their dynamics [1].
When a periodic input is given to the oscillator, phase locking
to the input can take place. When two or more oscillators
interact, mutual synchronization of the oscillators can occur.

Control of synchronization in rhythmic systems is a fun-
damental topic in various fields of engineering. Examples
include power grids [2], frequency tuning or stabilization in
electrical oscillators [3], and suppression of pulsus alternans
in the heart [4]. Rhythmic systems can be mathematically
modeled as limit-cycle oscillators, which are nonlinear dy-
namical systems with stable limit-cycle trajectories.

For the purpose of synchronization control, the phase
reduction theory has been widely employed [5], [6], [7], [8],
[9], which is useful for analyzing the dynamics of limit-
cycle oscillators subjected to weak inputs. It approximately
describes multidimensional dynamics of the oscillator by a
one-dimensional equation for the phase defined along the
limit cycle. Many studies have been conducted on controlling
synchronization dynamics of limit-cycle oscillators based on
phase reduction [10], [11], [12], [13], [14], [15]. However,
their applicability is restricted to sufficiently weak inputs.

In real-world systems, it is often necessary to control
the phase of oscillations without altering their waveforms,
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e.g., in adjusting the circadian rhythm [7] after a jet lag.
Thus, it is important to devise methods for controlling the
oscillator phase while keeping the oscillator state in the
vicinity of the limit cycle. Recently, the phase reduction
theory has been extended to the phase-amplitude reduction
theory, which introduces amplitude variables to represent
the deviations of the oscillator state from the limit cycle
in addition to the phase variable [16], [17], [18], [19].
Using phase-amplitude reduction, the oscillator phase can be
controlled more efficiently by applying stronger inputs while
suppressing the amplitude variables to keep the oscillator
state close to the original limit cycle [19], [20]. For example,
in [19], an optimal periodic input for the phase-locking of the
oscillator was designed by introducing an averaged penalty
for the amplitude deviations in the optimization problem.

In many studies on synchronization, it is assumed that the
oscillator receives periodic inputs. However, if the purpose is
to steer the oscillator phase, the control input does not need
to be periodic. By using a non-periodic input, optimal control
of the oscillator phase was formulated by Moehlis et al.
in [10] using phase reduction, where the input was assumed
sufficiently small so that it does not kick the oscillator state
away from the limit cycle. Later, Monga and Moehlis [20]
generalized the theory to suppress the amplitude deviations
from the limit cycle for faster synchronization.

In this study, we propose a new method of optimal
phase control that allows stronger inputs by introducing a
penalty on the amplitude deviations from the limit cycle. Our
formulation differs from the previous methods [19], [20] in
that the derived scheme requires only a single phase equation
for the control, even for high-dimensional oscillators. This
is useful, because the amplitude variables are difficult to
evaluate numerically, and also the amplitude equations are
more challenging to estimate than the phase equation from
time series data when the mathematical models are unavail-
able [21]. To verify the effectiveness of the proposed control
scheme, we compare its performance with the two methods,
i.e., optimal control without amplitude penalty and optimal
phase locking with averaged amplitude penalty, using the van
der Pol and Willamowski-Rössler oscillators as examples.

This paper is organized as follows. We first describe
phase-amplitude reduction and Floquet theory in Sec. II.
In Sec. III, we propose an optimal control scheme for the
oscillator phase with amplitude penalty. In Sec. IV, we
show the effectiveness of the proposed method by numerical
simulations. We conclude this study in Sec. V.
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II. PHASE-AMPLITUDE REDUCTION AND
FLOQUET THEORY

In this section, we briefly review phase-amplitude reduc-
tion [16], [17], [18], [19] and Floquet theory [22].

A. Phase-Amplitude Reduction

We consider a limit-cycle oscillator described by

Ẋ = F (X), (1)

where X(t) ∈ RN is the system state at time t ≥ 0,
F : RN → RN is a smooth vector field, and Ẋ is the
time derivative of X . We assume that the system has an
exponentially stable limit cycle χ with a natural period T
and frequency ω = 2π/T whose trajectory is represented
as X̃0(t), which is a T -periodic function of t satisfying
X̃0(t+ T ) = X̃0(t).

Linear stability of χ is characterized by the Floquet ex-
ponents {λn}Nn=1 (see below) [22]. Since χ is exponentially
stable, one Floquet exponent λ1 = 0 and the real part of
all other exponents are negative, i.e., Re λn < 0 (n =
2, 3, . . . , n), where {λn}Nn=2 are sorted so that they satisfy
Re λ2 ≥ · · · ≥ Re λN . We assume that {Re λn}Nn=2

characterizing the decay rates of the system state towards
χ are of O(1).

We can introduce the asymptotic phase function Θ :
B → [0, 2π) and amplitude function Rn : B → C (n =
2, 3, . . . , N) in the basin of attraction B of χ such that the
following relationships hold [16], [17], [18], [19]:

d

dt
Θ(X) = ⟨∇Θ(X),F (X)⟩ = ω, (2)

d

dt
Rn(X) = ⟨∇Rn(X),F (X)⟩ = λnRn(X). (3)

Here, ⟨a, b⟩ =
∑N

n=1 a
∗
nbn : CN × CN → C represents the

scalar product of two complex vectors a, b ∈ CN , where ∗
denotes the complex conjugate. Using the asymptotic phase
and amplitude functions, we can define the phase by θ =
Θ(X) and amplitudes by rn = Rn(X) (n = 2, 3, . . . , N)
for the state X ∈ B, respectively. Here, the phase values 0
and 2π are considered identical. The state of the oscillator
on χ can be expressed by X0(θ) = X̃0(t = θ/ω) as a
2π-periodic function of the phase θ, i.e., X0(θ) = X0(θ +
2π). Each amplitude measures the deviation of X from χ
and vanishes on χ, i.e., Rn(X0(θ)) = 0. We note that
the amplitude values can be complex because the Floquet
exponents can be complex in general.

We now consider that the limit-cycle oscillator receives an
external input u(t) ∈ RN , which is described by

Ẋ(t) = F (X(t)) + u(t). (4)

In contrast to the conventional phase reduction, we do not
assume the input u to be sufficiently weak. Instead, we
assume that each amplitude rn is of O(δ) with 0 ≤ δ ≪ 1
even under the effect of u, i.e., the deviation of the oscillator

state from χ is kept sufficiently small. We can then obtain
the following phase-amplitude equations [19]:

θ̇(t) = ω + ⟨Z(θ(t)),u(t)⟩+O (δ/ω) , (5)
ṙn(t) = λnrn(t) + ⟨In(θ(t)),u(t)⟩+O (δ/ω) , (6)

where n = 2, 3, . . . , N . We can neglect the terms of
O(δ/ω) if δ/ω is sufficiently small. Here, Z is the phase
sensitivity function (PSF) and {In}Nn=2 are the amplitude
sensitivity functions (ASFs, also known as isostable sensi-
tivity functions) of χ, which are defined by the gradients
of the phase and amplitude functions at X0(θ) as Z(θ) =
∇Θ(X)|X=X0(θ) ∈ RN and In(θ) = ∇Rn(X)|X=X0(θ) ∈
CN (n = 2, 3, . . . , N) for θ ∈ [0, 2π), respectively. The
domains of Z and In are extended to R as 2π-periodic
functions, Z(θ + 2π) = Z(θ) and In(θ + 2π) = In(θ), re-
spectively. The PSF should satisfy a normalization condition
⟨Z(θ), dX0(θ)/dθ⟩ = 1, while the scales of the ASFs can
be chosen arbitrarily. We note that the ASFs can be complex.

B. Floquet Theory

Next, we explain the Floquet theory [22] for characterizing
the linear stability of the limit cycle and the relationship of
the PSF and ASFs with the left Floquet eigenvectors.

We represent the oscillator state X(t) near the limit cycle
χ as X(t) = X̃0(t) + y(t). The small variation y(t)
approximately obeys a linearized periodic system,

ẏ(t) = J̃(t)y(t), (7)

where J̃(t) ∈ RN×N is a T -periodic Jacobian matrix of
F at X0(θ(t)) on χ, i.e., J̃(t) = ∇F (X)|X=X0(θ(t))

. For
the linear periodic system (7), we can define a monodromy
matrix M ∈ RN×N satisfying V (T ) = V (0)M , where
V ∈ RN×N is the fundamental matrix of Eq. (7) [8], [22].
Since M is regular, there exists a matrix Λ ∈ CN×N such
that M = exp(ΛT ). From Floquet theory, the fundamental
matrix can be expressed as V (t) = R(t) exp(Λt), where
R(t) ∈ CN×N is a T -periodic matrix satisfying R(t+T ) =
R(t) and R(0) = E, and Λ ∈ CN×N is a constant matrix.
Here, E is an N -dimensional identity matrix.

We next consider the eigensystem of Λ:{
λn ∈ C, pn ∈ CN , qn ∈ CN

}N

n=1
, where Λnpn = λnpn

and Λ†
nqn = λ†

nqn for n = 1, 2, . . . , N . Here, † denotes
the Hermitian conjugate. Each eigenvalue λn is the Floquet
exponent, i.e., exp(λnT ) is the Floquet multiplier, where
the principal value is used when λn is complex. The
eigenvectors pk and qj can be bi-orthonormalized to satisfy
⟨qj ,pk⟩ = δjk for j, k = 1, 2, . . . , N , where δjk is the
Kronecker delta [19].

We further define the time evolution of pn and qn as
pn(t) = R(t)pn and qn(t) =

(
R(t)†

)−1
qn for 0 ≤

t < T , where we call pn(t) and qn(t) the right and left
Floquet vectors, respectively. These vectors are T -periodic,
i.e., pn(t+ T ) = pn(t) and qn(t+ T ) = qn(t), and satisfy
the bi-orthonormality condition ⟨qj(t),pk(t)⟩ = δjk for all
t. They can be calculated as the T -periodic solution to the
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following linear system and its adjoint, respectively [19]:

ṗn(t) =
(
J̃(t)− λnE

)
pn(t), (8)

q̇n(t) = −
(
J̃(t)† − λ†

nE
)
qn(t). (9)

If we take p1(0) =
1
ωF (X0(0)), p1 can be represented as

p1(θ/ω) =
1

ω
F (X0(θ)) =

d

dθ
X0(θ). (10)

We also normalize the right Floquet vectors {pm(t)}Nm=2 to
be of O(1). The PSF and ASFs are represented by the left
Floquet eigenvectors as [19]

Z(θ) = q1(θ/ω), (11)
In(θ) = qn(θ/ω), n = 2, 3, . . . , N. (12)

We note that each ASF In is orthogonal to dX0(θ)/dθ.

III. OPTIMAL CONTROL WITH AMPLITUDE
PENALTY

In this section, we explain the control objective and
propose an optimal control method with amplitude penalty.

A. Control Objective

Our control objective is to drive the oscillator phase at
a given frequency Ω = 2π/TΩ with a given phase shift
α (0 ≤ α < 2π) from the reference phase Ωt until the
final time t = tf , while keeping the oscillator state always
in the close vicinity of χ. That is, we aim to steer the phase
θ(t) of the oscillator state X(t) towards Ωt + α mod 2π
while suppressing the amplitude variables sufficiently small.

Introducing a relative phase ϕ(t) = θ(t) − Ωt ∈ R, we
obtain the dynamics of ϕ by neglecting the terms of O(δ/ω)
from Eq. (5) as

ϕ̇(t) = ∆Ω + ⟨Z(ϕ(t) + Ωt),u(t)⟩
:= f(ϕ(t),u(t), t),

(13)

where we defined ∆Ω = ω−Ω (frequency mismatch between
the controlled and uncontrolled oscillators in the steady state)
and denoted the right-hand side as f . In terms of the relative
phase ϕ(t), our control objective is to realize and maintain
ϕ(t) = α mod 2π until t = tf .

B. Cost Function for Proposed Optimal Control

In our method, to penalize the amplitude deviations of
the oscillator state from the limit cycle at any moment of
time, we do not perform averaging approximation to derive a
time-invariant phase equation [5], [6], [19] but use an optimal
control scheme that can handle a time-variant phase equation.

We obtain an optimal control input that achieves the
control objective while keeping the oscillator state close to
χ by introducing the following cost function J :

J [u] = Lf(ϕ(tf)) +

∫ tf

t0

L(ϕ(t),u(t), t)dt, (14)

where Lf : R → R is the final cost and L : R×RN×R → R
is the stage cost given by

L(ϕ(t),u(t), t)
= LΦ(ϕ(t)) + LU (u(t)) + wPP (ϕ(t),u(t), t).

(15)

Here, LΦ : R → R is a phase cost characterizing the
difference of the relative phase ϕ from the control objective,
LU : RN → R is an input cost, and P : R× RN × R → R
denotes a penalty for the amplitude deviations from χ with
wP > 0 representing its weight.

Specifically, we choose the cost functions as

Lf(ϕ(tf)) = wf sin
2

(
ϕ(tf)− α

2

)
, (16)

LΦ(ϕ(t)) = wΦ sin2
(
ϕ(t)− α

2

)
, (17)

LU (u(t)) = u(t)⊤Wu(t), (18)

respectively, where wf , wΦ > 0 are weight coefficients
and W ∈ RN×N is a positive definite matrix. Here, we
introduced squared sinusoidal functions, which are mini-
mized when ϕ(tf) or ϕ(t) is equal to α in modulo 2π. Our
cost functions are different from those used in the previous
studies [10], [20] in that we explicitly introduce the stage cost
with respect to ϕ to take account of the transient dynamics.
We aim to maintain the target oscillation frequency during
the control by introducing the stage cost.

The function P is the penalty for the control input u(t)
causing amplitude deviations from the state X0(θ(t)) on χ,

P (ϕ(t),u(t), t)

= ∥u(t)∥2 −

〈
d
dϕX0(ϕ(t) + Ωt)∥∥∥ d
dϕX0(ϕ(t) + Ωt)

∥∥∥ ,u(t)
〉2

,
(19)

where ∥ · ∥ denotes the Euclidean norm. Note that the first
argument in the scalar product represents a unit vector tan-
gent to χ, so the right-hand side characterizes the magnitude
of the non-tangential components in u(t); it vanishes when
u(t) is strictly tangent to χ.

Theorem 1: The perturbations given to the amplitudes rn
(n = 2, 3, . . . , N ) caused by the control input u(t) in Eq. (6)
are of O (δ/ω) if the penalty P is of O(δ2/ω2).

Proof: If the penalty function P is of O(δ2/ω2) for
0 ≤ δ ≪ 1, the input u(t) can be represented as

u(t) = a
d

dθ
X0(θ(t)) +

δ

ω

N∑
m=2

bmpm(θ(t)/ω), (20)

where a ∈ R and bm ∈ C (m = 2, . . . , N) are of O(1) and
the right Floquet vectors {pm(θ(t)/ω)}Nm=2 are also of O(1).
Here, we used p1(θ(t)/ω) = dX0(θ(t))/dθ = dX0(ϕ(t) +
Ωt)/dϕ. For such u(t), using the bi-orthonormality condi-
tion, the scalar product of u(t) and In(θ(t)) is calculated
as

⟨In(θ(t)),u(t)⟩ =
δ

ω
bn (n = 2, . . . , N), (21)
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which is O (δ/ω). Therefore, the amplitude perturbations
caused by u(t) in Eq. (6) are of O (δ/ω). Hence, the
deviations of the oscillator state from χ remain sufficiently
small, provided that the decay rates {Re λn}Nn=2 are of O(1).

Thus, by introducing the penalty function P and keeping
it small, we can expect that the control input is almost in the
same direction as the original velocity vector at each point on
the limit cycle χ even for high-dimensional oscillator, hence
we can suppress the amplitude deviation of the oscillator
state from the limit cycle and keep the validity of the
approximate phase equation while using strong inputs.

C. Optimization

Our optimal control problem is formulated as follows:

min
u

J [u] +

∫ tf

t0

µ(t)
(
f(ϕ(t),u(t), t)− ϕ̇(t)

)
dt

s.t. ϕ(t0) = ϕ0,

(22)

where µ(t) ∈ R is a Lagrange multiplier. Here, we assumed
that the initial oscillator state X(t0) is sufficiently close to
the limit cycle χ and we denote the initial relative phase as
ϕ0. Defining the Hamiltonian H by

H(ϕ(t),u(t), µ(t), t)

= L(ϕ(t),u(t), t) + µ(t)f(ϕ(t),u(t), t),
(23)

we can obtain the following Euler-Lagrange equations for
the optimal u:

ϕ̇(t) = f(ϕ(t),u(t), t), ϕ(t0) = ϕ0, (24)

µ̇(t) = −∂H

∂ϕ
(ϕ(t),u(t), µ(t), t), µ(tf) =

d

dϕ
Lf(ϕ(tf)),

(25)
∂H

∂u
(ϕ(t),u(t), µ(t), t) = 0, (26)

where we only need the phase information when solving the
optimization problem although we have derived the optimal
control based on phase-amplitude reduction. Since we cannot
solve these equations analytically, we discretize ϕ(t) and
u(t) using L+1 grid points with a time interval of ∆t = (tf−
t0)/L and seek the optimal solution {u(t0 + ℓ∆t)}Lℓ=0 by
using a nonlinear optimization tool fminunc in MATLAB.

IV. RESULTS

A. van der Pol Oscillator

We first demonstrate the effectiveness of the proposed
method by using the van der Pol (vdP) oscillator [23], [24].
The vector field of the vdP oscillator is represented as

F (X) =

[
x

ν(1− x2)y − x

]
, (27)

where X = [x y]
⊤. Here, we assume that ν = 1. We obtain

a limit cycle with a period T = 6.665 and natural frequency
ω = 0.9427. We discretize the time with an interval of ∆t =
5 × 10−3 for numerical integration with the fourth-order
Runge-Kutta method, where we used linear interpolation for
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Fig. 1. Limit cycle and PSF of the vdP oscillator. (a) Limit-cycle trajectory
χ. (b) Velocity on the limit cycle dX0(θ)/dθ as a function of θ (x and y
components). (c) PSF Z(θ) (x and y components). In (b) and (c), the red
and blue curves represent the x and y components, respectively.

calculating the inputs at {t0 + (ℓ + 1/2)∆t}N−1
ℓ=0 for the

numerical integration. We show the trajectory of the limit
cycle χ in Fig. 1 (a), velocity on the limit-cycle dX0(θ)/dθ
in Fig. 1 (b), and PSF Z(θ) calculated as the left Floquet
eigenvector in Fig. 1 (c).

Our control objective is to drive the oscillator phase at the
frequency Ω = ω + 0.01 = 0.9527 and period TΩ = 6.595
(i.e., to drive the relative oscillator phase ϕ at a frequency
∆Ω = −0.01) with a phase shift α = 0 from the reference
phase Ωt until the final time tf = 6TΩ while keeping
the oscillator state close to χ, starting from an initial state
ϕ0 = −π/2 at t0 = 0. We set the weight parameters as
wf = 10, wΦ = 10, wP = 102, and W = diag(1, 1). For
the optimal control without amplitude penalty, we use the
same weight parameters but for wP = 0. For the averaged
amplitude penalty method, we obtain the optimal TΩ-periodic
input with the same total power as that of the control input
within [t0, tf ] obtained by the present method.

First, we show the actual optimal control inputs and typical
dynamics of the driven oscillator states. Figure 2 shows the
optimal inputs obtained by the proposed optimal control with
amplitude penalty (a1), by the optimal control without am-
plitude penalty (a2), and by the averaged amplitude penalty
method (a3) and the dynamics of the oscillator states driven
by these inputs (b1)-(b3). The oscillator state driven by the
optimal input with amplitude penalty has almost no deviation
from χ in the whole time domain as shown in Fig. 2 (b1).
In contrast, the oscillator state driven by the optimal input
without amplitude penalty exhibits large deviations from
χ, leading to breakdown of phase-only approximation, as
shown in Fig. 2 (b2). The averaged amplitude penalty method
also exhibits small amplitude deviations with the penalty
parameter k = 104 (see [19]) as shown in Fig. 2 (b3),
because this method evaluates only the averaged amplitude
deviations in the phase-locked state, not the deviations at
other instants in time, especially during the transient.

Next, we compare the convergence times of the relative
phases between proposed method of optimal control with am-
plitude penalty and the averaged amplitude penalty method.
We do not consider the input without amplitude penalty
because the oscillator state deviates too largely from the limit
cycle and does not synchronize as desired for the parameter
values used here. Our proposed method can achieve con-
siderably faster convergence as shown in Fig. 3 (a), where
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Fig. 2. (a1)-(a3) Optimal input u(t) = [ux(t) uy(t)]⊤ to the vdP oscillator derived by each control method. (a1) Proposed method (optimal control
with amplitude penalty). (a2) Optimal control without amplitude penalty. (a3) Averaged amplitude penalty method. In (a3), the optimal TΩ-periodic input
within [0, TΩ] is shown. In each figure, the red and blue curves represent ux and uy , respectively. (b1)-(b3) Limit cycle and trajectory of the oscillator
state of the vdP oscillator driven by each optimal input. (b1) Proposed method. (b2) Optimal control without amplitude penalty. (b3) Averaged amplitude
penalty method. In each figure, the red curve shows the trajectory of the oscillator state and the black curve shows the original limit cycle.
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Fig. 3. Dynamics of the relative phases ϕ of the vdP oscillator driven by
the inputs obtained by the proposed method (optimal control with amplitude
penalty) and the averaged amplitude penalty method. (a) Proposed method.
(b) Averaged amplitude penalty method. In (a), the black curve behind
the red curve shows the relative phase obtained from the reduced phase
equation (13), and the red curve shows the actual relative phase obtained
by measuring the phase θ of the oscillator state X driven by Eq. (4); slight
discrepancy is due to small errors in the phase-amplitude reduction. In (b),
the black curve shows the relative phase obtained from the averaged phase
equation (see [19]). In both figures, the dashed lines show the results without
control.

the convergence time is about t = TΩ. By contrast, as
shown in Fig. 3 (b), the convergence time predicted by the
averaged phase equation (see [19]) in the averaged amplitude
penalty method is about t = 6TΩ, which is much longer
than the proposed method. Moreover, the relative oscillator
phase in the case of the averaged penalty method shows a
considerable discrepancy from the prediction by the averaged
phase equation due to relatively large amplitude deviations.
Thus, our proposed optimal control with amplitude penalty
can control the oscillator phase more efficiently and quickly.

B. Willamowski-Rössler Oscillator

Next, we demonstrate that higher-dimensional oscillators
with complex Floquet exponents can also be controlled

Fig. 4. Limit cycle and PSF of the WR oscillator. (a) Limit-cycle trajectory
χ. (b) Velocity on the limit-cycle dX0(θ)/dθ as a function of θ (x, y, and z
components). (c) PSF Z(θ) (x, y, and z components). In (b) and (c), the red,
blue, and green curves represent the x, y, and z components, respectively.

by the proposed method. As an example, we use the
Willamowski-Rössler (WR) oscillator [25], [26]. The vector
field of the WR oscillator is represented in the expression
of [26] as

F (X) =

x(b1 − d1x− y − z)
y(b2 − d2y − x)

z(x− d3)

 , (28)

where X = [x y z]
⊤. Here, we assume that b1 = 80,

b2 = 20, d1 = 0.16, d2 = 0.13, and d3 = 16. We obtain a
limit cycle with a period T = 0.3643 and natural frequency
ω = 17.25. We use the same numerical procedure as before,
where the interval of time discretization is ∆t = 10−4.
The Floquet exponents are calculated as λ1 ≃ 0, λ2 =
−3.2792 + 4.3283i, and λ3 = −3.2792 − 4.3283i, where
i denotes the imaginary unit. Here, λ2 and λ3 are complex
conjugate, so the associated amplitude variables and ASFs
are also complex. We show the trajectory of the limit cycle
χ in Fig. 4 (a), velocity on the limit cycle dX0(θ)/dθ in
Fig. 4 (b), and PSF Z(θ) calculated as the left Floquet
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Fig. 5. (a) Optimal input u(t) = [ux(t) uy(t) uz(t)]⊤ to the WR
oscillator derived by the proposed method. The red, blue, and green curves
represent the x, y, and z component, respectively. (b) Limit cycle and
trajectory of the oscillator state of the WR oscillator driven by the optimal
input in (a). The red curve shows the oscillator state trajectory and the black
curve shows the limit cycle. (c) Dynamics of the relative phase ϕ of the
WR oscillator driven by the optimal input in (a). The black curve shows
the relative phase ϕ obtained from the phase equation (13), and the red
curve shows the relative phase ϕ obtained by measuring the phase θ of the
oscillator state X described by Eq. (4); slight discrepancy is due to phase-
amplitude approximation. The dashed line shows the result without control.

eigenvector in Fig. 4 (c).
Our control objective here is to steer the relative phase

ϕ to α = 0 from the initial state ϕ0 = π/4 and drive
the oscillator state at the relative frequency ∆Ω = −3.5
with ϕ = α (i.e., at the frequency Ω = ω + 3.5 = 20.75
and TΩ = 0.3028) by the final time tf = TΩ starting
from t0 = 0, while keeping the oscillator state close to
the limit cycle. We set the weight parameters as wf = 103,
wΦ = 105, wP = 10, and W = diag(10−5, 10−5, 10−5).
The optimal input obtained by the proposed method is shown
in Fig. 5 (a) and the dynamics of the oscillator state is
shown in Fig. 5 (b). The relative phase dynamics is plotted in
Fig. 5 (c). Although there are slight differences between the
phase dynamics obtained from the reduced phase equation
(red curve) and from the oscillator states (black curve) due to
small deviations from χ, our proposed method can quickly
achieve the control objective around t = TΩ/3.

V. CONCLUSIONS

We proposed an optimal control scheme for steering the
phase of limit-cycle oscillators using strong inputs based on
phase-amplitude reduction. Introducing a penalty function
on the magnitude of the non-tangential components of the
control input causing the amplitude deviation of the oscillator
state from the limit cycle, we could obtain a control input
that quickly realizes the control objective by using only
the approximate phase equation. We presented an example
in which our proposed method can synchronize the vdP
oscillator within about one period of oscillation, which out-
performs the previous control methods. We also showed that

the proposed method can also control the relative phase of the
WR oscillator with complex Floquet multipliers efficiently.

In this study, we assumed that the control input affects
all components of the oscillator’s state variable. We can
reformulate our method for the case where the control input
affects only a single component (assuming controllability).
Compared to the previous study [20], our formulation pro-
vides a simpler algorithm as we only need to solve a 2D two-
point boundary value problem, i.e., for the phase equation
and its Lagrange multiplier (adjoint), whereas a 4D two-
point boundary value problem for the phase and amplitude
equations and their adjoints needs to be solved in [20].

One future task is to assess the control performance of
the proposed method with additional constraints on the input
(e.g., when only one vector component can be controlled)
and to compare the performance quantitatively with other
methods, particularly with [20]. Another future task is to
keep the oscillator state synchronized after the final time by
using model predictive control. We can also consider apply-
ing our method to the control of ensembles of oscillators, as
discussed in [27].
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