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Abstract— It is well-known that linear quadratic regulators
(LQR) enjoy guaranteed stability margins, whereas linear
quadratic Gaussian regulators (LQG) do not. In this letter,
we consider systems and compensators defined over directed
acyclic graphs. In particular, there are multiple decision-
makers, each with access to a different part of the global
state. In this setting, the optimal LQR compensator is dynamic,
similar to classical LQG. We show that when sub-controller
input costs are decoupled (but there is possible coupling between
sub-controller state costs), the decentralized LQR compensator
enjoys similar guaranteed stability margins to classical LQR.
However, these guarantees disappear when cost coupling is
introduced.

I. INTRODUCTION

Multi-agent systems with communication constraints oc-
cur naturally in engineering applications, including bilateral
teleoperation systems in remote robotic surgery and un-
manned aerial vehicles (UAVs). For example, a swarm of
UAVs could be deployed to survey an uncharted region or to
optimize geographic coverage while combating forest fires.
Information transfer within the swarm could be limited due
to geographic constraints such as mountains blocking line-
of-sight communications between certain UAVs.

It is known that certain decentralized information-sharing
architectures lead to tractable optimal control problems [1],
[2]. One such problem is decentralized LQR where the
communication constraints have a poset-causal architecture
[3], [4]. Although this is a state-feedback problem, the
optimal decentralized controller is dynamic and has an
observer-regulator structure reminiscent of output-feedback
LQG regulators.

Robustness is an important aspect of controller design,
because it ensures that the controller can effectively and
reliably control a system in the presence of disturbances,
plant uncertainty, or unmodeled dynamics. In the centralized
case, LQR controllers enjoy guaranteed gain and phase
margins [5], [6]. However, linear quadratic Gaussian (output
feedback) regulators, have no robustness guarantees [7].

The robustness properties of decentralized LQR are not
immediately apparent, since decentralized LQR shares com-
monalities with both centralized LQR (uses state feedback),
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and centralized LQG (optimal controller is dynamic). To the
best of our knowledge, this is an open problem.

In this letter, we show that decentralized LQR enjoys
similar stability margins to classical LQR if the input matrix
(B) and control weighting matrix (R) are block-diagonal.
We also show via counterexample that these assumptions
are necessary.

In Sections II and III we review classical stability margins
for LQR and more recent work on decentralized LQR syn-
thesis. In Section IV we present our main results, and in Sec-
tions V and VI we present our counterexample and conclude.

II. CLASSICAL LQR STABILITY MARGINS

Consider the continuous-time linear time-invariant (LTI)
dynamical system ẋ = Ax + Bu, where x(t) ∈ Rn and
u(t) ∈ Rm. The linear quadratic regulator (LQR) problem
is to find the causal state-feedback policy that minimizes the
quadratic cost

J =

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt. (1)

Proposition 1: Suppose (A,B) is stabilizable, (Q,A) is
detectable, and Q ⪰ 0 and R ≻ 0. The optimal LQR policy
is u(t) = Fx(t), where F = −R−1BTX , and X ⪰ 0 is the
unique stabilizing solution to the algebraic Riccati equation
ATX +XA+Q−XBR−1BTX = 0.

We denote the optimal LQR gain from Theorem 1 using
the notation F := Ric(A,B,Q,R). The optimal LQR con-
troller is known to be inherently robust [8, §23] [9, §14.4]. In
particular, if we define the loop gain L(s) := F (sI−A)−1B,
then the Kalman inequality holds:

(I − L(jω))
∗
R (I − L(jω)) ⪰ R for all ω ∈ R. (2)

In the single-input case, L(jω) is a scalar and the Kalman
inequality reduces to |1−L(jω)| ≥ 1. This can be interpreted
as the open-loop Nyquist plot of −L (negative feedback)
lying outside the disk centered at (−1, 0) with radius 1. This
implies that the LQR compensator has gain margin 1

2 < k <
∞ and phase margin −60° < ϕ < 60°.

Alternatively, a sufficient condition for robust stability can
be expressed in terms of the perturbation itself [6].

∆ L

Fig. 1. Perturbed feedback interconnection. L(s) := F (sI − A)−1B is
the loop gain for a standard LQR feedback controller u(t) = Fx(t).
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Lemma 2: Consider the setting of Theorem 1, and let
L(s) := F (sI −A)−1B be the LQR-optimal loop gain. The
interconnected system of Fig. 1 is well-posed and internally
stable for all LTI systems ∆ that satisfy

∆(jω)∗R+R∆(jω) ≻ R for all ω ∈ R. (3)

Proof: Invert (2) and apply the matrix inversion lemma,
which yields (I + H(jω))∗R(I + H(jω)) ⪯ R, where we
defined the closed-loop map H(s) := F (sI−A−BF )−1B.
This is equivalent to ∥R1/2(I +H)R−1/2∥∞ ≤ 1.
Then, perform a loop-shifting transformation to Fig. 1
to obtain Fig. 2. Apply the small gain theorem [9,
Thm. 9.1] to conclude that the interconnection is well-
posed and internally stable for all LTI systems ∆ satisfying
∥R1/2(I −∆−1)R−1/2∥∞ < 1, which is equivalent to (3).

R1/2(H + I)R−1/2

R1/2(I −∆−1)R−1/2

Fig. 2. Transformation of Fig. 1. H(s) := F (sI −A−BF )−1B is the
closed-loop map for a standard LQR feedback controller.

Theorem 2 allows us to specialize the previous gain and
phase margin results derived from the Kalman inequality to
the case where each input channel is separately perturbed.

Corollary 3: Consider the setting of Theorem 2. Partition
the input u(t) into subvectors of dimension m1+· · ·+mN =
m. If we assume R and ∆ are block-diagonal and partitioned
conformally to the partition of u(t), i.e.,

R =

R1 0
. . .

0 RN

 and ∆ =

∆1 0
. . .

0 ∆N

 ,

then the interconnected system of Fig. 1 is well-posed and
internally stable for all independent LTI perturbations of the
blocks of u(t) satisfying ∆i(jω)

∗Ri + Ri∆i(jω) ≻ Ri for
i = 1, . . . , N and for all ω ∈ R. In particular, each input
block independently has gain margin 1

2 < ki < ∞ and phase
margin −60° < ϕi < 60°.

In Theorem 3, the assumption that R is block-diagonal is
necessary. It is possible to construct systems where a non-
diagonal R leads to closed loops that be destabilized by
arbitrarily small perturbations in a single channel [6, Ex. 3.1].

Similar robustness results to Theorem 2 have been derived
for discrete time [10] and for the case with cross-product
cost terms [11], though these cases generally have weaker
robustness guarantees. There are also negative results; when
R is full, the independent perturbation result of Theorem 3
no longer holds [6, Ex. 3.1]. Finally, there are no guaranteed
stability margins for LQG compensators [7].

III. DECENTRALIZED LQR CONTROL

We consider the problem setting studied in [3], [4],
which is an LQR problem structured according to a

directed acyclic graph (DAG). Specifically, we assume
the setting in Theorem 1, but we partition the state as
x =

[
xT
1 · · · xT

N

]T
and similarly for the input u. We

also partition A and B as N×N block matrices conforming
to the partitions of x and u.

There is an underlying DAG on the nodes 1, . . . , N , which
are assumed to be ordered according to the partial ordering
of the DAG. The matrices A and B have a block-sparsity
pattern that conforms to the adjacency matrix of the transitive
closure of the DAG. Consider for example the 4-node DAG
in Fig. 3.

1

2 3

4

S =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


Fig. 3. Example of a 4-node directed acyclic graph (DAG), the adjacency
matrix of its transitive closure is S, shown on the right.

The associated dynamical system would have the structureẋ1

ẋ2

ẋ3

ẋ4

 =

A11 0 0 0
A21 A22 0 0
A31 0 A33 0
A41 A42 A43 A44


x1

x2

x3

x4

+

B11 0 0 0
B21 B22 0 0
B31 0 B33 0
B41 B42 B43 B44


u1

u2

u3

u4


There are no assumptions on the cost matrices, so all states
and inputs may be coupled through Q and R, respectively.

Definition 4: The ancestors of node i, denoted A(i), is the
set of all nodes j for which there exists a directed path from
j to i, including node i. Similarly, the descendants of node i,
denoted D(i), is the set of all nodes j for which there exists
a directed path from i to j, including i. We also use these
sets as a matrix subscripts to indicate the submatrix formed
by selecting the corresponding block rows and columns.

For the example of Fig. 3, we have D(2) = {2, 4} and
A(3) = {1, 3}, which defines the block submatrices

AD(2) =

[
A22 0
A24 A44

]
and BA(3) =

[
B11 0
B31 B33

]
.

What makes the problem decentralized is that each ui only
has access to the past history of the ancestors of node i. For
the example of Fig. 3, this means the ui take the form

u1 = K1(x1), u2 = K2(x1, x2),

u3 = K3(x1, x3), u4 = K4(x1, x2, x3, x4),

where the Ki are causal maps. In general, decentralized prob-
lems with LQG assumptions need not have linear optimal
controllers [12]. However, when the plant and controller are
structured according to a DAG as above, the optimal con-
troller is linear [2] and finding the optimal linear controller
may be cast as a convex optimization problem [13].

Explicit closed-form solutions have been obtained for this
decentralized LQR problem using a state-space approach [3],
[14] and poset-based approach [4]. Similar explicit solutions
exist for LQG (output-feedback) versions of this problem
[14]–[17] and also with time delays [18], [19].
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The optimal controller for the decentralized LQR problem
described above has the following structure [3].

Proposition 5: Consider the decentralized LQR problem.
Suppose (Ai, Bi) is stabilizable for i = 1, . . . , N and (Q,A)
is detectable. Let Fi := Ric(AD(i), BD(i), QD(i), RD(i)).
The optimal decentralized LQR controller has closed-loop
dynamics and associated optimal policy given by

ξ̇i = (AD(i) +BD(i)Fi)ξi

ui =
∑

j∈A(i)

Ii,D(j)Fjξj for i = 1, . . . , N

where Ii,D(j) is the block-row of the identity matrix ID(j)

associated with node i.
If we include zero-mean process noise in the plant dynam-

ics that is independent between the different nodes of the
DAG, then ξi = E

(
xD(i) | xA(i)

)
−E

(
xD(i) | xA(i)\{i}

)
, so

ξi is an estimation correction in updating the estimate of the
descendants once the current node i is included.

The optimal decentralized controller from Theorem 5 is
linear, but unlike the classical centralized case in Theorem 1,
it is also dynamic. The decentralized LQR controller bears a
resemblance to the optimal LQG controller because its states
are estimates of plant states. The main difference is that the
strict descendants of node i are not observable, so rather than
using an observer such as a Kalman filter, the state estimates
are formed via prediction [20, §IV.D].

IV. MAIN RESULTS

For the optimal decentralized LQR controller described in
Theorem 5, there is no large Kalman inequality of the form
(2). Instead, we have N separate Kalman inequalities

(I − Li(jω))
∗RD(i)(I − Li(jω)) ⪰ RD(i) ∀ω ∈ R, (4)

corresponding to the N separate centralized LQR sub-
problems that make up the optimal decentralized controller.

Consequently, there is no apparent way to leverage the
small gain theorem as in the proof of Theorem 2. Instead,
we show that if we assume B and R are block-diagonal, we
can prove a result similar to Theorem 3 for block-diagonal
perturbations.

Theorem 6: Consider the decentralized LQR problem and
its optimal controller, described in Section III and Theo-
rem 5, respectively, and let Ldec be the optimal loop gain.

Further suppose that R and B are block-diagonal with
block sizes corresponding to the partitions of x(t) and
u(t). The interconnected system of Fig. 4 is well-posed and
internally stable for all independent LTI perturbations of the
blocks of u(t) satisfying the following for all i = 1, . . . , N .

∆i(jω)
∗Ri +Ri∆i(jω) ≻ Ri for all ω ∈ R. (5)

Remark 7: Theorem 6 looks similar to Theorem 3, but
Ldec is now the more complicated loop gain for the optimal
decentralized LQR controller. Unlike Theorem 3, Theorem 6
makes the additional assumptions that B and R are block
diagonal. In Section V, we show that these assumptions are
necessary, but we argue that they are not restrictive in many
cases of practical interest.

∆dec Ldec

Fig. 4. Perturbed feedback interconnection. Ldec is the loop gain for the
optimal decentralized LQR feedback controller described in Theorem 5 and
∆dec = diag{∆i} is a block-diagonal LTI perturbation.

Proof: We take an approach similar to the proof of The-
orem 2, except we use a more general version of the small
gain theorem for structured uncertainty, and additional steps
are required to combine the N separate Kalman inequalities
into something we can use. Start by rewriting the closed-
loop map of the optimal decentralized LQR controller from
Theorem 5 as:

Hdec = 1TdecF̄ (sI − Ā− B̄F̄ )−1B̂

where we defined:

1Tdec :=
[
I1,D(1) · · · IN,D(N)

]
Ā := diag{AD(i)}
F̄ := diag{Fi}
B̄ := diag{BD(i)}

B̂ :=

 e1e
T
1BD(1)

...
eNeTNBD(N)

 ,

where ei is the i-th column of the identity matrix of size
n. Since B is block-diagonal, we have B̂ = diag{BD(i)ei}.
So we can rewrite the closed-loop map as Hdec = 1TdecH̄E,
where we defined:

H̄ := diag{Hi}, E := diag{ei}, R̄ := diag{RD(i)},
Hi := Fi(sI −AD(i) −BD(i)Fi)

−1BD(i).

Note that Hi is the closed-loop map for the separate LQR
problem associated with D(i) defined in Theorem 5.

Now perform the same loop-shifting transformation as in
the proof of Theorem 2 to Fig. 4 to obtain Fig. 5. Since R
and ∆dec are block-diagonal, the uncertainty block in Fig. 5
is also block-diagonal. Our goal is to apply the structured
small gain theorem [9, Thm. 11.8], which is a generalization
of the small gain theorem that applies when the uncertainty
is structured.

R1/2(1TdecH̄E + I)R−1/2

R1/2(I −∆−1
dec)R

−1/2

Fig. 5. Transformation of Fig. 4. H̄ := diag{Hi} is the block-diagonal
concatenation of the closed-loop maps associated with the N centralized
LQR sub-problems that make up the optimal decentralized LQR controller.

To this end, we state an intermediate lemma, which relates
the structured singular value of the optimal closed-loop map
to the N separate Kalman inequalities (4).
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Lemma 8: Consider the setting of Theorem 6, where
H̄ , Hi, E, and 1dec are defined as above. The following
inequality holds:

sup
ω∈R

µ∆

(
R1/2(1TdecH̄(jω)E + I)R−1/2

)
≤ max

1≤i≤N

∥∥R1/2
i eTi

(
I +Hi

)
eiR

−1/2
i

∥∥
∞,

where µ∆(·) denotes the structured singular value corre-
sponding to the block-diagonal structure of ∆dec.

Proof: Let M := R1/2(1TdecH̄(jω)E+ I)R−1/2. Since
the plant and controller each have transfer functions struc-
tured according to the adjacency matrix S of the transitive
closure of the associated DAG, they form an algebra. Con-
sequently, all products, inverses, and linear fractional trans-
formations preserve the structure, and in particular, so does
the closed-loop map Hdec. Therefore, M has a block-sparsity
structure conforming to S. Since the nodes are assumed to
be ordered according to the partial ordering of the DAG, S
is lower-triangular and so M is block-lower triangular.

Let ∆ := {diag{∆i} | ∆i ∈ Cmi×mi}. For any ∆ ∈ ∆,

det(I −M∆) =

N∏
i=1

det(I −Mii∆i)

and we can simplify Mii based on the definition as

Mii = eTi

(
R1/2(1TdecH̄(jω)E + I)R−1/2

)
ei

= R
1/2
i eTi (1

T
decH̄(jω)E + I)eiR

−1/2
i

= R
1/2
i eTi (Hi(jω) + I)eiR

−1/2
i . (6)

By the definition of the structured singular value,

µ∆(M) =
1

min {∥∆∥ | det(I −M∆) = 0,∆ ∈ ∆}
=

1

min {∥∆∥ | det(I −Mii∆i) = 0 for some i}
≤ 1

mini min {∥∆i∥ | det(I −Mii∆i) = 0}
= max

1≤i≤N
∥Mii∥.

The last step follows from the fact that µ∆i
(Mii) = ∥Mii∥

because ∆i is unstructured. Substituting in Mii from (6) and
taking the supremum over ω ∈ R completes the proof.

Inverting the Kalman inequalities in (4) and converting
them into H∞ norms as in the proof of Theorem 2, we obtain∥∥R1/2

D(i)

(
I +Hi

)
R

−1/2
D(i)

∥∥
∞ ≤ 1 for i = 1, . . . , N.

Since for any matrix M ∈ Cp×q , the (spectral) norm of M
is lower-bounded by the norm of any submatrix of M , have
a similar inequality for H∞ norms, and together with the
fact that R is block-diagonal, we deduce that∥∥R1/2

i eTi
(
I +Hi

)
eiR

−1/2
i

∥∥
∞ ≤

∥∥R1/2
D(i)

(
I +Hi

)
R

−1/2
D(i)

∥∥
∞

The two above inequalities together with Theorem 8 imply
that

sup
ω∈R

µ∆

(
R1/2(1TdecH̄(jω)E + I)R−1/2

)
≤ 1.

We can now apply the structured small gain theorem [9,
Thm. 11.8] and conclude that the interconnection of Fig. 5
is well-posed and stable whenever ∆dec = diag{∆i} satisfy∥∥R1/2(I −∆−1

dec)R
−1/2

∥∥
∞ < 1.

Due to the block-diagonal structure of the uncertainty, this
is equivalent to∥∥R1/2

i (I −∆−1
i )R

−1/2
i

∥∥
∞ < 1 for i = 1, . . . , N

which is equivalent to (5).

Equipped with Theorem 6, we can specialize the decen-
tralized LQR robustness result to the case where each input
channel is perturbed using either a pure gain or a pure phase
shift. This leads us to a decentralized version of Theorem 3.

Corollary 9: Consider the decentralized LQR setting of
Theorem 6. Each input ui(t) independently has gain margin
1
2 < ki < ∞ and phase margin −60° < ϕi < 60°.

V. DISCUSSION

Theorem 6 provides conditions for the robust stability of
the optimal decentralized linear quadratic regulator, under
the additional assumptions that B and R are block-diagonal
and different perturbations are applied to each input ui.

The assumption that B and R are block-diagonal is criti-
cal. We will demonstrate using a simple numerical example
that the gain margin 1

2 < ki < ∞ established in Theorem 9
no longer applies when either B or R is not block-diagonal.

Consider a two-node DAG with graph 1 → 2 and global
plant dynamics given by

ẋ =

[
1 0
1 1

]
x+

[
1 0
β 1

]
u, (7)

cost matrices Q = [ 3 1
1 3 ] and R =

[ 100 ρ
ρ 100

]
. We use the

perturbation ∆dec = [ k 0
0 1 ] with k ∈ R, so node 1 is perturbed

by a static scalar gain while node 2 remains unperturbed. The
perturbed closed-loop matrix is given by

ACL :=

 1 + kF 11
1 kF 12

1 0
1 + βF 11

1 + F 21
1 1 + βF 12

1 + F 22
1 0

1 + kβF 11
1 + F 21

1 F 22
1 − F2 + kβF 12

1 1 + F2


where F ij

1 and F2 are given by[
F 11
1 F 12

1

F 21
1 F 22

1

]
= Ric

([
1 0
1 1

]
,

[
1 0
β 1

]
,

[
3 1
1 3

]
,

[
100 ρ
ρ 100

])
F2 = Ric(1, 1, 3, 100) ≈ −2.0149.

The gain margin of input u1 is the range of values of k
for which ACL is Hurwitz.

We ran two experiments. First, we assumed a diagonal R
and triangular B, so we fixed ρ = 0 and varied β. Fig. 6
(top) shows a plot of the pairs (β, k) for which ACL is
Hurwitz (shaded in blue). When β = 0, we confirm the
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result of Theorem 9; the system is stable for 1
2 < k < ∞,

which corresponds to k > −6 dB on the plot. But when
β ̸= 0, violating the requirement that B be block-diagonal,
we observe a severe deterioration in the gain margin.

For the second experiment, we assumed a full R but
diagonal B, so we fixed β = 0 and varied ρ. Fig. 6 (bottom)
shows a plot of the pairs (ρ, k) for which ACL is Hurwitz
(shaded in blue). As in the previous example, we confirm
the result of Theorem 9 when ρ = 0, but we observe
deterioration for some nonzero choices of ρ.

The matrices B and R are block-diagonal in many cases of
practical interest. For example, consider multi-agent systems,
such as drones flying in formation or a platoon of vehicles.
In these cases, each control input affects a separate agent,
so B is block-diagonal. Also, the total input cost is typically
the sum of input costs for each agent, with no coupling. So
R is block-diagonal as well.

�100 �75 �50 �25 0 25 50 75 100
β value (using ρ = 0)
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Fig. 6. Stability margins for the decentralized LQR example with the
dynamics of Eq. (7). The input u1 is perturbed by a factor of k. The top
panel uses ρ = 0 (diagonal R) and the blue region shows the (β, k) that
yield a stable closed loop, with k expressed in decibels (dB). The bottom
panel uses β = 0 (diagonal B) and the blue region shows the (ρ, k) that
yield a stable closed loop. When B and R are block-diagonal (ρ = β = 0),
we recover Theorem 9, which ensures a gain margin 1

2
< k < ∞. In other

words, k > −6 dB.

VI. CONCLUSION

We studied the robustness of optimal decentralized LQR
controllers when the plant and controller are structured
according to a directed acyclic graph. Specifically, we estab-
lished that when the B and R matrices are block-diagonal
and different LTI perturbations are applied to each input, the
controlled system enjoys the same stability margins as in
the classical (centralized) LQR case. This is an interesting
result because the optimal decentralized LQR controller is
dynamic, much like an output-feedback LQG controller, yet
LQG controllers have no stability margins.

While this letter only studied the case of LTI perturba-
tions, our approach can be generalized to nonlinear input
perturbations, analogous to the results obtained in [5].
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