
i2LQR: Iterative LQR for Iterative Tasks in Dynamic Environments

Yifan Zeng∗1, Suiyi He∗2, Han Hoang Nguyen3, Yihan Li4, Zhongyu Li3, Koushil Sreenath3 and Jun Zeng3

Abstract— This work introduces a novel control strategy
called Iterative Linear Quadratic Regulator for Iterative Tasks
(i2LQR), which aims to improve closed-loop performance with
local trajectory optimization for iterative tasks in a dynamic
environment. The proposed algorithm is reference-free and
utilizes historical data from previous iterations to enhance
the performance of the autonomous system. Unlike existing
algorithms, the i2LQR computes the optimal solution in an
iterative manner at each timestamp, rendering it well-suited for
iterative tasks with changing constraints at different iterations.
To evaluate the performance of the proposed algorithm, we
conduct numerical simulations for an iterative task aimed at
minimizing completion time. The results show that i2LQR
achieves an optimized performance with respect to learning-
based MPC (LMPC) as the benchmark in static environments,
and outperforms LMPC in dynamic environments with both
static and dynamics obstacles.

I. INTRODUCTION

A. Motivation

One important objective of control algorithms is to op-
timize the performance of autonomous systems. This can
be usually formulated as minimizing completion time [1]
or energy consumption [2] during task execution. The
performance-optimal controller can be applied to iterative
tasks, where the autonomous system must do the same task
repeatedly. However, the surrounding environment around
the autonomous system may be dynamic. This means that
constraints of the system are not always the same along
the process, such as constraints that are changed in some
given iterations, e.g. new obstacles appear after a particular
iteration or moving obstacles in a single iteration. The
existing algorithms cannot handle these changes effectively.
This motivates us to propose a control strategy that could
handle additional constraints in different iterations while
improving the system’s closed-loop performance with local
trajectory optimization.

B. Related Work

Researchers have applied different methods to optimize
performance. Model-based approaches usually leverage a

∗Authors have contributed equally.
Implementation code is released on https://github.com/

HybridRobotics/ilqr-iterative-tasks.
1Author is with Shanghai Jiao Tong University, Shanghai, China.

blakezyf1107@sjtu.edu.cn
2Author is with University of Minnesota-Twin Cities, MN 55455, USA.

he000231@umn.edu
3Authors are with University of California, Berkeley. {hanhn,

zhongyu li,koushils,zengjunsjtu}@berkeley.edu
4Author is with Xi’an Jiaotong University, Xi’an, China.

1325140363@stu.xjtu.edu.cn

high-level planner to generate the optimized trajectory and a
low-level controller is deployed to track the planned trajec-
tory [3]–[6]. However, calculating the best possible trajectory
can be time consuming, and the low-level controller may
not track the trajectory perfectly due to discretization in the
planning problem. Furthermore, when the planned trajectory
encounters conflicts with newly appeared constraints, local
re-planning is required to deal with these additional con-
straints [7]. This may result in the loss of optimality for the
trajectory in local trajectory optimization.

Several attempts are made to address the problem through
data-driven based model-free approaches, where the system’s
historical data is used to train an end-to-end control policy
directly. For instance, in [1], [8], the learning-based control
policy shows its capability to push an autonomous racing
car to its dynamics limit. In [9], [10], quadrotors are shown
to fly with aggressive maneuvers in an autonomous drone
racing competition. Nevertheless, these methods still have
limitations. Learning-based methods are data hungry and
require significant time to get the policy, which means that
such methods may not be suitable for some real-time appli-
cations. Moreover, all the aforementioned policies operate in
a static environment. However, in practice, the control policy
is required to be functional in a dynamic environment. More
importantly, since the performance of the trained policy is
highly related to the used training data set, the learned policy
may not guarantee optimal performance.

Recently, reference-free, model-based methods are pro-
posed to provide optimized performance for iterative tasks. In
[11], a model predictive contouring controller (MPCC) with
dynamics learning is used for autonomous racing cars. The
optimization algorithm called learning-based MPC (LMPC)
is introduced in [12], [13], where the system’s historical data
is used to formulate the local MPC optimization problem.
This allows the system to improve its performance over each
iteration and the system is proved theoretically to achieve
closed-loop optimal performance [12]. The proposed algo-
rithm is implemented on autonomous vehicles [14], aerial
robots [15] and robotic arms [16]. However, these methods
still have shortcomings. Although the local objective function
in [11] considers optimal performance along the prediction
horizon, the result is not closed-loop optimal without global
planning. The LMPC strategy in [12], [13] must work in a
static environment, which means that the scenario should be
exactly same for every iteration. This is due to the limitation
of the optimization setup, where local MPC’s feasibility
strictly depends on the reachability of historical states from
previous iterations. If new obstacles are introduced, these

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5249

historical states could be infeasible, rendering the MPC
problem infeasible. One possible solution to this problem
is local-replanning [17], but the performance may be limited
due to the nonsmooth switching in the high-level planner.

To ensure that the autonomous system can smoothly adapt
to newly introduced constraints, the optimal trajectory should
be computed in an iterative manner. Therefore, we want to
use a method that could handle this without resulting in
infeasibility. The iterative linear quadratic regulator (iLQR)
shows potential in solving this problem. iLQR is an extension
of LQR control, where the optimization is solved iteratively
and linearization of cost function and system dynamics is
conducted in each iteration. In [18], [19], the iLQR computes
the open-loop predicted trajectory for control problems in an
iterative manner. This motivates us to investigate the above
challenging problem using an iLQR-based algorithm.

C. Contribution

The contributions of this paper are as follows:
• We propose a novel optimal control strategy called

Iterative LQR for Iterative Tasks (i2LQR), which im-
proves closed-loop performance with local trajectory
optimization for a general dynamic system for iterative
tasks in dynamic environments.

• We demonstrate the utilization of historical data from
preceding iterations to formulate the local optimization
problem within each time step of i2LQR. Additionally,
we outline an iterative approach to efficiently solve this
optimization problem.

• Through numerical simulation, our proposed control
strategy is shown to achieve the same optimal perfor-
mance as the LMPC algorithm for iterative tasks in
static environments and outperform the LMPC algo-
rithm for iterative tasks in dynamic environments.

II. PROBLEM SETUP

In this section, we show the problem setup of iterative
tasks. For an iterative task at time step t of iteration i, an
autonomous system with dynamics xi

t+1 = f(xi
t,u

i
t) per-

forms the task repeatedly until completion. In each iteration,
the system starts from the same initial state x0 and ends
at the same target state xtarget. The system’s historical data
(e.g. state and completion time) is saved in a data set H. The
system’s controller computes the optimal input based on this
data setH, state xi

t and constraint Cit at current time step. The
constraint Cit includes the constraints on both system states
and inputs. If the system works in a static environment [13],
[14], the constraint Cit will be same for the same time step t
of different iterations (i.e., Cit = Ci+1

t). If the system works
in a dynamic environment (as in this work), the constraint
Cit will change along the entire process (i.e., Cit ̸= Ci+1

t or
Cit+1 ̸= Cit). The cost-to-go h(xi

t) is the time to finish the
iteration i from the point xi

t to xtarget, which means that the
algorithm aims to minimize the time to finish each iteration.
This describes the cost to finish the corresponding iteration
from that point to the target state xtarget. The general form
of this problem is shown in Alg. 1.

In this work, we focus on designing a performance optimal
controller, which could minimize the cost h(xi

0) of the
iterative task. Details about this algorithm will be presented
in Sec. III. Parameters used in this work are listed in TABLE
I along with their notations.

TABLE I: Symbol Notations
Symbols for iterative tasks

Symbol Description
xi
t System state at time step t of iteration i

ui
t System input at time step t of iteration i

x0 Initial state for all iterations
xtarget Target state for all iterations
h(xi

t) Cost-to-go associated with system state xj
t

X i Set of historical states for iteration i
H Set of all historical states from previous iterations
Cit Constraints on the system at time step t in iteration i
ϵ A small positive number

Symbols for i2LQR
Symbol Description
x̄r Guided state for r-th target terminal set
Zr r-th target terminal set

zr(j) j-th state from r-th target terminal set
N Prediction horizon for the optimization problem

xm
r (j) Open-loop states of m-th iteration of iLQR for zr(j)

um
r (j) Open-loop inputs of m-th iteration of iLQR for zr(j)

x∗
r(j) Optimized open-loop states from iLQR for zr(j)

u∗
r(j) Optimized open-loop inputs from iLQR for zr(j)

x∗
r(j

∗
r) Best open-loop states for r-th optimization cycle

u∗
r(x

∗
r) Best open-loop inputs for r-th optimization cycle

Jz(x̄r) Cost for nearest point selection on x̄r

Jl(x
i
t, zr(j)) Cost for local iLQR Optimization
mmax Maximum iteration for iterative optimization
rmax Maximum iteration for target terminal set

III. ALGORITHM

After introducing the problem setup for iterative tasks,
the design of the proposed Iterative LQR for Iterative Tasks
(i2LQR) in a dynamic environment will be presented in this
section. The general idea of the algorithm will be introduced
in Sec. III-A. Details about the i2LQR will be shown in the
following subsections.

A. Structure of i2LQR

Consider the problem of achieving the system’s optimal
performance for iterative tasks in a dynamic environment in
the form of Alg. 1. The proposed control strategy i2LQR
computes the optimal input using historical data from previ-
ous iterations. This includes states that the system has visited
in previous iterations and the cost-to-go h(xi

t) associated
with each historical state. In the first iteration, any open-loop
controller could be used to generate a feasible trajectory as

Algorithm 1 Iterative Tasks

1: H ← ∅
2: repeat
3: Iteration i begins, t← 0, xi

0 ← x0, X i ← xi
0

4: while ||xi
t − xtarget||2 ≥ ϵ do

5: ui
t ← Controller(xi

t, Cit ,H)
6: xi

t+1 ← f(xi
t,u

i
t)

7: t← t+ 1,X i ← X i ∪ xi
t

8: end while
9: H ← H∪X i, i← i+ 1

10: until Task is finished

5250

(a) Proposed i2LQR. The optimization problem is resolved iteratively through several optimization cycles colored in the yellow block, and multiple iLQR
problems are solved in parallel at each optimization cycle colored in blue.

(b) LMPC [12], [13]. The key difference between LMPC and our proposed i2LQR is that performance optimal points are regarded as terminal constraints
instead of terminal costs updated iteratively.

Fig. 1: Illustration of i2LQR and existing LMPC algorithms

the initial history data. Then, the proposed i2LQR algorithm
is deployed to calculate the system’s optimal input at each
time step. Fig. 1a shows the structure of the proposed
algorithm. As a comparison, the structure of the LMPC
algorithm is also presented in Fig. 1b.

Different from LMPC algorithm, the proposed i2LQR
controller consists of several optimization cycles (yellow
block in Fig. 1a). For the r-th optimization cycle, we define a
guided state x̄r, which will be the initial guess of the open-
loop terminal state in the r-th optimization cycle and we
select K nearest points with respect to it (see Fig. 2). For the
first cycle, the state at the current time step xi

t will be used as
the guided state, while the best open-loop predicted terminal
state x∗r−1(j

∗
r−1)N from the last cycle will be used as the

guided state for r-th cycle. Then K-nearest points to x̄r from
the historical states set H will build the target terminal set
Zr, which consists of the target terminal state zr(j) of the
j-th iLQR optimization. To reduce the computational time
of the proposed algorithm, these iLQR optimizations will
be solved through parallel computing, colored in blue in
Fig. 1a. Then the best open-loop predicted solution for the
r-th optimization cycle will be selected. The algorithm will
continue doing optimization until either the set Zr remains
unchanged or the maximum cycle number rmax is reached.
As a result, the algorithm will select the iLQR’s optimal
target terminal state zr(j

∗
r) from historical data in an iterative

manner. Details about this algorithm will be illustrated in the
following subsections.

B. Nearest Points Selection
To build the target terminal set Zr, the following criteria

will be used to select the K-nearest points:

Jz(x̄r) = min
zr(j)

K∑
j=1

||zr(j)− x̄r||2D0
(1a)

s.t. zj ̸= zl, ∀j ̸= l (1b)
zj ∈ H, j = 1, ...,K (1c)

where j refers to the index of points in the r-th optimization
cycle; D0 is a diagonal matrix that contains weighting factors

Fig. 2: An illustration of nearest points selection in an iterative
manner for different optimization cycles. System state at the current
time step is marked in red, while historical states are marked in
blue. States on the right come with a smaller cost-to-go. Points
with crosses in the green block are the target terminal set Zr ,
consisting of the selected K nearest points, in which zr(j)(j =
1, 2, ...,K) represents a single terminal state(a single point with
cross). Specifically, yellow is the guided state, and purple is the
state associated with the best open-loop trajectory. The orange line
is the best open-loop trajectory.

for state variables.
Remark 1: The number of maximum iterations rmax and

the number of selected nearest points K are the hyper-
parameters of the proposed algorithm. A larger value of
rmax or K will make the system converge to the optimal
performance more quickly. However, this will also increase
the computational burden at each time step.

C. Local iLQR Optimization

The following constrained finite-time optimal control
problem will be solved through iLQR for each zr(j):

Jl(x
i
t, zr(j)) = min

u∗
r(j)

p(x∗r(j)1+N , zr(j)) (2a)

s.t. x∗r(j)k+1 = f(x∗r(j)k,u
∗
r(j)k), k = 1, ..., N (2b)

x∗r(j)k+1,u
∗
r(j)k ∈ Cit+k|t, k = 1, ..., N (2c)

x∗r(j)1 = xi
t, (2d)

where (2a) is the optimization problem’s objective function;
(2b) represents the system dynamics; (2c) shows the con-
straints of the system along the prediction horizon; (2d) is the
initial constraint. Specifically, the terminal cost introduces
the difference between the open-loop predicted terminal state
and the target terminal state in the quadratic form:

p(x∗r(j)1+N , zr(j)) =

(x∗r(j)1+N − zr(j))
TP (x∗r(j)1+N − zr(j)),

(3)

5251

Algorithm 2 iLQR

1: u0
r(j)← 0

2: repeat
3: Iteration m begins
4: xm

r (j)←g(xi
t,u

m
r (j))

5: Linearize f(·) and Js(·) around xm
r (j) and um

r (j)
6: δ∗(um

r (j))← LQR(δ(xm
r (j)), δ(um

r (j)))
7: um+1

r (j)← um
r (j) + δ∗(um

r (j)),m← m+ 1
8: until Reach mmax OR Js(·) has converged

where P is a diagonal matrix consisting of weighting factors.
Alg. 2 shows how to solve the above optimization problem

through iLQR. System constraints along the prediction hori-
zon will be converted to part of the new cost function Js(·)
through the exponential function as done in [18]. Firstly,
the algorithm starts with an initial input sequence, such as
zero control inputs in this work. Then, g(·) will calculate the
open-loop states based on open-loop inputs and initial state
through system dynamics (2b) during the forward pass at
line 4. It will be linearized along with the cost function Js(·)
around xm

r (j) and um
r (j). The optimal solution δ∗(um

r (j))
could be obtained efficiently and is used to generate the
input sequence um+1

r (j) for the next iteration. The algorithm
will do this computation repeatedly until the cost Js(·) has
converged or the maximum iteration mmax is reached.

D. Best Open-Loop Solution Selection

In each optimization cycle, the best open-loop solution
will be selected among K solutions. The following local
cost will be used in this process:

j∗r= argmin
j=1,...,K

whh(zr(jr))+wd||x∗r(jr)N − zr(jr)||2D1
, (4)

where wh, wd are weighting factors; h(.) is the cost-to-go
associated with the state zr(jr); ||x∗r(jr)N − zr(jr)||2D1

de-
scribes the penalty for the state difference between x∗r(jr)N
and zr(jr) with a diagonal weighting matrix D1. Since cost-
to-go function h(.) is considered in (4), this allows the
iterative optimization to find the best terminal state in the
outer loop of i2LQR, shown in red connected lines in Fig. 1a.

IV. RESULTS

Having presented the framework that uses i2LQR for itera-
tive tasks in dynamic environments in the previous sections,
we now show the performance of the proposed algorithm.
In Sec. IV-A, the simulation setup is introduced. Then, the
performance of the proposed controller is compared with
state-of-the-art learning-based MPC algorithm for iterative
tasks in both static environments and dynamic environments.

A. Simulation Setup

A nonlinear kinematic bicycle model with input con-
straints as in [18] is used to evaluate the proposed algorithm.
The kinematic bicycle model has states and inputs at time
step t given by xt = [xt, yt, vt, θt]

T ,ut = [at, δt]
T , where

xt and yt describe the system’s position; vt and θt show

0 50 100 150 200
x (m)

−40

−20

0

20

40

y
(m

)

i2LQR
LMPC
Shared Initial Trajectory

(a) Shared initial trajectory, and trajectories in iteration 10 for i2LQR and
LMPC.

0 2 4 6 8 10
Iteration i

20

120

h
(x
i 0
) (

s) i2LQR
LMPC

(b) Time to finish the iteration for i2LQR and LMPC.

0 5 10 15 20
Time (s)

0
4
8

12
16

v
(m

/s
) i2LQR

LMPC

(c) System speed in iteration 10 for i2LQR and LMPC.

0 5 10 15 20
Time (s)

−2
−1

0
1
2

a
 (m

/s
2
) i2LQR

LMPC

(d) System acceleration in iteration 10 for i2LQR and LMPC.

Fig. 3: Simulation with no obstacle. Both algorithms could reach
the system’s optimal performance.

the system’s speed and heading angle; at is the acceleration;
δt represents the steering angle. The sampling time ∆t is
set to 1 second, which is consistent with the open-source
code of [13]. The system is subject to the following input
constraints −2m/s2 ≤ at ≤ 2m/s2, −π

2 rad ≤ δt ≤
π
2 rad with the initial state x0 and the target state xtarget as
[0m, 0m, 0m/s, 0 rad]T and [201.5m, 0m, 0m/s, 0 rad]T

for each iteration, respectively. In iteration 0, a brute force
algorithm [13] is used to calculate the initial feasible trajec-
tory, which is used by both i2LQR and LMPC algorithms
for all simulations. In iteration 1, both algorithms use the
historical data from iteration 0, and historical data from
the two previous iterations are used by both algorithms in
subsequent iterations. In this work, numerical simulation is
carried out in Python. For the LMPC algorithm, CasADi [20]
is used as modeling language and the resulting optimization
is solved with IPOPT [21].

B. Iterative Tasks In Static Environments

This subsection compares the performance of our proposed
i2LQR and LMPC for iterative tasks in static environments.

In the first group of simulations, no obstacle exists in the
environment. In each iteration, the system travels from the
initial state x0 to the target state xtarget. The simulation results
using the two algorithms are shown in Fig. 3. It indicates that
both algorithms minimize the system’s completion time to

5252

0 50 100 150 200
x (m)

−40

−20

0

20

40
y

(m
)

i2LQR
LMPC
Shared Initial Trajectory
Obstacle

(a) Shared initial trajectory, and trajectories in iteration 10 for i2LQR and
LMPC.

0 2 4 6 8 10
Iteration i

20

120

h
(x
i 0
) (

s) i2LQR
LMPC

(b) Time to finish the iteration for i2LQR and LMPC.

0 5 10 15 20
Time (s)

0
4
8

12
16

v
(m

/s
) i2LQR

LMPC

(c) System speed in iteration 10 for i2LQR and LMPC.

0 5 10 15 20
Time (s)

−2
−1

0
1
2

a
 (m

/s
2
) i2LQR

LMPC

(d) System acceleration in iteration 10 for i2LQR and LMPC.

Fig. 4: Simulation with a static obstacle. Both algorithms could
reach the system’s optimal performance.

reach the target state and have the same optimal performance.
Specifically, given the same initial trajectory, the trajectories
in iteration 10 are almost straight lines between the initial
and target state for both algorithms. The system accelerates
for the first half of the simulation and then decelerate to
reach the target state with zero velocity in the second half
for both algorithms in iteration 10.

Remark 2: The acceleration profile is not exactly sym-
metric since the the sampling time ∆t is set to 1 s which is
quite large and cannot be considered as a continuous system
anymore. All this could result in multiple optimal trajectories
for the same completion time.

In the second group of simulations, an ellipse-shaped static
obstacle with center (xobs, yobs) = (100 m,−5 m) exists in
the environment. The system must travel from the state x0

to the state xtarget while avoiding this obstacle. Simulation
results using the two algorithms are shown in Fig. 4. It’s
shown that both i2LQR and LMPC algorithms minimize the
completion time for the system to reach the target state even
when a static obstacle exists in the environment. Given the
same initial trajectory, both algorithms can find the optimal
trajectory that avoids the obstacle. In iteration 10, the system
accelerates for the first half of the simulation and then
decelerate to reach the target state with zero velocity.

C. Iterative Tasks In Dynamic Environments

To show the proposed i2LQR algorithm’s performance for
iterative tasks in dynamic environments, we conduct two

0 50 100 150 200
x (m)

−40

−20

0

20

40

y
(m

)

i2LQR
LMPC
Shared Initial Trajectory
Obstacle

(a) Shared initial trajectory, and trajectories in iteration 6 for i2LQR and
LMPC. The static obstacle is plotted in red.

0 2 4 6 8 10
Iteration i

20

120

h
(x
i 0
) (

s) i2LQR
LMPC

(b) Time to finish the iteration for i2LQR and LMPC.

Fig. 5: Simulation with an added static obstacle in iteration 6. In
iteration 6, the proposed i2LQR reaches the target state xtarget while
the LMPC cannot reach the target state xtarget.

groups of simulations with different environments.
In the third group of simulations (Fig. 5), a static circle-

shaped obstacle with center (xobs, yobs) = (35 m, 0 m) exists
in the environment for iteration 6. According to Fig. 5b,
systems with the both algorithms have reached their optimal
performance before the static obstacle is introduced. During
iteration 6, i2LQR spends 25 s to reach the target state while
avoiding the static obstacle. Then, it returns to its optimal
performance after the obstacle is removed. However, the
LMPC cannot reach the target state after more than 100 s.
The reason is that all the nearby historical states except the
initial state are occupied by the obstacle, which results in the
infeasibility of the optimization problem.

To further present the proposed i2LQR algorithm’s perfor-
mance in a more complicated dynamic environment, in the
fourth simulation, a circle-shaped moving obstacle moves
upwards from the initial point (xobs, yobs) = (35 m,−16 m)
with a speed of 1 m/s in iteration 6. The obstacle is removed
in the next iteration. Fig. 6a and Fig. 6b show the snapshots
and trajectories for both i2LQR and LMPC algorithms in
iteration 6, respectively. It’s shown that i2LQR is able to
avoid this moving obstacle even when the obstacle is close
to the system. However, since historical states with smaller
time costs are occupied by the obstacle, these states become
infeasible for the local MPC optimization of the LMPC
algorithm; therefore, the controller cannot drive the system
towards the target state at the beginning. After the obstacle
goes away from the system, it moves towards the target
state. The i2LQR spends 32 s to finish iteration 6, while the
LMPC needs 63 s to finish this in the same environment.
Both algorithms return to their optimal performance after
the moving obstacle is removed from the environment.

Remark 3: It’s possible to get a solution by adding slack
variables to the terminal state constraint of LMPC in [13].
This converts the hard constraints on the terminal state into
cost-based soft constraints. However, using slack variables is

5253

0 50 100 150 200

-50

0

50
y

(m
)

t=10s

i2LQR
LMPC
Obstacle

0 50 100 150 200

-50

0

50

t=12s

0 50 100 150 200

-50

0

50

y
(m

)

t=14s

0 50 100 150 200

-50

0

50

t=16s

0 50 100 150 200
x (m)

-50

0

50

y
(m

)

t=32s

0 50 100 150 200
x (m)

-50

0

50

t=63s

(a) Snapshots for the systems using two algorithms in iteration 6.

0 50 100 150 200
x (m)

−40

−20

0

20

40

y
(m

)

i2LQR
LMPC
Shared Initial Trajectory

(b) Shared initial trajectory, and trajectories in iteration 6 for i2LQR and
LMPC.

0 2 4 6 8 10
Iteration i

20

120

h
(x
i 0
) (

s) i2LQR
LMPC

(c) Time to finish the iteration for i2LQR and LMPC.

Fig. 6: Simulation with an added moving obstacle in iteration 6. In
iteration 6, the proposed i2LQR reaches the target state xtarget earlier
than the LMPC, meaning a smaller system’s cost-to-go h(x6

0).

not in line with the design of the LMPC algorithm, which
relies on the feasibility of the terminal state. Furthermore,
this may not guarantee the algorithm’s performance.

V. CONCLUSION

This work introduces the Iterative Linear Quadratic Regu-
lator for Iterative Tasks (i2LQR) control strategy, which en-
hances performance in dynamic environments through local
trajectory optimization using historical data. Four simulations
are conducted: i2LQR matches state-of-the-art LMPC in
static environments and outperforms it in changing envi-
ronments. Future work will include stability and feasibility
analysis of this controller.

REFERENCES

[1] A. Jain and M. Morari, “Computing the racing line using bayesian
optimization,” in 2020 59th IEEE Conference on Decision and Control
(CDC), 2020, pp. 6192–6197.

[2] X. Wu, J. Zeng, A. Tagliabue, and M. W. Mueller, “Model-free online
motion adaptation for energy-efficient flight of multicopters,” IEEE
Access, vol. 10, pp. 65 507–65 519, 2022.

[3] N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential
two-step algorithm for fast generation of vehicle racing trajectories,”
Journal of Dynamic Systems, Measurement, and Control, vol. 138,
no. 9, 2016.

[4] A. Nagy and I. Vajk, “Sequential time-optimal path-tracking algorithm
for robots,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1253–
1259, 2019.

[5] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz,
M. Lienkamp, and B. Lohmann, “Minimum curvature trajectory
planning and control for an autonomous race car,” Vehicle System
Dynamics, 2019.

[6] A. Palleschi, M. Hamad, S. Abdolshah, M. Garabini, S. Haddadin, and
L. Pallottino, “Fast and safe trajectory planning: Solving the cobot
performance/safety trade-off in human-robot shared environments,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5445–5452,
2021.

[7] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1526–1545, 2020.

[8] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr, “Super-
human performance in gran turismo sport using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4257–4264, 2021.

[9] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 1205–1212.

[10] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning
minimum-time flight in cluttered environments,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7209–7216, 2022.

[11] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[12] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework,” IEEE Transactions
on Automatic Control, vol. 63, no. 7, pp. 1883–1896, 2017.

[13] ——, “Minimum time learning model predictive control,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp.
8830–8854, 2021.

[14] ——, “Learning how to autonomously race a car: a predictive control
approach,” IEEE Transactions on Control Systems Technology, vol. 28,
no. 6, pp. 2713–2719, 2019.

[15] G. Li, A. Tunchez, and G. Loianno, “Learning model predictive control
for quadrotors,” in IEEE International Conference on Robotics and
Automation, 2022.

[16] B. Thananjeyan, A. Balakrishna, U. Rosolia, J. E. Gonzalez, A. Ames,
and K. Goldberg, “Abc-lmpc: Safe sample-based learning mpc for
stochastic nonlinear dynamical systems with adjustable boundary con-
ditions,” in Algorithmic Foundations of Robotics XIV: Proceedings of
the Fourteenth Workshop on the Algorithmic Foundations of Robotics
14. Springer, 2021, pp. 1–17.

[17] S. He, J. Zeng, and K. Sreenath, “Autonomous racing with multiple
vehicles using a parallelized optimization with safety guarantee us-
ing control barrier functions,” in IEEE International Conference on
Robotics and Automation, 2022.

[18] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr
for on-road autonomous driving motion planning,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC), 2017, pp. 1–7.

[19] H. Hu and J. F. Fisac, “Active uncertainty reduction for human-
robot interaction: An implicit dual control approach,” in Algorithmic
Foundations of Robotics XV: Proceedings of the Fifteenth Workshop
on the Algorithmic Foundations of Robotics. Springer, 2022, pp.
385–401.

[20] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[21] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using ipopt: An integrating framework for enterprise-wide dynamic
optimization,” Computers & Chemical Engineering, vol. 33, no. 3,
pp. 575–582, 2009.

5254

