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Abstract— With the rapid advancements of communication
technology, distributed cooperative control has emerged as a
promising approach, enabling participants to perform control
based on their neighbouring agents, thereby facilitating a faster
response and more flexibility. However, the privacy concerns
must be addressed not only on the external adversaries but
also on the internal adversaries, to encourage the participant to
join this cooperative network. In contrast to existing literature,
our study considers the scenario where participating agents
are unaware of whether their neighbouring nodes inject noises,
leading them to directly use the received data in control. We first
design the noise injection scheme to ensure the mean-square
consensus while preserving privacy in discrete-time multi-agent
systems (MASs) and then derive the upper and lower bounds of
the convergence rate. After that, we study the covariance matrix
of the maximum likelihood estimate on the initial state of other
agents based on the internal adversary’s local information. The
feasibility of (ε, δ)-differential privacy is characterized. Simula-
tions of a practical cooperative adaptive cruise control illustrate
the effectiveness of the Privacy-Preserving Cooperative Control
(PPCC).

I. INTRODUCTION

Distributed cooperative control between multi-agent sys-
tems (MASs) has been widely used. A general principle
of distributed cooperative control is that all the participat-
ing agents aim to achieve an identical dynamic state via
this control based on their neighbouring information. This
kind of control could reach a faster response and more
flexibility compared with a centralized one, therefore, has
been extensively used in distributed sensor networks [1],
formation control [2], and etc. However, directly sending the
participants’ sensitive data to their neighbouring agents may
deter them from joining this cooperative control manner. In
addition, under some observability conditions, the sensitive
data may even be inferred perfectly by the curious nodes
in the MASs which are not neighbours of the current node
by leveraging the update rule of all the other agents. Due
to the above two problems, the study for exploring privacy-
preserving mechanisms is encouraged.

In the context of distributed cooperative control, achiev-
ing consensus implies that all participating agents’ states
become identical, thereby eliminating the need for privacy
preservation once consensus is reached. However, our focus

L. Huang, R. Su, Y. Lu, B. Wang, and Z. Hu are with the School of
Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798 (e-mails:lingying.huang@ntu.edu.sg, RSu@ntu.edu.sg,
yun.lu@ntu.edu.sg, bhwang@ntu.edu.sg, zhijian.hu@ntu.edu.sg).

M. Ma is with the College of Engineering, Qatar University, Qatar (e-
mail: mamaode@qu.edu.qa).

This research is supported by A*STAR under its RIE2020 Advanced
Manufacturing and Engineering (AME) Industry Alignment Fund C Pre
Positioning (IAF-PP) (Award A19D6a0053).

lies in preserving the initial state of each participating agent
throughout the cooperative consensus process. This is crucial,
as the initial state may reveal sensitive information such as
position and velocity, which can disclose personal details
like home address or driving behaviour. Mo and Murray [3]
design a time-correlated noise process to conceal the trans-
mitted state while guarantee cooperative consensus. Then the
estimation error with respect to the maximum likelihood of
the initial state based on the received noised data trajectories
and the actual one is derived which further characterizes
the privacy level. Huang et al. [4] study agents with scalar
outputs to reach a neighbourhood of the actual consensus
with probability subject to differential privacy (DP). In their
mechanism, the consensus accuracy is sacrificed in order to
improve the privacy level. Note that DP has been defined
and applied to preserve individual privacy in a dataset [5],
where are discussed more to solve the first-order consensus
problems in MASs [6], [7]. The optimal distributed esti-
mation based on the local received noised data is derived
by He et al. [8] and the resilient estimation is derived by
Fiore and Russo [9] using (ε, δ)-DP. Wang et al. [10] extend
the above setup to multivariable dynamic MASs. We only
make review based on the work on discrete-time MASs
since the individual agent will update its state after receiving
neighbour’s measurements and then inject noise for next
communication, in which both require processing time and
it is unrealistic and costly to inject noise all the time. It
is shown in the literature that the stabilization problem for
the discrete-time is essentially more difficult than that of the
continuous-time counterpart [11].

Note that in the above literature, the agents not only
transmit the noised data to their neighbouring node, but
also use the noised data to make control. This simplifies
the study, since the average state of the closed-loop systems
can then evolve as an open-loop system [12]. However, in
practice, they may not have knowledge of whether the trans-
mitted information has been perturbed to preserve privacy.
Therefore, they will directly interpret the received data from
their neighbours as the “actual states” of their neighbours,
and the control is then made based on both the “actual
states” of their neighbours and themselves. It should be
emphasized that, in this scenario, the control of each node
is based on the noised neighbouring information along with
the actual own state information. In addition, to preserve its
own state information, a noise will be added before sharing
to neighbours. The main difficulty is that due to the mismatch
of the control signal in MASs, the noise influence will always
be injected into the average side. Without careful design, it
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is shown in Li et al. [13] that the consensus may not be
reached. On the other hand, [10] only considers the privacy
analysis for the external adversaries with full knowledge of
transmitted data, while how the internal adversary which is
a curious node to derive estimates of other nodes based on
its local information set is not studied.

The two problems are tackled in this paper. We first study
the impact of the added noise on the consensus side. We
derive the conditions to ensure mean-square consensus and
then obtain the lower and upper bounds of the mean-square
convergence rate (Theorem 1). Later, since a better guess
can be obtained giving the whole trajectory, we derive a
maximum likelihood initial state estimate of other node given
the local observation information set that is shown to be a
sufficient statistic for estimating (Theorem 2). Therefore,
the error covariance with respect to the maximal estimate
and the initial state to the internal adversary can be derived.
At last, given the error covariance, we characterize the
possible (ε, δ)−DP that could be achieved by this control
(Theorem 3).

The rest of the paper is organized as follows. The problem
formulation is given in Section II. The main results are shown
in Section III. Simulation results are shown in Section IV and
the conclusions are summarized in Section V.

Notation: N (N+) is the set of (positive) natural numbers.
R and Rn (Cn) represent the set of real numbers and
n−dimensional real (complex) column vectors, respectively.
We use (·)⊤, ∥ · ∥ to represent the transpose and 2-norm of
(·), respectively. For the matrices A ∈ Rn×m and B ∈ Rp×q ,
A ⊗ B ∈ Rnp×mq represents their Kronecker product. Let
ρ(A) and ∥A∥F the spectral radius and Frobenius norm
of matrix A, respectively. The identity column vector and
matrix are 1m and Im, respectively, and their sizes are m.

II. PROBLEM FORMULATION

A. Network topology

We model the network composed of N agents as a graph
G = {V,E}, where V = {1, 2, . . . , N} is the set of vertices
representing the agents, E ⊆ V × V represents the set of
edges, and (i, j) ∈ E if and only if (iif) agent i and j can
communicate directly with each other. In this paper, we start
with the undirected and connected graph G, i.e., aij = aji.
The neighbourhood of sensor i is defined as Ni ≜ {j ∈ V :
(i, j) ∈ E, j ̸= i}.

B. Privacy-Preserving Cooperative Control (PPCC)

To prevent the local information from leaking to its neigh-
bours, each agent will add random noise at each iteration for
local data exchange. Let x+

i (k) ∈ Rn be the data sent out
by node i in iteration k:
xi(k+1) = Axi(k)+Bui(k), x

+
i (k) = xi(k)+wi(k), (1)

where
ui(k) = K

∑
j∈Ni

aij(x
+
j (k)− xi(k)). (2)

We assume that wi(k) are some predefined noises with zero
mean, and E[wj(k)w

⊤
i (k)] = 0,∀j, i ∈ V and j ̸= i.

Remark 1. As an important application, the consen-
sus algorithm can be easily extended to study privacy-
preserving cooperative adaptive cruise control to reach
formationability. Specially, given the formation vector h =
[h⊤

1 , h
⊤
2 , . . . , h

⊤
N ]⊤ ∈ RNn, the following control protocol is

adopted to study the formation problem of the discrete-time
MAS (1):

ui(k) = K
∑
j∈Ni

aij((x
+
j (k)− hj)− (xi(k)− hi)), (3)

where hi − hj is the desired distance vector between agent
i and agent j. In addition, we assume A(hi − hj) =
hi−hj ,∀i, j ∈ V , which represents the physical requirement
of cruise control that all the agents aim to have the same
velocity. Therefore, by letting a new variable x̃i(k) = xi(k)−
hi, the formation consensus problem will be equivalent to
study the consensus problem in the previous system setup
(1)-(2).

Define
x(k) ≜ [x⊤

1 (k), x
⊤
2 (k), . . . , x

⊤
N (k)]⊤ ∈ RNn,

x+(k) ≜ [x+⊤
1 (k), x+⊤

2 (k), . . . , x+⊤
N (k)]⊤ ∈ RNn,

w(k) ≜ [w⊤
1 (k), w

⊤
2 (k), . . . , w

⊤
N (k)]⊤ ∈ RNn.

(4)

Then the evolution (1)-(2) can be written in a compact form:
x(k + 1) =Ax(k) +W (k),

W (k) ≜


BK

∑
j∈N1

a1jwj(k)

BK
∑

j∈N2
a2jwj(k)

:
BK

∑
j∈NN

aNjwj(k)

 ,
(5)

where A = IN ⊗A−L⊗BK and L = [lij ] ∈ RN×N is the

Laplacian matrix where lij =

{ ∑
l∈Ni

ail, if j = i
−aij , otherwise

.

If w(t) = 0,∀t ≤ k ∈ N, x(k) is deterministically
determined by x(0). We denote the state without privacy-
preserving protocol as θ(k). The recursion of θ(k) follows:

θ(0) = x(0), θ(k + 1) = Aθ(k). (6)
For external adversaries which may have access to all the
transmitted information, x(0) will be leaked.

In addition, we also consider the internal adversaries which
are curious but honest nodes aiming to infer the other agents’
initial state. Without loss of generality, we only consider the
case for agent i = N . Denote the 1-hop neighbour of agent
N as NN = {j1, . . . , jm}. Define

C ≜ [ ej1 . . . ejm eN ]⊤ ⊗ In ∈ R(m+1)n×Nn (7)
where ei denotes the ith canonical basis vector in RN with
a 1 in the ith entry and zeros elsewhere. The information set
of agent N at k can be defined as

I(k) = {xN (0), y(0), . . . , y(k)}, (8)
where y(k) = Cx+(k) = Cx(k) + Cw(k). We assume that
(A, C) is observable and (A, C) is known by agent N . It is
worth noting that node N can perfectly infer x(0) if (A, C)
is observable and w(k) = 0, ∀k ∈ N.

From above analysis, the noise is needed either for the
external adversaries and the internal adversaries. Denote the
maximum likelihood estimate of x(0) given I(k) as θ̂(0|k),
the variance of which is defined as P (k). Since I(k) ⊂
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I(k + 1), we have the following proposition:

Proposition 1. P (k) is non-increasing, i.e., P (k1) ≥ P (k2)
if k1 ≤ k2.

In addition, since P (k) = E[(θ̂(0|k) − x(0))(θ̂(0|k) −
x(0))⊤] ≥ 0, the following limit is well defined:

P = [Pij ]i,j∈N ≜ lim
k→∞

P (k). (9)

As a result, the matrix Pii indicates the optimal estimation
performance that agent N can achieve on the initial state
xi(0), where Pij ∈ Rn×n. To preserve the privacy of
the initial condition xi(0), we need to ensure that Pii is
sufficiently large.

III. MAIN RESULTS

In this section, we first consider the impact of added noise
w(k) on the performance of consensus side. Next, we study
the estimation performance, and then the (ε, δ)-differential
privacy (DP) can be obtained from estimation performance
analysis.

A. Convergence Rate
Definition 1 (Mean-square consensus). The multi-agent sys-
tem (1)-(2) is said to reach mean-square consensus if

lim
k→∞

E[∥xi(k)− xj(k)∥2] = 0,∀i ̸= j, i, j ∈ V, (10)

where E indicates the expectation over noise process {w(k)}.

Let

e(k) ≜ (IN −
1N1⊤

N

N
)⊗ Inx(k) (11)

be the error of the MAS. From the fact that LG1N = 0,
1⊤NLG = 0, and E[wi(k)] = 0, it is easy to verify that the
mean-square consensus is reached if and only if

lim
k→∞

E[e⊤(k)e(k)] = 0.

Then we define the mean-square convergence rate

γ ≜ lim
k→∞

(
sup

e(0) ̸=0

E[e⊤(k)e(k)]
e⊤(0)e(0)

) 1
k

. (12)

We first establish the sufficient conditions to ensure mean-
square convergence, i.e., γ < 1. In preparation, we first
introduce a lemma which illustrates the relationship between
the upper bound of ∥M∥F and ρ(M) when ρ(M) < 1, for
M is a square matrix.

Lemma 1. [10, Lemma 2] Consider a square matrix M ∈
Rn×n. Assume that M = Qdiag{J1, . . . , Jm}Q−1, where
Jr ∈ Cnr×nr is the Jordan canonical block corresponding
to the eigenvalue λr(M), r = 1, . . . ,m. If ρ(M) < 1, the
following statement is true for k ∈ N+:

∥Mk∥F ≤ βkn̂−1ρk(M), (13)
where n̂ ≜ max1≤r≤m{nr} and β ≜
√
m∥Q∥F ∥Q−1∥F ρ−(n̂+1)(M)

ρ−2(M)−1 .

Theorem 1. For any initial condition x(0), x(k) reaches
mean-square consensus if the following conditions hold:

1) The control gain K is designed such that
ρ(Γm) < 1,m = 2, 3, . . . , N,

L = Udiag{0, λ2, . . . , λN}U⊤,
(14)

where Γm ≜ A − λmBK for m = 2, 3, . . . , N , U =
[ u1 . . . uN ] is the orthogonal matrix with ui ∈
RN for i ∈ V .

2) The added noises {wi(k)},∀i ∈ V satisfy
∥E[wi(k1)w

⊤
i (k2)]∥F ≤ ℧(k1, k2)ϱk1+k2 ,∀k1, k2 ∈ N,

(15)
where ℧(k1, k2) ∈ F+(α,N × N) is a binary non-
negative polynomial, and α ∈ N is constant.

Additionally, the convergence rate satisfies
ρ2max ≤ γ ≤ max{ϱ2, ρ2max}, (16)

where ρmax ≜ max{ρ(Γm),m = 2, 3, . . . , N}.

Proof. Define Ŵ (k) ≜ ((IN − 1N1⊤
N

N )⊗ In)W (k). Combin-
ing (5) and (11), the recursion of e(k) follows

e(k + 1) = Ae(k) + Ŵ (k) = Ake(0) +

k−1∑
t=0

Ak−1−tŴ (t).

(17)
where the first equation holds since ((IN− 1N1⊤

N

N )⊗In)A =

A((IN − 1N1⊤
N

N )⊗ In). Since E[Ŵ (k)] = ((IN − 1N1⊤
N

N )⊗
In)E[W (k)] = 0, we have E[e(k + 1)] = Ake(0) +∑k−1

t=0 Ak−1−tE[W (t)] = Ake(0). Therefore, to ensure the
mean-square convergence, one requires ρ(A) < 1 which is
equivalent to condition 1) [12, Lemma 3.1].

In addition,
E[e(k)⊤e(k)] =e⊤(0)(Ak)⊤Ake(0)

+ E[(
k−1∑
t=0

Ak−1−tŴ (t))⊤
k−1∑
t=0

Ak−1−tŴ (t)].

From (14), using the property of Kronecker product
gives that A = (U ⊗ In)Λ(U ⊗ In)

⊤ with Λ =

diag{A,Γ2, . . . ,ΓN} and (IN − 1N1⊤
N

N ) ⊗ In = (U ⊗

In)diag{0n,

N−1︷ ︸︸ ︷
In, . . . , In}(U ⊗ In)

⊤. Then we derive that
e⊤(0)(Ak)⊤Ake(0)

e⊤(0)e(0)

=
ζ⊤(0)diag{0n, (Γ

k
2)

⊤Γk
2 , . . . , (Γ

k
N )⊤Γk

N )}ζ(0)
ζ⊤(0)ζ(0)

,

where ζ(0) = (U ⊗ In)
⊤x(0). It gives that

sup
e(0) ̸=0

E[e(k)⊤e(k)]
e(0)⊤e(0)

≥ sup
e(0) ̸=0

e⊤(0)(Ak)⊤Ake(0)

e⊤(0)e(0)
= ρ2kmax,

which completes the proof of the left inequality in (16).

Meanwhile, let

∆(k) ≜E[(
k−1∑
t=0

Ak−1−tŴ (t))⊤
k−1∑
t=0

Ak−1−tŴ (t)]

=E[
∑

0≤s,t≤k−1

ϖ(t)⊤Θ(t, s; k)ϖ(s)],

(18)

where ϖ(k) = (U ⊗ In)
⊤W (k), and Θ(t, s; k) =

diag{0n, (Γ
k−t−1
2 )⊤Γk−s−1

2 , . . . , (Γk−t−1
N )⊤Γk−s−1

N }. Sub-
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stituting the expression of W (k) in (5) into (18):

∆(k) =

N∑
m=2

∑
i,j∈V

∑
0≤t,s≤k−1

um,ium,j

· E[(BK

N∑
p=1

aipwp(k))
⊤(Γk−t−1

m )⊤Γk−s−1
m BK

N∑
q=1

ajqwq(k)].

Together with the requirements that E[wp(k)w
⊤
q (k))] =

0,∀p ̸= q ∈ V , the above equation further becomes

∆(k) =

N∑
m=2

∑
i,j∈V

N∑
p=1

um,ium,jaipajp

·
∑

0≤t,s≤k−1

E[w⊤
p (k)(BK)⊤(Γk−t−1

m )⊤Γk−s−1
m BKwp(s)].

Since tr(M⊤
1 M2) ≤ (tr(M⊤

1 M1))
1/2(tr(M⊤

2 M2))
1/2 =

∥M1∥F ∥M2∥F for any two compatible square matrices M1

and M2, we have
E[w⊤

p (k)(BK)⊤(Γk−t−1
m )⊤Γk−s−1

m BKwp(s)]

=tr
(
(BK)⊤(Γk−t−1

m )⊤Γk−s−1
m BKE[wp(k)w

⊤
p (s)]

)
≤∥BK∥22∥Γk−t−1

m ∥F ∥Γk−s−1
m ∥F ∥E[wp(k)w

⊤
p (s)]∥F .

(19)

With (14), (15) and Lemma 1, (19) is upper bounded by
β2∥BK∥22(k−t−1)n̂−1(k−s−1)n̂−1ρ2k−t−s−2

max ℧(t, s)ϱt+s,

which is further upper bounded by
β2∥BK∥22k2n̂−2℧(k, k)(max{ρmax, ϱ})2k−2.

From the above analysis, one has

sup
e(0) ̸=0

E[e(k)⊤e(k)]
e(0)⊤e(0)

≤ρ2kmax + sup
e(0) ̸=0

ck2n̂℧(k, k)(max{ρmax, ϱ})2k−2

e(0)⊤e(0)
,

(20)

where c ≜
∑N

m=2

∑
i,j∈V

∑N
p=1 |um,ium,jaipajp| > 0.

Since lim
k→∞

(k2n̂℧(k, k))1/k = 1, (20) further implies that

γ ≤ max{ϱ2, ρ2max}, which completes the proof.

Remark 2. Note that if the noise is selected such that ϱ ≤
ρmax, the mean-square convergence rate is a constant value,
i.e., γ = ρ2max, which is only related to the communication
topology and the choice of the control gain. Therefore, in
this case, to ensure a faster convergence rate, one can either
tune the communication topology (see possible methods in
[14]) or the control gain to make ρmax as small as possible.

Example 1. One possible design of added noises
{wi(k)},∀i ∈ V satisfying (15) is as follows:

1) At time k, the agent i generates a Gaussian random
noise vi(k) with zero-mean and covariance Σi. We
assume that {vi(k)}i∈V,k∈N are jointly independent.

2) Each agent then adds a random noise wi(k) to its state
xi(k), where

wi(k) =

{
vi(0), if k = 0,
ϱkvi(k)− ϱk−1vi(k − 1), otherwise.

(21)

B. Estimation Performance

We first reduce the state by removing xN (k), since xN (k)
is known by agent N . Thus, the study on θ̂(0|k) which lies

on RNn can be shrunk to the study on R(N−1)n. Let θ̃i(k) =
θi(k)−θN (k), for i = 1, . . . , N −1. By (6), one has θ̃(k) ≜
[θ̃⊤1 (k), . . . , θ̃

⊤
N−1(k), θ

⊤
N (k)]⊤ ∈ RNn, which leads to

θ̃(k + 1) =

[
Ã 0

L̃N ⊗BK A

]
θ̃(k),

where L̃N = [ aN1 . . . aN(N−1) ] ∈ R1×(N−1), Ã =

IN−1 ⊗ A − L̃ ⊗ BK and L̃ = [l̃ij ] ∈ R(N−1)×(N−1) with
l̃ij = lij − lNj ,∀i, j ∈ V \ {N}.

Let us further define
w̃(k) ≜[w⊤

1 (k), w
⊤
2 (k), . . . , w

⊤
N−1(k)]

⊤ ∈ R(N−1)n,

C̃ ≜[ ẽj1 . . . ẽjm ]⊤ ⊗ In ∈ Rmn×(N−1)n,
(22)

where ẽi denotes the ith canonical basis vector in RN−1.
Define the reduced state vector x̃(k) ∈ R(N−1)n such that

x̃(k + 1) =Ãx̃(k) + W̃ (k),

W̃ (k) =


BK

∑N−1
j=1 a1jwj(k)

BK
∑N−1

j=1 a2jwj(k)

:

BK
∑N−1

j=1 aNjwj(k)

 ,
(23)

with initial condition x̃(0) = [x⊤
1 (0) −

x⊤
N (0), . . . , x⊤

N−1(0) − x⊤
N (0)]⊤. Finally, the reduced

measurement ỹ(k) ∈ Rmn is defined as
ỹ(k) = C̃(x̃(k) + w̃(k)). (24)

Remark 3. It is worth noticing that in general, x̃(k) +
1N−1 ⊗ xN (k) ̸= [x⊤

1 (k), x
⊤
2 (k), . . . , x

⊤
N−1(k)]

⊤.

Since (A, C) is observable, it is not difficult to
prove that (Ã, C̃) is also observable. Define the infor-
mation set based on the reduced measurements Ĩ(k) =
{xN (0), wN (0), . . . , wN (k), ỹ(0), . . . , ỹ(k)}. The following
theorem establishes the equivalence between I(k) and Ĩ(k).

Theorem 2. For any k ∈ N, there exists an
invertible linear transformation from the row
vector [x⊤

N (0), y⊤(0), . . . , y⊤(k)] to the row vector
[x⊤

N (0), w⊤
N (0), . . . , w⊤

N (k), ỹ⊤(0), . . . , ỹ⊤(k)].

Proof. Define
xr(k) ≜ [x⊤

1 (k)−x⊤
N (k), . . . , x⊤

N−1(k)−x⊤
N (k)]⊤ ∈ R(N−1)n.

and er(k) = xr(k)− x̃(k). By (5) and (23), we have that
er(k + 1) =Ãer(k) + [a1N , . . . , a(N−1)N ]⊤ ⊗ (BKwN (k))

=Ãer(k) + L̃⊤
N ⊗BKwN (k),

where the second equality holds since aij = aji.Since
er(0) = 0, ∀k ∈ N,

er(k + 1) =

k∑
t=0

Ãk−tL̃⊤
N ⊗BKwN (t). (25)

We will then prove Theorem 2 by induction. By (23)-(24),
y⊤(0) = [ỹ(0)⊤ + C̃(1N−1 ⊗ xN (0))⊤, x⊤

N (0) + w⊤
N (0)].

Hence, Theorem 2 holds when k = 0. Suppose that Theorem
2 holds when k = t, we want to prove that it still holds when
k = t+ 1. By induction, we only need to prove that

1) wN (t+ 1) and ỹ(t+ 1) can both be written as linear
combination of the variables in I(t+ 1);

2) y(t+ 1) can be written as a linear combination of the
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variables in Ĩ(t+ 1).

It is easy to verify that

y(t+ 1)−
[

ỹ(t+ 1)
wN (t+ 1)

]
=

[
C̃(1N−1 ⊗ xN (t+ 1) + er(t+ 1))

xN (t+ 1)

]
.

Together with (25) and (5), which states that er(t+1), xN (t+
1) can be obtained given I(t) (or Ĩ(t)), the proof is
completed.

By Theorem 2, Ĩ(k) is a sufficient statistic for estimating
x(0). Define P̃ (k) as the covariance of the maximum like-
lihood estimate of x̃(0) given {ỹ(0), . . . , ỹ(k)}. From (23)-
(24)

ỹ(k) = C̃(Ãkx̃(0) +

k−1−t∑
t=0

Ãk−1−tW̃ (t) + w̃(k)).

Let G : R(N−1)n → R(N−1)n be the linear mapping
such that W̃ (t) ≜ Gw̃(k), from (23), G is well-defined.
Here, we only consider the added error satisfying Example 1.
We will leave the general study of P (k) in the future.
By (21), one further has

∑k
t=0 ỹ(t) = C̃

∑k
t=0 Ãtx̃(0) +

C̃
∑k−1

t=0 ϱtÃk−1−tGṽ(t) + C̃ϱkṽ(k), which implies that ∑0
t=0 ỹ(t)/ϱ

0

:∑k
t=0 ỹ(t)/ϱ

k

 = H(k)x(0) + F (k)

 ṽ(0)
:

ṽ(1)

 ,

where ṽ(k) ≜ [v⊤1 (k), . . . , v
⊤
N−1(k)]

⊤ ∈ R(N−1)n,

H(k) =

 C̃
∑0

t=0 Ãt/ϱ0

:

C̃
∑k

t=0 Ãt/ϱk

 ,

and

F (k) =


C̃

C̃G/ϱ C̃

: :
. . .

C̃Ãk−1G/ϱk C̃Ãk−2G/ϱk−1 · · · C̃

 ,

then the covariance of the maximum likelihood estimate [15]
satisfies
P̃ (k) = [H⊤(k)(F (k)(Ik⊗diag{Σi}N−1

i=1 )F⊤(k))−1H(k)]−1.
(26)

The design of noise will affect P̃ (k) which will further
influence the differential privacy as studied in the next
subsection.

C. Differential Privacy

Denote the probability space generated by {w̃(k)} as
(Ω,F ,P) and D = R(N−1)n is the set of all possible initial
conditions x̃(0). We define a binary “adjacency” relation Adj
on D, such that two initial conditions x̃(1)(0) and x̃(2)(0)
are adjacent iif the Euclidean distance between them is no
greater than d, i.e.,

Adj(x̃(1)(0), x̃(2)(0)) ≜

{
1, if ∥x̃(1)(0)− x̃(2)(0)∥ ≤ d,
0, otherwise.

Let us write x̂(0|k) = [x̂1(0|k), . . . , x̂N−1(0|k)] be the
maximum likelihood estimate of x̃(0) given Ĩ(k). Clearly,

x̂i(0|k) is a mapping from D × Ω→ Rn written as
x̂i(0|k) = Mi,k(x̃(0), ω), x̃(0) ∈ D,ω ∈ Ω. (27)

Definition 2 ((ε, δ)-DP). The mapping Mi,k reaches (ε, δ)-
DP for Adj if for all Borel-measurable S ⊆ Rn and
adjacent initial conditions x̃(1)(0) and x̃(2)(0), the following
inequality holds:
P[Mi,k(x̃

(1)(0), ω) ∈ S] ≤ eεP[Mi,k(x̃
(2)(0), ω) ∈ S] + δ.

After deriving P̃ (k) by (26), it will converge to P̃ =
[Pij ]i,j∈N\{N} in (9) when k →∞.

Theorem 3. If Pii > 0, then for any k ∈ N, the mapping
Mi,k achieves (ε, δ)−differential privacy for Adj, if ϵ > 0,
0 < δ < 0.5 and

(ρ(Pii))
− 1

2 d

2ε
(K +

√
K2 + 2ε) ≤ 1, (28)

where K = Q−1(δ) and Q(x) ≜ 1√
2π

∫∞
x

exp(−u2

2 )du.

Proof. From subsection III-B, we know that x̂i(0|k) =
xi(0) + ςi(k), where ςi(k) is a random variable with mean
0 and variance Pii(k) ∈ Rn×n. In addition, Pii(k) ≥ Pii =
TT⊤. Since Pii > 0, one has T is non-singular. Let ∆2q =
supAdj(xi(0),x′

i(0)
∥T−1(xi(0) − x′

i(0))∥2 = (ρ(Pii))
− 1

2 d,
ςi(k) = Tς ′i(k), then the variance on each element of ς ′i(k) is
no smaller than 1 and each element is independent with each
other. By [16, Theorem 3], we can complete the proof.

Remark 4. Theorem 3 characterizes multiple choices
of (ε, δ) given the added noise mechanism. Note that
1
2ε (K +

√
K2 + 2ε) can be bounded by O(ln( 1δ ))

1
2 /ε

[16]. From Theorem 3, given fixed δ, one has ε ≥
O(ln( 1δ ))

1
2 (ρ(Pii))

− 1
2 d, which means that if Pii is larger,

one can have higher privacy level since ε can be smaller
given fixed δ.

IV. SIMULATIONS

In this section, we consider the application of cooperative
adaptive cruise control where each agent follows [17] with

A =

[
1 τ
0 1

]
, B =

[
1
2τ

2

τ

]
, (29)

with a sampling period τ > 0 and xi(k) is the configuration
variable of agent i at time kh, where the first and second
element of it represent the position and velocity, respectively.
The cooperative adaptive cruise control reaches a fixed for-
mation hp = [p1, . . . , pN ]⊤ ∈ RN if the following condition
holds

lim
k→∞

∥xi(k)− [pi, 0]
⊤ − xj(k)− [pj , 0]

⊤ ∥ = 0. (30)

It is easy to verify that A([pi, 0]
⊤ − [pj , 0]

⊤
) = [pi, 0]

⊤ −
[pj , 0]

⊤. By remark 1, for given control (3) and system
evolution (1), by letting xi(k) ← xi(k) − [pi, 0]

⊤, the
cooperative formation consensus can be transformed into
the consensus problem considering system (1)-(2). After
obtaining xi(k) from the evolution of (1)-(2), the true state
can be realized by setting xi(k)← xi(k) + [pi, 0]

⊤.
We consider the communication topology between the

5 vehicles as shown in Fig. 1. In addition, let τ = 1
10 s,

2419



1

5

2

3

4

Fig. 1: Communication topology.
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Fig. 2: Demonstration of empirical formation error between
node i to node 5.
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Fig. 3: Demonstration of convergence Rate.

pi = (5 − i)d0m with d0 = 26m, x1(0) = [150, 20]⊤,
x2(0) = [120, 20]⊤, x3(0) = [80, 22]⊤, x4(0) = [60, 18]⊤,
x5(0) = [30, 20]⊤, and K = [1, 2]. Note that the choice
of K satisfies the condition 1) in Theorem 1 with ρmax =
0.9482. To preserve the initial state not be leaked to the
initial adversaries, we design noise following Example 1 with
Σi = diag{1, 10} and ϱ = 0.8 < ρmax. Then from Theorem
1, we have γ = ρ2max = 0.899. Without loss of generality, we
only plot formation error and the unbaised optimal estimate
covariance of other nodes on node 5. The trajectories of
empirical E[∥(xi(k) − [pi, 0]

⊤
) − x5(k)∥2],∀i ∈ V \ {5}

implementing over 1000 trials are plotted in Fig. 2. We then
randomly generate 10 initial state and plot the empirical

expectation for
(

E[e(k)⊤e(k)]
e(0)⊤e(0)

) 1
k

over 100 trials. The result
is shown in Fig. 3, where for each initial condition, the
empirical expectation converges as time goes to infinity, and
tends to mean-square convergence rate shown in the blue
dashed line as derived from Theorem 1.

V. CONCLUSION

In this paper, we propose the PPCC which generates the
control signal based on the perturbed received neighbour data

and the actual state data since the participating node does
not know that the received data is perturbed and will take
them as the actual state from other agents. We first derive
the conditions to ensure the mean-square consensus and
then derive the upper and lower bounds of the convergence
rate. We then study the covariance matrix of the maximum
likelihood estimate on the initial state of other agents based
on the internal adversary’s local information. The possible
(ε, δ)-differential privacy is further characterized. At last, the
simulation provides a practical cooperative adaptive cruise
control to illustrate the effectiveness of the PPCC. The future
work direction includes studying the state with randomness
and then designing a privacy-preserving estimator before
injecting transmitted noises.

REFERENCES

[1] J. Cortés and F. Bullo, “Coordination and geometric optimization
via distributed dynamical systems,” SIAM journal on control and
optimization, vol. 44, no. 5, pp. 1543–1574, 2005.

[2] Y. Liu, D. Yao, H. Li, and R. Lu, “Distributed cooperative compound
tracking control for a platoon of vehicles with adaptive nn,” IEEE
Transactions on Cybernetics, vol. 52, no. 7, pp. 7039–7048, 2021.

[3] Y. Mo and R. M. Murray, “Privacy preserving average consensus,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753–765,
2017.

[4] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in Proceedings of the 2012 ACM workshop
on Privacy in the electronic society, pp. 81–90, 2012.

[5] C. Dwork, “Differential privacy,” in Proceedings of Automata, Lan-
guages and Programming: 33rd International Colloquium, (ICALP),
Venice, Italy, July 10-14, 2006, Proceedings, Part II 33, pp. 1–12,
Springer, 2006.

[6] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private
average consensus: Obstructions, trade-offs, and optimal algorithm
design,” Automatica, vol. 81, pp. 221–231, 2017.

[7] J. He and L. Cai, “Differential private noise adding mechanism: Basic
conditions and its application,” in 2017 American Control Conference
(ACC), pp. 1673–1678, IEEE, 2017.

[8] J. He, L. Cai, and X. Guan, “Preserving data-privacy with added
noises: Optimal estimation and privacy analysis,” IEEE Transactions
on Information Theory, vol. 64, no. 8, pp. 5677–5690, 2018.

[9] D. Fiore and G. Russo, “Resilient consensus for multi-agent systems
subject to differential privacy requirements,” Automatica, vol. 106,
pp. 18–26, 2019.

[10] Y. Wang, J. Lam, and H. Lin, “Consensus of linear multivariable
discrete-time multiagent systems: Differential privacy perspective,”
IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13915–13926,
2022.

[11] C.-Q. Ma and J.-F. Zhang, “Necessary and sufficient conditions for
consensusability of linear multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 55, no. 5, pp. 1263–1268, 2010.

[12] K. You and L. Xie, “Network topology and communication data
rate for consensusability of discrete-time multi-agent systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 10, pp. 2262–2275,
2011.

[13] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with
limited communication data rate,” IEEE Transactions on Automatic
Control, vol. 56, no. 2, pp. 279–292, 2010.

[14] M. Fabris, G. Michieletto, and A. Cenedese, “A general regularized
distributed solution for system state estimation from relative measure-
ments,” IEEE Control Systems Letters, vol. 6, pp. 1580–1585, 2021.

[15] L. L. Scharf and C. Demeure, Statistical signal processing: detection,
estimation, and time series analysis. Prentice Hall, 1991.

[16] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.

[17] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control
via local information exchange,” International Journal of Robust
and Nonlinear Control: IFAC-Affiliated Journal, vol. 17, no. 10-11,
pp. 1002–1033, 2007.

2420


