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Abstract— A predator-prey interaction scheme based on a
heterogeneous cooperative control strategy driven by reaction-
diffusion processes is investigated in this paper, where the
heterogeneity is understood along five modalities in terms
of the dynamics of predator and prey. The predators are
modeled as individual agents whereas the prey are modeled
as space-time dependent densities. A decentralized coverage
controller for predators with heterogeneous mobility, encoded
by multiplicatively weighted Voronoi cells, is derived so that the
predators can optimally react to the time-varying prey distri-
butions. The predator-prey interaction scheme can be adopted
in diverse application scenarios. An experiment of deploying a
multi-robot system across a two-dimensional domain pictorially
representing a forest in which ideally modeled wildfires need to
be put out demonstrates the efficacy of the proposed scheme.

I. INTRODUCTION

Cooperation and collaboration are critical survival strate-
gies in nature. Lions and dolphins form predator fronts charg-
ing through the aggregation of prey [1], which is an example
of cooperation. Langur monkeys help chital deers obtain food
from vegetation to which the chital deers have no access and
they both react to each other’s alarm of potential predators
[2], which is an example of collaboration. A number of those
strategies have served as sources of inspiration for multi-
robot system design [3]–[6], where, as discussed in [7],
cooperation considers that agents share goals and leverage
others’ help to improve task performance as a whole team,
e.g., [3], and collaboration considers that agents leverage
complementary capabilities due to specific task requirements
and inherent agent constraints, e.g., [8]. In particular, some
pursuit–evasion robotic tasks, such as protecting an area
from intruders, take advantage of the cooperative mobility
strategies that predators utilize for hunting prey [9].

A typical approach to solving pursuit–evasion (predator
hunting prey) problems optimally in terms of time is through
the Hamilton-Jacobi-Isaacs equation, corresponding to a dif-
ferential game, e.g., [10]–[12]. However, many differential
game-based approaches for solving pursuit–evasion problems
do not scale well due to high computational complexity. A
decentralized Voronoi tessellation-based strategy for multiple
pursuers capturing one evader in a 2-dimensional domain
of interest is proposed in [13]. Subsequently, [14] extends
the work in [13] to the case of higher dimensional bounded
domains and multiple pursuers capturing multiple evaders, by
providing a decentralized controller that drives each pursuer
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Fig. 1. Illustrating a team of predators, represented by differential-drive
wheeled robots, each of which is in charge of a region of dominance
enclosed by the white curves, “eating” the diffusing prey density with
the red area representing high density and the green area representing low
density. The prey’s dynamics is affected by the predators’ dynamics through
a reaction-diffusion process, and conversely, the predators’ dynamics is also
driven by the prey’s dynamics through their space-time dependent densities.

to the centroid of the bisector between the pursuer and its
nearest evader. However, this strategy has a requirement that
all the evaders and pursuers have the same maximum transla-
tional speeds, which cannot be extended to the heterogeneous
case in a direct manner.

Instead of modeling the prey as individual evaders, we
define space-time dependent densities to characterize the
prey, as illustrated in Fig. 1. A similar idea of modeling
the prey as density distributions is presented in [15], in
which the prey refers to the food of the agents potentially
targeted by other predators. However, the prey density at each
point is only binary (i.e., either a positive constant or zero),
which does not characterize a general dynamic food con-
sumption model. Additionally, in [15], the method inspired
by animals’ foraging is introduced without consideration of
heterogeneities among agents, and it is centralized since the
agents are assumed to have access to information about all
predators and food across the entire domain of interest.

The main novelty of this paper is to investigate a de-
centralized reaction-diffusion-based predator-prey interaction
scheme considering heterogeneous predator and prey dy-
namics. The formulation is general and allows for diverse
instantiations of the scheme, such as deployments of teams
of mobile robots to clean up oil spills, e.g., [9], underwater
robots for halobios monitoring, e.g., [16], and aerial robots
to put out ideally modeled wildfires, e.g., [17]. Besides, the
proposed scheme in this paper not only scales well due to its
nature of decentralization, but also can handle multiple types
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of tasks simultaneously. For example, Fig. 1 can depict that
Robots 1, 2, 3, and 4 are putting out the wildfire represented
by the density on the left of the domain, while Robots
8, 9, and 10 are arresting the arsonists represented by the
density on the right. Meanwhile, Robots 5, 6, and 7 are
searching and rescuing the injured represented by the two
density distributions in the middle. During the process, some
robots may switch their roles from firefighters to the injured
searchers when they determine the rest of the firefighters
are able to handle the mission of firefighting or the mission
of injured searching needs more robots to help. Note that all
these procedures happen automatically and in a decentralized
manner benefiting from the formulation of the scheme that
will be discussed in detail in the following sections.

The remainder of this paper is organized as follows: In
Section II, a general heterogeneous prey model is introduced
that can be applied to various scenarios by combining
corresponding types of heterogeneous modalities defined in
it. In Section III, we investigate a heterogeneous dynamics
model for the predators that exponentially converges to and
maintains a time-varying configuration that locally optimally
covers the spatiotemporal prey density in a convex domain.
In Section IV, a concrete application of the predator-prey in-
teraction scheme is presented through an experiment, which
demonstrates the effectiveness of the proposed scheme. Con-
clusions are presented in Section V.

II. HETEROGENEOUS PREY MODEL

Denote the convex domain of interest as D ⊂ Rn, the
set of predators’ indices as N = {1, 2, . . . , N}, where
n,N ∈ Z+, the position of Predator i as pi ∈ D, where
i ∈ N , and the vector of the N predators’ positions as
p = [pT1 , p

T
2 , . . . , p

T
N ]T ∈ RnN .

Inspired by [18] where the movement law of the prey
density distribution is given by a reaction-diffusion equation
based on the FitzHugh-Nagumo model [19] as

∂ϕ(q, t)

∂t
− ν(ρ) · ∇2ϕ(q, t) + µ · ρ = 0, (1)

in which q ∈ D, ∇2ϕ(q, t) denotes the Laplacian of the
scalar field ϕ(q, t) : D × R≥0 → R>0,

ρ(p, q) =

{
1 if q = pi, ∀i ∈ N
0 otherwise

, (2)

ν(ρ) =

{
η + γ if ρ = 1

η otherwise
, (3)

and µ, η, γ ∈ R>0, we extend (1) to characterize the
heterogeneous prey model as a bounded and continuously
differentiable density distribution ϕ(q, t) governed by

∂ϕ(q, t)

∂t
−
∑
i∈N

ci(p, q, t)·∇2ϕ(q, t)+
∑
i∈N

hi(p, q, t) = 0, (4)

where the diffusivity ci(p, q, t) ∈ R≥0 is defined as

ci(p, q, t) =

{
cd(t)
N + λi(t) if q ∈ Bd,i(pi, rd,i)

cd(t)
N otherwise

. (5)

The diffusivity (5) incorporates the “scaring away” ability
of Predator i, meaning that in addition to the prey’s diffusion
from its initial distribution with a speed of cd(t) : R≥0 →
R≥0, the prey inside the Euclidean ball Bd,i(pi, rd,i) =
{q ∈ D | ∥q − pi∥ < rd,i} diffuse with a speed of cd(t) +
λi(t), which characterizes the process of the prey being
“scared away” by Predator i, where λi(t) : R≥0 → R.
The position of Predator i is determined by the predator’s
dynamics which will be discussed in detail in Section III.

Note that the reason why λi ∈ R<0 is possible is that
some types of predators in nature have evolved certain organs
or behavioral techniques to lure prey, such as a deep-sea
anglerfish using its esca, a luminescent organ, to lure fish
swarm in dark environment [20].

The reaction term hi(p, q, t) in (4) is defined as

hi(p, q, t) =

{
er(t)
N +fr,i(q, t) if q ∈ Br,i(pi, rr,i)

er(t)
N otherwise

, (6)

where er(t) : R≥0 → R≥0 characterizes how the prey are
“consumed” by environmental factors, i.e., not by predators,
assuming no interactions between how the environment af-
fects the prey and how the predators affect the prey, and
fr,i(q, t) : D × R≥0 → R≥0 represents how the prey inside
the ball Br,i(pi, rr,i) = {q ∈ D | ∥q − pi∥ < rr,i} react to
Predator i’s “consuming”.

In summary, (4) incorporates four heterogeneous modal-
ities: A) Diverse predator-prey interaction patterns, e.g.,
different predator has different eating habit, described by
the heterogeneous reaction function fr,i(q, t), for any i ∈
N ; B) Predators’ unequal consuming areas, e.g., different
firefighting robot has different effective area, described by the
radius rr,i of reaction area Br,i(pi, rr,i); C) Predators’ var-
ious “scaring away” abilities, meaning that the prey density
in an circular area centered at different predator’s location
has different augmenting diffusion speed λi(t); D) different
predator has different “scaring away” area described by the
radius rd,i of accelerated (corresponding to λi(t) ∈ R>0) or
decelerated (corresponding to λi(t) ∈ R<0) diffusion area
Bd,i(pi, rd,i). Note that we define the reaction area and the
accelerated or decelerated diffusion area as Euclidean balls
without loss of generality, and they do not necessarily have
to be circular areas in practice.

The heterogeneous nature of the reaction-diffusion equa-
tion (4) allows one to specify numerous combinations of the
four heterogeneity modalities for specific applications, for
example: a) The process of marine predators preying on fish
swarms can be portrayed by (4) with n = 3 and er = 0; b)
Modelling herbivores eating plants, such as sparrows eating
seeds and deer browsing on shrubs, e.g., [9], can be achieved
by setting n = 2, cd = er = 0 and λi = 0,∀i ∈ N ; c)
A team of robots monitoring eroded beach, coral reefs, or
ocean floor can be described by (4) with n = 2, cd = 0,
and λi = fr,i = 0,∀i ∈ N ; d) A team of robots putting out
ideally modeled wildfires, i.e., without fuel depletion and
wind effect [17], can be governed by (4) with n = 2, er = 0
and λi = 0,∀i ∈ N . Among these examples, one can notice
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that sometimes there exist interactions between predators’
dynamics and prey’s dynamics such as in cases a), b), and
d), while sometimes only prey’s dynamics affect predators’
dynamics without the other way around such as in case c).

Note that in this section, we present some types of
heterogeneities relevant to predators because they are closely
related to the heterogeneous prey model (4) and hard to be
separated, so in the next section, we only describe one more
heterogeneity of the predator relevant to its dynamics.

III. HETEROGENEOUS PREDATOR MODEL

A particular idea of cooperative hunting is that each indi-
vidual in a team of predators cooperates with its neighbors
such that the whole team spreads out across a domain to
optimally cover the prey while eating the prey in the domain.
Based on this idea, we consider four assumptions to design
the predators’ dynamics:
1) Each predator is in charge of a dominant subdomain of

D in which all points are closer (with a certain distance
metric) to the predator than any other predators, assuming
the subdomains do not overlap and the union of all
predators’ dominant subdomains is equal to D;

2) Different predator has different maximum translational
speed and the larger the maximum speed a predator has,
the larger its dominant subdomain should be;

3) Each predator acts only based on the local information of
its neighboring predators and the prey within its dominant
subdomain to ensure the decentralization of the scheme;

4) More predators should be in the area with higher density
of prey and vice versa.

Inspired by [21], we consider the optimization problem

min
p

F (p, t) = min
p

∫
D
min
i∈N

f(d(pi(t), q))ϕ(q, t) dq, (7)

where d(·) : Rn×Rn → R≥0 is a distance metric in Rn, and
f(·) : R≥0 → R≥0 is defined as a smooth and monotonically
increasing function because the prey closer to a predator in
its dominant region are regarded as more effectively covered
by that predator. Given a time instant t and a configuration
of the predators p, assuming f(·) = (·)2, the optimization
problem (7) can be rewritten as

min
p

F (p, t) = min
p

∑
i∈N

∫
Vi(p)

d2(pi(t), q)ϕ(q, t) dq, (8)

where ∪i∈NVi = D can be the power diagram, multi-
plicatively weighted Voronoi diagram, or additively weighted
Voronoi diagram, e.g., [22], to achieve Assumptions 1)
and 2). We adopt the multiplicatively weighted Voronoi
diagram because the additively weighted Voronoi diagram
and the power diagram are sometimes not geometrically
well-behaving, such as the predators not being inside their
dominant regions or more than one predator being inside one
Voronoi cell for the power diagram, and the disappearance
of dominant regions for the additively weighted Voronoi
diagram, as discussed in [22], if the additive weights or
the relations between the additive weights and the positions
of the predators are not carefully treated, which weakens

the generality of the heterogeneity of the dominant regions
or is even hard to achieve in such a dynamic environment
considered in this paper. Thus, Predator i’s dominant region
is defined as

Vi(p) =

{
q ∈ D

∣∣∣∣ ∥pi(t)− q∥
vi

≤ ∥pj(t)− q∥
vj

,∀j ̸= i

}
,

(9)
where i, j ∈ N , vi, vj ∈ R>0 are the maximum translational
speeds of Predator i and Predator j respectively. One can
notice that the distance metric utilized in (9) is d(pi(t), q) =
∥pi(t) − q∥/vi,∀i ∈ N . Thus the neighboring predators of
Predator i in Assumption 3) refer specifically to the Delaunay
neighbors of Predator i.

The gradient of F (p, t) with respect to pi is given when
n = 2 by [23]

∂F (p, t)

∂pi
=

2

v2i
mi(p, t)(pi − Ci(p, t))

T , (10)

where mi(p, t) and Ci(p, t) are defined as

mi(p, t) =

∫
Vi(p,t)

ϕ(q, t) dq (11)

and

Ci(p, t) =
1

mi(p, t)

∫
Vi(p,t)

qϕ(q, t) dq, (12)

respectively, which is a special case of the results in [24].
For the time-invariant density ϕi(q), assuming the single-

integrator dynamics for each agent as

ṗi = ui = −kp,i

(
∂F (p)

∂pi

)T

, (13)

where kp,i ∈ R>0 is a proportional gain. The controller
ui in (13) achieves Assumption 3) and is proved in [23]
to asymptotically drive the system to converge to pi =
Ci(p),∀i ∈ N , in which configuration Assumption 4) is
achieved. Note that although [23] focuses on the case of
n = 2, its conclusions also hold for n ∈ Z+.

For the time-varying prey density ϕ(q, t) governed by (4),
if we adopt the controller (13) and choose the Lyapunov
function as L1(p, t) = F (p, t) > 0, utilizing the Reynolds
transport theorem, e.g., [25], the total derivative of L1(p, t)
with respect to time is calculated as

dL1(p, t)

dt
=
∑
i∈N

−4kp,i
v4i

m2
i (p, t)∥pi−Ci(p, t)∥2

+
∑
i∈N

∫
Vi(p,t)

∥pi − q∥2

v2i

(∑
i∈N

ci(p, q, t)·

∇2ϕ(q, t)−
∑
i∈N

hi(p, q, t)

)
dq. (14)

Therefore, by LaSalle’s invariance principle, a sufficient
condition to ensure that pi asymptotically converges to
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Ci(p, t),∀i ∈ N , is∑
i∈N

∫
Vi(p,t)

∥pi − q∥2

v2i

∑
i∈N

ci(p, q, t) · ∇2ϕ(q, t) dq

≤
∑
i∈N

∫
Vi(p,t)

∥pi − q∥2

v2i

∑
i∈N

hi(p, q, t) dq, (15)

which can be intuitively explained by the requirement that
the overall weighted diffusion process is “weaker” than
the overall weighted reaction process in D. However, this
requirement, even a relaxation of (15) that the diffusion
process is not much “stronger” than the reaction process,
imposed on the prey’s dynamics is still not tolerant enough
such that the predators’ dynamics should ideally be able to
interact with any type of prey’s dynamics while being stable.

One can notice from (10) that a critical point of F (p, t)
with respect to pi is pi(t) = Ci(p, t). In order to achieve and
maintain pi(t) = Ci(p, t), similar to [26], [27], we analyze
the Lyapunov function L2(p, t) defined as

L2(p, t) =
∑
i∈N

∥pi(t)− Ci(p, t)∥2, (16)

whose total derivative with respect to time is calculated as

dL2(p, t)

dt
= (p− C)

T

((
InN − ∂C

∂p

)
ṗ− ∂C

∂t

)
, (17)

where C = [CT
1 , C

T
2 , . . . , C

T
N ]T ∈ RnN , and InN ∈

RnN×nN stands for the identity matrix of size nN . We
omit some explicit arguments of the variables in (17) and
the following content for notational convenience.

Analogous to [26], one way to enforce (17) to be negative
definite is to let

ṗ = u =

(
InN − ∂C

∂p

)−1(
κ(C − p) +

∂C

∂t

)
, (18)

where u = [uT
1 , u

T
2 , . . . , u

T
N ]T ∈ RnN and κ ∈ R>0.

Therefore, if the inverse term in (18) is well-defined, p
converges to C as t → ∞ with the rate of exp(−κt).

Employing the differentiation techniques presented in [25]
and the analytical expression of the bisector between two
Voronoi generators in terms of the multiplicatively weighted
Voronoi partitioning presented in [22], the partial derivatives
in (18) can be calculated as follows.

∂Ci

∂pi
=

1

mi

∑
k∈NVi

∫
∂Vik

1
v2
i
(q − Ci)(q − pi)

Tϕ(q, t)∥∥∥ 1
v2
i
(q−pi)− 1

v2
k
(q−pk)

∥∥∥ dq,

(19)

for all i ∈ N , where ∂Vik and NVi
stand for the bisector

between Voronoi cells i and k and the index set of the Delau-
nay neighbors of Predator i in terms of the multiplicatively
weighted Voronoi diagram, respectively. Likewise, ∂Ci

∂pj
can

be calculated as

∂Ci

∂pj
=

−1

mi

∫
∂Vij

1
v2
j
(q − Ci)(q − pj)

Tϕ(q, t)∥∥∥ 1
v2
j
(q−pj)− 1

v2
i
(q−pi)

∥∥∥ dq, ∀j ∈ NV i,

(20)

where NV i stands for the set of indices of the closed
neighborhood of Predator i in the Delaunay graph. Note
that ∂Vij can appear to be discontinuous in D due to the
properties of the multiplicatively weighted Voronoi diagram.

In addition, ∂Ci

∂pj
= 0, ∀j /∈ NV i, and the partial derivative

of C(p, t) with respect to time t is calculated as

∂Ci

∂t
=

1

mi

∫
Vi

(q − Ci)

(∑
i∈N

ci(p, q, t) · ∇2ϕ(q, t)

−
∑
i∈N

hi(p, q, t)

)
dq. (21)

However, the controller (18) does not meet Assumption 3)
because the computation of the inverse term in (18) makes it
centralized as it requires the information of all the predators.
Nevertheless, Neumann series, e.g., [26], truncated after two
entries can be adopted to approximate the inverse term in
(18). Then, each predator’s dynamics can be expressed as

ṗi =
∂Ci

∂t
+ κ(Ci − pi) +

∑
j∈NV i

∂Ci

∂pj

(
∂Cj

∂t
+κ(Cj − pj)

)
,

(22)
which is decentralized and scalable as the calculation of
it only requires 1-hop adjacency information of Predator i,
satisfying Assumption 3). Besides, another advantage is that
the existence of the inverse term in (18) does not affect the
validity of (22).

In summary, the heterogeneous predator dynamics (22)
achieves Assumptions 1), 2), 3), and 4), and utilizing the
proposed heterogeneous reaction-diffusion-based predator-
prey interaction model (22) together with (4), various types
of tasks can be accomplished with specifications of certain
combinations of the five heterogeneous modalities considered
in this scheme. In the next section, we will present a concrete
example using the proposed predator-prey interaction scheme
by specifying corresponding n, N , cd, λi, rd,i, er, fr,i, rr,i,
and vi, ∀i ∈ N in (4) and (22).

IV. EXPERIMENT

In this section, we provide a concrete example by im-
plementing the proposed scheme on N = 10 differential-
drive wheeled robots at the Robotarium [28], where D is
a rectangular domain with x-axis that ranges from −1.6
to 1.6 and y-axis that ranges from −1 to 1 as shown in
Fig. 3, to demonstrate the scenario that a team of robots is
deployed to put out ideally modeled wildfires. The single
integrator dynamics developed in this paper corresponding
to “carrier” points off and near the axles of the robots
are linearly transformed to unicycle dynamics by the near-
identity diffeomorphism [29] embedded in the Robotarium.

For this application, we assume no fire spread to the
boundaries of the domain of interest D so zero Dirichlet
boundary conditions are adopted. In fact, one can choose
any combinations of Neumann boundary conditions and
Dirichlet boundary conditions for particular application con-
siderations, e.g., the domain of interest is enclosed by walls
where fire can not pass through but the temperature on the
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Fig. 2. Evolution of the cost F (p, t) in (8).

boundaries can be non-zero, in which case the Neumann
boundary conditions should be applied. Also, since the
robots do not “scare away” the fire, the relative augmenting
diffusion speeds are set to be λi = 0,∀i ∈ N . The
natural diffusion speed of fire is set to be cd = 1, and
the natural reaction pattern of fire is set to be er = 0.
The reaction function is set to be fr,i = σiϕ(q, t), ∀i ∈
N , where σi among the 10 robots are collected in the
vector σ = 10 · [20, 16, 12, 8, 12, 16, 20, 16, 12, 8]T , and
likewise, the predators’ reaction radii are specified as rr =
0.0143 · [4, 5, 6, 7, 7, 7, 7, 6, 5, 4]T . Note that normally the
prey density should not be negative so the reaction function
should be chosen such that ϕ(q, t) ∈ R>0,∀q ∈ D, t ∈
R≥0. However, if the density represents the temperature
and certain sorts of extinguishing agents can cause sub-
zero temperatures, then it is reasonable to choose fr,i that
can induce ϕ(q, t) ∈ R<0, but what should be avoided is
that mi(p, t) = 0,∀i ∈ N for validity of (19), (20), and
(21). Additionally, the maximum speeds among the 10 robots
are put in the vector v = [6, 7, 8, 9, 9, 8, 7, 6, 5, 5]T , and
ui = MIN (vi, ∥ui∥) · ui/∥ui∥. Note that v reflects the
relative maximum translational speeds among the predators,
so it can be scaled by constant factors without affecting the
geometry of the predators’ region of dominance. The initial
positions of the 10 robots are as shown in Fig. 3(a).

The initial wildfire density at time step 1 is set to be an
unnormalized Gaussian distribution with the mean as µ0 =
[−0.6,−0.1]T and covariance matrix as Σ0 = 0.0625I2 as
shown in Fig. 3(a), and there are two more spot fires ignited
by firebrands or arsonists at time steps 100 and 200 with their
means as µ1 = [−0.2,−0.3]T and µ2 = [0.2,−0.2]T , and
covariance matrices as Σ1 = 0.0004I2 and Σ2 = 0.0009I2,
as shown in Fig. 3(c) and Fig. 3(e), respectively.

The robots in Fig. 3 are labeled with index numbers
with different colors for distinguishment of them, and the
colored dots are the centers of mass Ci(p, t) of corresponding
Voronoi cells. One can notice that the robots gradually
achieve and then maintain the time-varying locally optimal
configuration, i.e., centroidal Voronoi tessellation [30], while
putting out the wildfire as the time approaches.

The evolution of the cost F (p, t) is shown in Fig. 2, where
one can notice that there are two jumps at time steps 100

and 200 due to the introduction of new spot fires. After each
jump, the cost first decreases due to the stronger effect of
the robots’ approaching their centers of mass than the effect
of the diffusion of the density, and then increases due to the
effect of the diffusion of the density while the robots are
maintaining at their centers of mass, where the increasing
speed overall decreases due to the effect of consumption of
the density by the reaction process.

V. CONCLUSION

In this paper, we investigated a heterogeneous predator-
prey interaction scheme using the time-varying coverage
controller with multiplicatively weighted Voronoi cells driven
by reaction-diffusion processes, where the predators and prey
are modeled as individual agents and space-time dependent
densities, respectively. Diverse tasks can be accomplished
benefiting from the scheme formulation considering five
heterogeneous modalities. The effectiveness of the proposed
scheme is demonstrated through an experiment performed on
a team of robots with specific heterogeneous settings.
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