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Sufficient Stability Conditions for a Class of Switched Systems with
Multiple Steady States

Jacopo Piccini1, Elias August1, Sigurdur Hafstein2, and Stefania Andersen2

Abstract— In this paper, we present a novel approach to
determine the stability of switched linear and nonlinear systems
using Sum of Squares optimisation. Particularly, we use Sum
of Squares optimisation to search for a Lyapunov function that
defines an absorbing set that confines solution trajectories. For
linear systems, we show that this also implies global asymptotic
stability. Using this approach, we can study stability for a
broader range of switched systems, particularly, we can search
for a global attractor for switched nonlinear systems, whose
dynamics are given by polynomial vector fields and which have
multiple equilibria or limit cycles.

I. INTRODUCTION

Switched systems are used for modelling in many different
fields [1]. Examples for their use range from the biological
sciences [2], for example, the dynamics of human body
thermoregulation during sleep abruptly changes when sleep
transitions from non-rapid eye movement (REM) sleep to
REM sleep [3], to mechanical engineering, where one ex-
ample is the dynamics of an engine with shifting gears [4].
Switched systems can describe systems, whose dynamics
are affected by instantaneous changes, by considering a set
of continuous-time sub-systems and a rule governing the
switching between them. Analysing switched systems is also
important in the field of hybrid systems [1].

We consider switched systems in continuous-time that are
of the following form,

ẋ = fσ(x), x ∈ Rn, σ : [0,∞) → {1, 2, . . . , N}. (1)

Vector x denotes the state of the system and σ is the
switching signal; given time-point t, the system dynamics
is governed by function fi : Rn → Rn, where σ(t) = i.
That is, there are N functions and which one is “on” is
defined by switching signal σ. In this paper, we assume
arbitrary switching, that is, switching signal σ fulfils the
technical assumption that there is only a finite number
of discontinuity-points (switchings) on every finite time-
interval, but is otherwise arbitrary. Furthermore, we assume
that the fi are linear or polynomial functions.

Determining stability of an equilibrium point for (1), that
is of a point x∗ ∈ Rn, for which fi(x

∗) = 0 for i =
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1, 2, . . . , N , is often difficult, even for linear functions fi [5].
Stability results have been obtained when the dynamics of
the switching are non-arbitrary, for instance, when a minimal
amount of time must pass before switching occurs [4], [6];
one then speaks of minimal dwell time. However, under
arbitrary switching, the problem is notoriously hard and most
results and methods used to determine stability of classical
linear and nonlinear systems cannot be used. Thus, various
works have adapted Lyapunov stability theory to switched
systems and considered the construction of a Lyapunov
functions for (1).

Under arbitrary switching, a necessary condition for sta-
bility of an equilibrium of (1) is that it is stable for each
subsystem given by ẋ = fi(x). Otherwise, if it is not stable
for ẋ = fj(x) then it cannot be stable for (1); just set
σ(t) = j for all t. Often, one seeks to find a common
quadratic Lyapunov function [4], that is, to find a single
quadratic Lyapunov function that guarantees the stability of
each individual subsystem. If such a function exists then the
equilibrium is also stable for the switched system. In [7], [8],
algebraic conditions for the existence of a common quadratic
Lyapunov function were defined. Arguably, those conditions
on the system matrices seem rather restrictive.

A less conservative approach is to search for a common
piecewise linear or polynomial Lyapunov function [9], [10].
In [11], a method for the computation of piecewise quadratic
Lyapunov functions is presented. In the literature, there are
mainly two approaches to compute such Lyapunov func-
tions [12], [13]. One does so by means of either semidefinite
programming or linear programming [14].

A different approach for computing a Lyapunov function
is based on Sum of Squares (SOS) optimisation [15]. The
advantage of using SOS optimisation is the ability, for
systems whose dynamics are defined by polynomial vector
fields, to search for Lyapunov functions that consist of poly-
nomials of higher-order [16]. In [17], the authors use SOS
optimisation to search for polynomial Lyapunov functions
and piecewise polynomial Lyapunov functions that guarantee
global asymptotic stability for switched systems. In [18], the
author showed that, for linear switched systems, the existence
of a homogenous polynomial Lyapunov function that is SOS
is not only sufficient for global asymptotic stability of the
equilibrium, but also that such a function, of potentially high
degree, must exist if the equilibrium is asymptotically stable.

In this paper, we present a novel method, based on SOS
optimisation, to guarantee stability properties of nonlinear
switched systems, whose dynamics are governed by poly-
nomial vector fields. We do so by determining a globally

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 4891



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

absorbing set for the dynamical system given by (1). Using
this approach, we can study stability for a broader range
of problems. For linear switched systems, we show that
the existence of such a set translates to global asymptotic
stability of the equilibrium at the origin. As the Lyapunov
function computed is not necessarily homogenous, one can
potentially use polynomial Lyapunov function of lower de-
gree than in [18].

Other approaches have considered invariant sets as a tool
to prove stability for switched systems. For example, in [19],
a stability theorem for switched systems is provided, where
each subsystem possesses an invariant set. In [20] and in [21],
the notion of invariant sets and boundedness are invoked to
prove stability of switched systems with multiple equilibria.
However, all these results depend on nonzero dwell time.

The contributions of this paper are for switched sys-
tems, whose dynamics can be described by polynomial
vector fields, and are the following. First, by relaxing the
problem to determining a globally absorbing set for (1)
instead of proving global asymptotic stability directly by
means of a common Lyapunov function, we can reduce
the size of the problem and, thus, the computational effort
by searching for Lyapunov functions that potentially consist
of non-homogenous polynomials of lower order. Moreover,
for switched systems with multiple equilibrium points or
limit cycles, our approach provides novel means to establish
stability and to characterise the attractor if it exists. This is
an extension of the results for the same class of switched sys-
tems presented in [17], which provides stability certificates
for switched system with a common equilibrium point for
the subsystems. For linear systems, the approach presented
in this paper scales better with system dimension than the
one presented in [14], because no triangulation of the state-
space is needed.

The remainder of the paper is organised as follows. Sec-
tion II defines an absorbing set and shows how to search for
one. Section III shows that for linear switched systems, the
existence of an absorbing set translates to global asymptotic
stability of the equilibrium point. In Section IV, we apply
our method to different examples. Finally, we conclude the
paper in Section V.

II. OBTAINING AN ABSORBING SET

We investigate the stability of a switched system by
searching for a certificate for ultimate boundedness of the
switched system and by using it to determine an absorbing
set of (1). We do so by computing a Lyapunov function,
V (x), that is monotonically decreasing along all solution
trajectories outside of the absorbing set. The notion of an
absorbing set is not only useful for dynamical systems with
a unique equilibrium, but also for systems that have multiple
equilibria, limit cycles, and/or strange attractors.

A. Absorbing Sets

An absorbing set is a special kind of positively invariant
set. For this reason, we provide the following definitions [22].

Definition 1: Let x(t) be a solution of the dynamical
system ẋ = f(x), which we assume to exist for all t.
Then p is said to be a positive limit point of x(t) if there
is a sequence {tn}, with tn → ∞ as n → ∞, such that
x(tn) → p as n → ∞.

Definition 2: A set M is invariant with respect to ẋ =
f(x) if

x(0) ∈ M ⇒ x(t) ∈ M, for all t ∈ R.

This means, that if a solution belongs to M at some time
instant, then it belongs to M for all time.

Definition 3: For (1) and a switching signal σ denote by
t 7→ ϕσ(t, x0) its solution starting at x(0) = x0. A set M ⊂
Rn is said to be positively invariant for (1), if for every
switching signal σ we have

x0 ∈ M ⇒ ϕσ(t, x0) ∈ M, for all t ≥ 0.

A positively invariant set M for (1) is said to be an absorbing
set if additionally, for every compact set C ⊂ Rn there exist
a time t∗C ≥ 0 such that for every switching signal σ

x0 ∈ C ⇒ ϕσ(t, x0) ∈ M, for all t ≥ t∗C .

Now, for a switched system, the following theorem provides
conditions for set B to be a globally, uniformly attractive,
positively invariant set, that is, an absorbing set.

Theorem 1: Assume that for (1) there exists a continu-
ously differentiable function V : Rn → R, a compact set
B ⊂ Rn, and constants γ ∈ R, ρ > 0, such that

V (x) = γ for all x ∈ ∂B,
V (x) > γ for all x ∈ Rn \ B,

V̇ (x) ≤ −ρ for all x ∈ Rn \ B.

Here

V̇ (x) := max
i=1,2,...,N

∇V (x) · fi(x).

Then B is an absorbing set for (1).
Proof: The proof of the theorem follows from standard

arguments when using Lyapunov stability theory: As long
as x = ϕσ(t, x0) /∈ B we have the condition that V (x)
monotonically decreases with time, V̇ (x) ≤ −ρ, which
means that

V (ϕσ(t, x0))− V (x0) ≤
∫ t

0

V̇ (ϕσ(s, x0))ds ≤ −ρt.

First, it follows from this inequality that if x0 ∈ ∂B, then
the existence of a switching signal σ and time t > 0 such
that ϕσ(s, x0) /∈ B for 0 < s ≤ t is impossible, because of
γ = V (x0) < V (ϕσ(t, x0)). Hence, B is positively invariant.

Second, again by the inequality, B must be absorbing.
Indeed, fix a compact C ⊂ Rn and note that if C ⊂ B we
can take t∗C = 0. Otherwise denote by V the maximum value
of V on the closure of C \ B and set t∗C = (V − γ)/ρ > 0
and note that for an arbitrary x0 ∈ C \ B we have

ρt∗C ≥ V (x0)− γ ≥ V (x0)− V (ϕσ(t, x0)) ≥ ρt
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as long as ϕσ(t, x0) /∈ B. Thus, there exists a t∗(x0) ≤ t∗C
such that ϕσ(t, x0) ∈ B for all t ≥ t∗(x0) and B is absorbing.

A dynamical system with an absorbing set is said to be
ultimately bounded system [23]. As shown previously, if a
dynamical system possesses an absorbing set, denoted by
B, then, not only will all trajectories starting within the
absorbing set remain within the set, but also there exists
for every x0 ∈ Rn a time point t∗(x0) ≥ 0 such that
ϕσ(t, x0) ∈ B for all t ≥ t∗(x0) and all switching signals
σ. Indeed, t∗(x0) can be chosen to imply the same for all
solutions starting in a neighbourhood of x0.

Throughout this paper, we use the notion of an absorb-
ing set to obtain stability certificates for switched systems
using SOS optimisation [16], [24]. To solve SOS opti-
misation problems, we use the MATLAB® [25] toolbox
SOSTOOLS [26]. For more details on SOS optimisation and
the SOS decomposition, see the Appendix.

B. Obtaining an Absorbing Set

To find a Lyapunov function that defines an absorbing set
for switched system (1), we apply the approach presented
in [23] to all subsystems at once. The following two theorems
provide means to obtain an absorbing set.

Theorem 2: Given constants β ≥ 0, and δ > 0 and integer
ℓ, if there exists a radially unbounded SOS polynomial V (x),
V (x) ≥ δ||x||2ℓ2ℓ, where ||x||2ℓ2ℓ = x2ℓ

1 + x2ℓ
2 + . . . + x2ℓ

n ,
and a SOS polynomial pi(x) that solve the following SOS
programme,

−fi(x) · ∇V (x)− pi(x)
(
∥x∥22 − β

)
− δ||x||2ℓ2ℓ is SOS ∀i.

(2)
then there exists β̃ > 0 such that with ρ := δβ̃ we have

V̇ (x) ≤ −ρ, for all ||x||2ℓ2ℓ ≥ β̃. (3)

Proof: It is shown in [23] that (2) implies that

fi(x) · ∇V (x) ≤ −δβ̃ < 0, for ||x||22 ≥ β, (4)

and, thus, ||x||2ℓ2ℓ ≥ β̃, where β̃ is a positive constant, for all
i. It follows that (3) holds.

Theorem 3: If there exist a positive constant γ and a SOS
polynomial q(x) such that

−(V (x)− γ) + q(x)(||x||22 − β) is SOS (5)

then B = {x ∈ Rn|V (x) ≤ γ} is an absorbing set of (1),
where V and β are from a solution to (2).

Proof: If (5) holds, where β solves (2), then ||x||22 > β
if V (x) > γ and it follows from Theorem 1 and Theorem 2
that solution trajectories will approach the level set given by
V (x) = γ and, thus, that B = {x ∈ Rn|V (x) ≤ γ} is an
absorbing set of (1).

In this paper, we first increase the degree of Lyapunov
function V (x) (and accordingly of pi(x)) until we obtain
a solution to (2). Then, we repeatedly solve (2) while
decreasing β ≥ 0 as much as possible, which provides tighter
bounds on the absorbing set. Increasing the value of ℓ allows
us to reduce the number of low-degree monomials in V (x);

particularly, if the degree of V (x) is 2ℓ then it consists of a
homogenous polynomial function. Note that solving (2) for
β = 0 is equivalent to finding a common Lyapunov function
for the entire state space, as in [17]. If not stated otherwise,
we set δ = 1. Additionally, to reduce the size of B, we solve
the following problem instead of (5),

minimise γ

subject to − (V (x)− γ) + q(x)(||x||22 − β) is SOS. (6)

For an illustration of absorbing set B, see Fig. 1.

III. ASYMPTOTIC STABILITY FOR LINEAR SYSTEMS

For the special case of linear switched systems we have
the following theorem.

Theorem 4: Linear switched systems with asymptotically
stable sub-systems and a common equilibrium point, given
by ẋ = Aix, are asymptotically stable under arbitrary
switching if they possess an absorbing set.

Proof: Essentially, this follows from the homogeneity
of linear systems. That is, for a given switching σ and a
constant c > 0, we have for the solution to the switched
linear system, that ϕσ(t, cx0) = cϕσ(t, x0). In the following,
Br denotes the open ball centred at the origin with radius
r > 0.

First, we show stability of the origin. Let constant ε > 0
be given. Choose the constant c > 0 so large that B ⊂
Bcε and choose the constant δ > 0 so small that Bcδ ⊂ B.
Since B is positively invariant for the switched system, we
have for every switching that the solution t 7→ ϕσ(t, x0)
stays in Bcε for all t ≥ 0, whenever x0 ∈ Bcδ ⊂ B. Thus,
ϕσ([0,∞),Bcδ) ⊂ Bcε and by the homogeneity property

ϕσ([0,∞),Bδ) ⊂ Bε.

That is, stability follows by the homogeneity property. For
an illustration of above argumentation, see Fig. 1.

To conclude the proof, we show that limt→∞ ϕσ(t, x0) =
0 for every switching and every x0 ∈ Rn. Assume, by way of
contradiction, that this does not hold true. Then, there exists a
switching signal σ, an x0 ∈ Rn, an ε > 0, and an unbounded
sequence of times (tn), such that ∥ϕσ(tn, x0)∥2 > ε for all
n ∈ N. Choose the constant c > 0 so large that that B ⊂ Bcε.
By the definition of t∗C with C = Bcε, cf. Definition 3,
we have ϕσ(t, cx0) ∈ B ⊂ Bcε for all t ≥ t∗C . By the
homogeneity property it follows that ϕσ(t, x0) ∈ Bε for all
t ≥ t∗C , which is a contradiction and we have proved the
theorem.

Finally, Theorem 4 has an obvious corollary.
Corollary 1: Solutions of linear switched switched sys-

tems with asymptotically stable sub-systems given by ẋ =
Aix cannot have a periodic solution for any switching σ if
the switched system as a whole has an absorbing set.

IV. EXAMPLES

In this section, we present a few examples. All problems
are solved on a MacBook Pro with a 2.3 GHz quad-core
Intel Core i5 processor. Furthermore, we solve linear matrix
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Fig. 1. The figure shows ∂B, which is given by V (x) = γ, and its relation
to ||x||22 = β (see main text). Moreover, it depicts the two exemplary
trajectories used to prove Theorem 4.

inequalities using semidefinite programming, for which we
use YALMIP [27], a MATLAB® [25] toolbox. We solve
SOS optimisation problems using SOSTOOLS [26], another
MATLAB® toolbox. In both cases, we solve the problems
using the solver SeDuMi [28].

A. Linear Switched System

The first problem is interesting, since it has been often
investigated in the literature [14] and shows the potential of
solving SOS optimisation problems. The problem consists
of determining the asymptotic stability of a planar linear
switched system given by

ẋ = Aσ(t)x, σ(t) ∈ {1, 2}, (7)

where

A1 =

[
0 1

−0.1 −2

]
, A2 =

[
0 1
−b −2

]
. (8)

First, note that by solving the following linear matrix in-
equality,

P = PT ≻ 0, PAi +AT
i P ≺ 0, i = 1, 2, (9)

one obtains a common quadratic Lyapunov function up to
b ≤ 5.36.

Now, we let β = 0 and the degree of V (x) be 2ℓ, that is,
we search for a common homogenous polynomial Lyapunov
function that guarantees global asymptotic stability. We solve
(2) for β = 0 (and δ = 0.001) for increasingly larger values
of ℓ, which allows us to increase the value of b, however,
not beyond b = 12, which is reached for ℓ = 6. Since
the existence of a homogenous polynomial that is SOS,
of sufficiently high degree (ℓ >> 1), and solves (2) is a
necessary condition for stability [18], we continue increasing
the value of ℓ. However, solving (2) for ℓ ≥ 10 leads to
numerical problems. The Lyapunov function, that we obtain,

is given by

V (x) = 1326.8x12
1 + 3997.0355x11

1 x2 + 13366x10
1 x2

2

+ 22545x9
1x

3
2 + 24318x8

1x
4
2 + 17999x7

1x
5
2

+ 10097x6
1x

6
2 + 4333.6x5

1x
7
2 + 1379.2x4

1x
8
2

+ 304.99x3
1x

9
2 + 44.607x2

1x
10
2 + 3.9466x1x

11
2

+ 0.1836x12
2 .

It follows from Theorem 4 that the switched system pre-
sented in this example is globally asymptotically stable for
b = 12. Finally, b = 12 much improves the previously
reported result of b = 5.36 obtained by solving a linear
matrix inequality, particularly, as simulations show that the
switched system becomes unstable for b = 13.26.

B. Affine Switched System with 2 Equilibrium Points

In this example, we consider the switched dynamical
system given by

ẋ = Aσ(t)x+ dσ(t), d1 = 0, d2 =

[
1
1

]
, σ(t) ∈ {1, 2},

(10)
where A1 and A2 are given by (8) for b = 2. Note that the
equilibrium point of one subsystem is the origin, while for
the other one it is not. For ℓ = 2 and β = 3.3, we obtain a
solution for (2).

Specifically, we obtain a homogenous polynomial Lya-
punov function of degree 4 that is given by

V (x) = 436.8x4
1 + 929.2x3

1x2 + 963.1x2
1x

2
2

+ 519.2x1x
3
2 + 168.1x4

2. (11)

Using this value for β, we solve (6) to obtain the boundary
of absorbing set B, given by V (x) = γ, where γ = 8725
(see Fig. 2).

Fig. 2. The figure shows the boundary of the absorbing set of (10) with
a few exemplary system trajectories of ẋ = A1x and ẋ = A2x+ d2. The
boundary is given by V (x) = 8725 and V (x) is given by (11). The figure
lies in the area [−3, 3]× [−4, 4].

C. Affine Switched System with 3 Equilibrium Points

Here, we compare our approach to the one in [29], which
depends on dwell time, when applied to Example 4.2 in [29],
which considers the following switched system that has
multiple equilibria,

ẋ = Ax+ bσ(t), σ(t) ∈ {1, 2, 3}, (12)
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where

A =

[
−1 −1
1 −1

]
, b1 =

[
1
1

]
b2 =

[
−1
1

]
b3 =

[
1
−1

]
.

Solving (2), with ℓ = 2, and β = 2, we find a fourth order
homogenous common Lyapunov function given by

V (x) = 8.7957x4
1 + 1.8977x3

1x2 + 17.4811x2
1x

2
2

− 1.5706x1x
3
2 + 9.3477x4

2.

We then solve (6), for β = 2 and obtain γ = 38.43, which
guarantees boundedness of system solutions independent of
dwell time (see Fig. 3); in [29] the average dwell time was
required to be bounded away from zero.

Fig. 3. The figure shows exemplary trajectories of (12) and the boundary
of its absorbing set. We overlap the bounded absorbing set obtained using
our approach with the absorbing sets, depicted in grey dash-dotted lines,
from [29]. The figure lies in the area [−3.5, 3.5]× [−3.5, 3.5].

D. Nonlinear Switched System with Unique Equilibrium

Consider the nonlinear switched system given by

ẋ = Aσ(t)(x)x, σ(t) ∈ {1, 2}, (13)

where

A1(x) =

 0.2868− x2
2 1.5387 0.1731

−0.3628 0.0893 −0.6175
0.0892 1.2898 −1.4316

 ,

A2 =

 −1.5007 1.3875 −0.4402
0.4919 −1.5442 0.1360
0.2914 −0.4561 0.0231

 .

First, to solve (2) for β = 0 and, thus, to guarantee
asymptotic stability, V (x) must be a SOS polynomial of
degree 6. Note that we set ℓ = 2. On the other hand, solving
(2) and, then, (6), for β = 5, we can guarantee boundedness
of solutions with a Lyapunov function V (x) that is a SOS
polynomial of degree 4 (see Fig. 4). Significantly, by doing
so, the size of the resulting semidefinite programme reported
by SOSTOOLS goes down from having 1339 equalities and
262 decision variables to having 444 equalities and 125
decision variables for solving (2) and 116 equalities and 41
decision variables for solving (6).

Fig. 4. The figure shows the boundary of the absorbing set of (13) with
a few exemplary system trajectories of ẋ = A1(x)x and ẋ = A2x. The
figure lies in the space [−5, 5]× [−2, 2]× [−3, 3].

E. Nonlinear Switched System with Limit Cycle

In this example, we apply our approach to the analysis of
a nonlinear switched system, where one subsystem consist
of a Van der Pol oscillator. The system is given by

ẋ = fσ(t)(x), σ(t) ∈ {1, 2}, (14)

where
f1(x) =

[
x2

−x1 − (x2
1 − 1)x2

]
,

f2(x) =

[
x2

−6x1 − 2x2

]
.

(15)

Note that subsystem f1(x) admits a limit cycle around
the origin, which is an unstable equilibrium point of the
subsystem. However, we can show that the system possess
an absorbing set with the origin in its interior. Specifically,
for ℓ = 1, δ = 0.0001, and β = 14, solving (2) and, then,
(6), we can bound system trajectories. Specifically, we obtain
a Lyapunov function of degree 6 that defines the boundary
of the absorbing set B (see Fig. 5).

Fig. 5. The figure shows the boundary of the absorbing set of (14) with a
few exemplary system trajectories. The figure lies in the area [−3.8, 3.8]×
[−9.5, 9.5].

V. CONCLUSIONS

Using SOS optimisation, in this paper, we presented a
novel approach to provide stability certificates for switched
linear and nonlinear systems, whose dynamics are described
through polynomial vector fields, under arbitrary switching.
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We did so, by providing means to search for certificates of
ultimate boundedness of the switched system under consid-
eration. We also showed that, for linear switched systems,
the existence of an absorbing set implies global asymptotic
stability. We applied the presented approach to different
examples to illustrate that it allows to locate an absorbing set,
even when the switched system is composed of subsystems
with distinct equilibrium points or possessing limit cycles.
Furthermore, we showed that if guaranteeing boundedness
of solutions is sufficient, as opposed to guaranteeing global
asymptotic stability of an equilibrium, then our novel method
might achieve this with reduced computational effort.

ACKNOWLEDGMENT
The authors would also like to thank the editor and the

anonymous reviewers for their valuable comments, which
substantially improved the paper.

REFERENCES

[1] D. Liberzon, Switching in Systems and Control. Birkhäuser Boston,
2003.

[2] N. El-Farra, A. Gani, and P. Christofides, “A switched systems
approach for the analysis and control of mode transitions in biological
networks,” in Proceedings of the 2005 American Control Conference,
2005, pp. 3247–3252.

[3] E. C. Harding, N. P. Franks, and W. Wisden, “Sleep and thermoregu-
lation,” Current Opinion in Psychology, vol. 15, pp. 7–13, 2020.

[4] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, “Stability
criteria for switched and hybrid systems,” SIAM Review, vol. 49, no. 4,
pp. 545–592, 2007.

[5] D. Liberzon and A. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5,
pp. 59–70, 1999.

[6] J. Hespanha and A. Morse, “Stability of switched systems with average
dwell-time,” in Proceedings of the 38th IEEE Conference on Decision
and Control, vol. 3, 1999, pp. 2655–2660.

[7] R. Shorten and K. Narendra, “On the stability and existence of
common Lyapunov functions for stable linear switching systems,” in
Proceedings of the 37th IEEE Conference on Decision and Control,
vol. 4, 1998, pp. 3723–3724.

[8] C. King and M. Nathanson, “On the existence of a common quadratic
Lyapunov function for a rank one difference,” Linear Algebra and its
Applications, vol. 419, pp. 400–416, 2006.

[9] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: A survey of recent results,” IEEE Transactions on
Automatic Control, vol. 54, no. 2, pp. 308–322, 2009.

[10] M. Branicky, “Stability of switched and hybrid systems,” in Proceed-
ings of 1994 33rd IEEE Conference on Decision and Control, vol. 4,
1994, pp. 3498–3503.

[11] M. Johansson and A. Rantzer, “Computation of piecewise quadratic
Lyapunov functions for hybrid systems,” IEEE Transactions on Auto-
matic Control, vol. 43, no. 4, pp. 555–559, 1998.

[12] A. Polanski, “Lyapunov function construction by linear programming,”
IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 1013–
1016, 1997.

[13] S. Hafstein and P. Giesl, “Review on computational methods for
Lyapunov functions,” Discrete and Continuous Dynamical Systems -
Series B, vol. 20, pp. 2291–2331, 2015.

[14] S. Andersen, P. Giesl, and S. Hafstein, “Common Lyapunov functions
for switched linear systems: Linear programming-based approach,”
IEEE Control Systems Letters, vol. 7, pp. 901–906, 2023.

[15] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming, vol. 96, pp. 293–320, 2003.

[16] J. Anderson and A. Papachristodoulou, “Advances in computational
Lyapunov analysis using sum-of-squares programming,” Discrete and
Continuous Dynamical Systems - Series B, vol. 20, pp. 2361–2381,
2015.

[17] S. Prajna and A. Papachristodoulou, “Analysis of switched and hybrid
systems - beyond piecewise quadratic methods,” in Proceedings of the
2003 American Control Conference, 2003, pp. 2779–2784.

[18] G. Chesi, “Lmi conditions for time-varying uncertain systems can be
non-conservative,” Automatica, vol. 47, no. 3, pp. 621–624, 2011.

[19] M. Dorothy and S.-J. Chung, “Switched systems with multiple invari-
ant sets,” Systems & Control Letters, vol. 96, pp. 103–109, 10 2016.

[20] R. Kuiava, R. A. Ramos, H. R. Pota, and L. F. C. Alberto, “Prac-
tical stability of switched systems without a common equilibria and
governed by a time-dependent switching signal,” European Journal of
Control, vol. 19, no. 3, pp. 206–213, 2013.

[21] S. Veer and I. Poulakakis, “Switched systems with multiple equilibria
under disturbances: Boundedness and practical stability,” IEEE Trans-
actions on Automatic Control, vol. 65, pp. 2371–2386, 6 2020.

[22] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, New
Jersey: Prentice-Hall, 2000.

[23] E. August and M. Barahona, “Finding positively invariant sets and
proving exponential stability of limit cycles using sum-of-squares
decompositions,” Journal of Computational Dynamics, vol. 10, no. 1,
pp. 105–126, 2023.

[24] A. Papachristodoulou and S. Prajna, “On the construction of Lyapunov
functions using the sum of squares decomposition,” in Proceedings of
the 41st IEEE Conference on Decision and Control, 2002., vol. 3,
2002, pp. 3482–3487.

[25] MATLAB, version 9.12.0.1884302 (R2022a). Natick, Massachusetts:
The MathWorks Inc., 2022.

[26] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna,
P. Seiler, P. A. Parrilo, M. M. Peet, and D. Jagt, SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB,
http://arxiv.org/abs/1310.4716, 2021, available from
https://github.com/oxfordcontrol/SOSTOOLS.
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APPENDIX

Sum of Squares Decomposition

Consider the real-valued polynomial function F (x) of
degree 2d, x ∈ Rn. A sufficient condition for F (x) to be
nonnegative is that it can be decomposed into a SOS [15]:
F (x) =

∑
i f

2
i (x) ≥ 0, where fi are polynomial functions.

F (x) is a SOS if and only if there exists a positive semidef-
inite matrix R and F (x) = χTRχ, where

χT =
[
1 x(1) . . . x(n) x(1)x(2) . . . xd

(n)

]
.

The entries of vector χ consist of all monomial combinations
of the elements of vector x up to degree d (including
x0
(i) = 1) and, thus, its length is ℓ =

(
n+d
d

)
. Note that R

is not necessarily unique. However, F (x) = χTRχ poses
certain constraints on R of the form tr(AjR) = cj , where Aj

and cj are appropriate matrices and constants respectively. In
general, in order to find R, we solve the optimisation problem
associated with the following semidefinite programme:

min tr(A0R)

s.t. tr(AjR) = cj , j = 1, . . . ,m

R = RT ⪰ 0.
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