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Abstract— This article analyzes methods for deriving credible
intervals to facilitate errors-in-variables identification by ex-
panding on Bayesian total least squares. The credible intervals
are approximated employing Laplace and variational approx-
imations of the intractable posterior density function. Three
recursive identification algorithms providing an approximation
of the credible intervals for inference with the Bingham and
the Gaussian priors are proposed. The introduced algorithms
are evaluated on numerical experiments, and a practical ex-
ample of application on battery cell total capacity estimation
compared to the state-of-the-art algorithms is presented.

I. INTRODUCTION
The identification of unknown coefficients θ in errors-

in-variables problems has become ubiquitous in applied
decision and control fields. The ordinary linear regression
problem is as follows:

b≈ Aθ , (1)

where the θ ∈ Rn−1 is the vector of unknown parameters,
and the A ∈ RK×n−1 is the design matrix consisting of K
noiseless samples of the independent variable ak ∈Rn−1 that
are stacked underneath each other. Similarly, the b ∈ RK

is a vector of K corresponding noisy dependent variables.
Compared to the ordinary linear regression, the errors-in-
variables arise when the design matrix samples ,ak, are noisy.
The problem can be reformulated into

0≈ X [θ T , −1]T , (2)

where the X = [A, b] ∈ RK×n is the vector of samples ,xk ∈
Rn, burdened with noise. A common assumption is that
the noise embodies an independent, identically distributed
Gaussian with zero mean G(0,σnI) and known variance σn.

It is proved [1] that in the case of an independent, iden-
tically distributed Gaussian noise, the maximum likelihood
solution is obtained with total least-squares [2]. Partially
modified total least-squares [3] are the state-of-the-art in
maximum likelihood identification, with readily available
recursive algorithms [4], [5], [6].

Conversely, the statistical analysis is complicated when
it comes to providing credible intervals for the errors-
in-variables. The state-of-the-art methods [7] approximate
the total least-squares credible intervals by covariance ob-
tained as the inverse of the Fisher information matrix [8].
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Pavel Václavek is with the Faculty of Electrical Engineering and
Communication, Brno University of Technology, and with the Central
European Institute of Technology, Technická 12 Brno, Czech Republic
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The likelihood is not Gaussian, as shown in [9]; thus,
the approximation is flawed.

Further complications arise because the dimension of
the inference grows linearly with the number of samples, K.
Due to this fact, no recursive algorithm is currently available
[10], [11], [12].

This article proposes to remedy both of the above-
mentioned weaknesses by introducing real-time suitable re-
cursive identification algorithms providing a numerically
cheap and optimal approximation of the credible intervals.

The text is organized as follows: Section II presents
a Bayesian analysis of the total least-squares and justifies
the need of a credible interval approximation; sections III
and IV analyze numerically efficient and optimal ways of
posterior approximation, respectively; sections V and VI
derive and evaluate the recursive identification algorithms,
respectively; section VII discusses the practical use of the al-
gorithm and compares them with the existing methods; and
section VIII sets out the actual conclusion.

Throughout the article, the probability-density functions
are denoted by p(·). For better readability, the Bingham
distribution notation is abbreviated from the two standard
parameters B(·|M,Z) to B(·|A), where A = MZMT .

II. BAYESIAN TOTAL LEAST-SQUARES

The authors’ previous research [9], under the assumption
of an orthogonal noise, formulates the total least-squares
likelihood function

p(X |θ) ∝ exp
(
−[θ T−1]Φ[θ T−1]T (θ T

θ+1)−1) , (3)

where Φ = XXT/(2σ2
n ).

Using the normalization ν(θ) = [θ T −1]T (θ T θ +1)−1/2,
the likelihood becomes the Bingham distribution

p(X |ν(θ)) = exp
(
−ν(θ)Φν(θ)T )= B(ν(θ)|−Φ). (4)

The Bingham prior pB(ν(θ)) =B(ν(θ)|−β ) is conjugate
and ensures the analytical posterior

pB(ν(θ)|X) ∝ B(ν(θ)|− (Φ+β )), (5)

where the lower index denotes the Bingham prior.
The ν(θ) can be denormalized at one’s convenience via

the [θ T −1]T =−ν(θ)/ν(θ)n, where the ν(θ)n denotes
the last element of the ν(θ). After the normalization, the pos-
terior is written as

pB(θ |X). (6)

While this posterior has certain beneficial properties, as
presented in [9], quantifying the θ uncertainty is com-
putationally intensive due to the intractable normalization
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constant of the Bingham distribution. Although the literature
offers algorithms for estimating the normalization constant
[13] or enabling the sampling by working around the constant
altogether [14], [15], the implementation in real-time is
computationally intensive.

Expressing prior beliefs using the pB(ν(θ)) can also be
problematic, as one needs to state the belief about the ν(θ)
instead of the θ directly. The most frequent prior is the Gaus-
sian pG(θ)=G(θ |µp,Σp). However, the resulting posterior is
the unknown probability-density function with an unknown
normalization constant,

pG(θ |X) ∝ p(X |θ)pG(θ), (7)

where the lower index indicates the Gaussian prior.
In both cases, the uncertainty of the θ can be obtained

by finding a suitable, preferably optimal, approximation. As
the term (θ T θ+1)−1 in the likelihood function (3) is the only
difference from the normal distribution, the chapters below
examine ways of finding the Gaussian approximations.

III. LAPLACE POSTERIOR APPROXIMATION

The simplest widely used probability-density function
approximation providing a Gaussian result is the Laplace
approximation [16], [17].

The surrogate posterior is obtained by finding the max-
imum a posteriori (MAP) estimate, µ∗, of the original
posterior distribution, p(θ |X), computing the Hessian of
the log posterior in the mode and then using these values
to construct a Gaussian approximation to the posterior

qL(θ |µ∗) = G(θ |µ∗,H(µ∗)), (8)

where the H(µ∗) is the Hessian matrix of the log posterior,
ln p(θ |X), evaluated at µ∗.

The problematic posterior distribution is approximated by
the Laplace surrogate posterior

qL(θ |µ∗)≈ p(θ |X). (9)

In the case of the Bingham prior, the MAP µ∗ is obtained
by solving the singular value decomposition or the Rayleigh
quotient iteration [5]

µ
∗ := argmin

µ

[µT −1] (Φ+β ) [µT −1]T

µT µ +1
. (10)

In the case of the Gaussian prior, a nonlinear optimization
method is utilized in order to find the modus of the pG(θ |X).

The derived Hessians for both the Bingham (20) and
the Gaussian (21) priors are provided in the Appendix.

IV. FIXED-FORM VB POSTERIOR APPROXIMATION

While the Laplace approximation is easy to compute, it
does not provide an optimal surrogate posterior. The op-
timal posterior approximation is obtained with variational
Bayesian (VB) methods [18], [19]. Although the factorizing
mean field variational approximation [16], also referred to as
the free-form VB [20], embodies the most commonly used
method, it is not applicable in this case, as the parameters
are not separable due to the normalization term (θ T θ +1)−1

in the likelihood p(X |θ). The utilization of the fixed-form
VB is required.

As outlined in Section II, we decided to fix the functional
form to the Gaussian G(θ |µ,Σ). The optimal approximation
qVB(θ |z) of the posterior

qVB(θ |µ,Σ)≈ p(θ |X) (11)

is obtained by minimizing the Kullback-Liebler (KL) diver-
gence, DKL(qVB(θ |z)||p(X |θ)p(θ)), which is equivalently
solved [20] by maximizing the negative variational free en-
ergy providing a lower bound on the marginal log-likelihood,
frequently also recognized as evidence lower bound (ELBO),

L(qVB(θ |z)) = Eθ∼qVB(θ |X)

(
ln

p(X |θ)p(θ)
qVB(θ |X)

)
, (12)

where the functional form of the qVB(θ |X) is fixed to a Gaus-
sian with the mean µ and covariance Σ. This results in z =
[µT , vec(Σ)T ]T . The prior can only be a Gaussian, pG(θ) =
G(θ |µp,Σp), as for the Bingham prior the L(qVB(θ |z))
diverges.

The univariate analytical solution and a sketch of its
derivation are provided in the Appendix, (23), as the multi-
variate analytical solution is not derived at the current stage
of the research.

The parameters of the optimal posterior Gaussian approx-
imation are obtained as the solution to the optimization
problem

z∗ := argmin
z

−L(qVB(θ |z))
s.t. Σ� 0, (13)

constrained by the positive definiteness of the surrogate
covariance matrix, Σ, denoted by the � 0. The ELBO
L(qVB(θ |z)) is differentiable; therefore, this optimization
problem can be evaluated by any nonlinear optimization
method.

V. RECURSIVE IDENTIFICATION ALGORITHMS

This section presents recursive algorithms, as many ap-
plications benefit from sequentially incorporating newly ac-
quired data. The algorithms are designed for real-time appli-
cations that demand an insight into the uncertainty of the θ .
The MAP for the Bingham prior is recursively obtained
via the inverse iteration-based recursive total least-squares
algorithm specified in [5]. Extending this algorithm results
in the algorithm below, which provides a Gaussian surrogate
posterior using the Laplace approximation:

Algorithm 1 Inverse Iteration Recursive Laplace TLS
1: µ ← µ0
2: H← HB(µ0)
3: P← β−1 . Initialize
4: for k← 1 to K do
5: P← f (xk) . Incorporate sample
6: V ← P[µT −1]T

7: µ ←V1:n−1/vn . Obtain mean
8: H← HB(µ) . Obtain covariance
9: end for
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For the Gaussian prior, we decided to exploit gradual con-
vergence of the joint probability p(θ ,X) = p(X |θ)p(θ) and
gradual convergence of the optimization algorithm, similarly
to Algorithm 1, resulting in two algorithms that provide
the Laplace and the VB surrogate posteriors, respectively:

Algorithm 2 Recursive Laplace TLS
1: µ ← µ0
2: H← HG(µ0)
3: λ ← λ0
4: Φ← 0 . Initialize
5: for k← 1 to K do
6: Φ←Φ+(2σ2

n )
−1xkxT

k . Incorporate sample
7: for i← 1 to imax do
8: J←−p(X |θ)G(µ|µp,Σp) . Evaluate joint at µ

9: µ̂ ← µ−
(
Hµ +λ I

)−1 gµ . Update estimate
10: if −p(X |θ)G(µ̂|µp,Σp)>J then . If µ̂ invalid
11: λ ←min(λι , λmax) . Enlarge λ

12: else . If µ̂ valid
13: λ ←max(λ/ι , λmin) . Shrink λ

14: µ ← µ̂ . Accept mean estimate
15: H← HG(µ) . Update covariance
16: end if
17: end for
18: end for

Algorithm 3 Recursive VB TLS
1: z← [µT

0 ,vec(Σ0)
T ]T

2: λ ← λ0
3: Φ← 0 . Initialize
4: for k← 1 to K do
5: Φ←Φ+(2σ2

n )
−1xkxT

k . Incorporate sample
6: for i← 1 to imax do
7: L←−L(qVB(θ |z)) . Evaluate ELBO (23)
8: ẑ← z− (HL +λ I)−1 gL . Update estimate
9: if−L(qVB(θ |ẑ))>L or Σ(ẑ)�0 then . ẑ invalid

10: λ ←min(λι , λmax) . Enlarge λ

11: else . ẑ valid
12: λ ←max(λ/ι , λmin) . Shrink λ

13: z← ẑ . Accept estimate
14: end if
15: end for
16: end for

In Algorithm 1, the vn denotes the last element of
the vector V = [V T

1:n−1 vn]
T ; the covariance is calculated using

the Hessian HB(µ) provided in the Appendix, (20), and
the sample is incorporated using

f (xk) = P−
1

2σ2
n

P(xkxT
k )P

1+ 1
2σ2

n

(
xT

k Pxk
) . (14)

We determined experimentally that performing one step,
imax = 1, of the optimization algorithm in each sample
is sufficient for the convergence. We propose algorithms
inspired by Levenberg-Marquardt [21], [22], [23] for both
the Laplace and the VB approximation. A variable learning
rate using the damping factor, λ , in connection with rejecting

undesirable estimates ensures a steady decrease of the opti-
mization goal and a positive definite surrogate covariance
matrix, Σ� 0.

In Algorithm 2, the surrogate covariance. HG(µ). is pro-
vided in the Appendix, (21); the learning gradient and
learning Hessian are

gµ :=− ∂

∂θ

(
p(X |θ)pG(θ)

)
(15)

Hµ :=− ∂ 2

∂θ 2

(
p(X |θ)pG(θ)

)
, (16)

respectively. Although the derivation is straightforward,
the resulting form is too space-intensive to be included in
this article.

The parameters µ0 and Σ0 are the initial estimates
of the surrogate mean and covariance, and λ > 0 is
the Levenberg-Marquardt damping factor, adjusted in each
optimization step. The scaling parameter ι > 1 con-
trols the magnitude of the scaling parameter adjustment.
The damping factor is bounded by the damping factor limits,
λmin and λmax, which can be tailored to the data type used
in the implementation.

In Algorithm 3, the learning gradient and learning Hessian
are

gL :=− ∂

∂ z

(
L(qVB(θ |z))

)
, (17)

HL :=− ∂ 2

∂ z2

(
L(qVB(θ |z))

)
, (18)

where the L(qVB(θ |z)) is provided in the Appendix, (23).
Similarly to 15 and 16, the derivation is straightforward, but
the result is too long to be incorporated herein.

VI. NUMERICAL RESULTS

The derived recursive approximation methods are evalu-
ated on numerical simulations using MATLAB. Although
the conclusions drawn in this chapter apply to a wide range
of simulation settings, the parameters used are provided in
the Appendix. This evaluation aims to show that the proposed
algorithms converge to results calculated by numerically
intensive but precise optimization algorithms. The experi-
ment is repeated 1,000 times. The mean and variance of
the convergence are presented, along with the outcome of
a single run.

The synthetic errors-in-variables dataset X of K = 500
samples is generated by sampling from

xk = [ak θak]
T +G(η |0,σnI), (19)

where the ak is sampled from the G(ak|0,1) and θ = 1.8.
The algorithms for both the Bingham and the Gaussian

priors are evaluated. Each prior is analyzed separately.
In the case of the Bingham prior, only the Laplace approx-

imation method can be utilized, and an optimal surrogate can
not be derived.

The KL divergence, DKL(qL(θ |µ∗)||qL(θ |µ)), is em-
ployed to quantify the distance from the Laplace estimate
qL(θ |z∗), with the µ∗ obtained via singular decomposition
to the surrogate qL(θ |µ) calculated using Algorithm 1.
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As is shown in Fig. 1, Algorithm 1 converges rapidly, and
the estimate qL(θ |µ) is numerically close to the qL(θ |µ∗).
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Fig. 1. The Kullback-Liebler divergence from the true MAP-centered
Laplace estimate to the estimate calculated by Algorithm 1. The mean and
variance over 1,000 runs are represented with the bold line and transparent
area, respectively, and the DKL of a single run is denoted by the thin line.

For the case of the Gaussian prior, Algorithms 2 and 3 are
proposed; both of them are compared to the optimal estimate
qVB(θ |z∗), with the z∗ acquired by numerically solving (13).
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Fig. 2. The Kullback-Liebler divergence from the optimal posterior
estimate qVB(θ |z∗) to the various estimation methods. The mean and
variance over 1,000 runs are represented with the bold line and transparent
area, respectively; the DKL of a single run is denoted by the thin line.

The numerical closeness of all the estimation methods
is displayed in Fig. 2. The Laplace estimation is compu-
tationally cheaper, but the qL(θ |µ) converges to the sub-
optimal Laplace estimate qL(θ |µ∗) 6= qVB(θ |z∗). The VB
approximation exhibits convergence to the optimal approx-
imation qVB(θ |z∗) for multiple iterations, imax = 10 per
sample qVB10(θ |z), and for a single iteration, imax = 1 per
sample qVB(θ |z).

The visual comparison of the surrogate posteriors depicted
in Fig. 3 shows the closeness of the Laplace and VB-
based surrogate posteriors. It is clear that while the Laplace
estimate entails the MAP and the curvature of the peak,
the VB surrogate optimally entails the whole posterior by
shifting the mean to explain the skewness.
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qV B(θ |z∗)

Fig. 3. The visual comparison of the posterior pG(θ |X), the Laplace
surrogate posterior qL(θ |µ∗), and VB surrogate posterior qVB(θ |z∗) for
K = 50 samples, all normalized such that their maxima are equal to one.

VII. APPLICATION EXAMPLE

The numerical example demonstrates such a practical
application of the proposed algorithms for estimating battery
cell total capacity where information about the estimate’s
uncertainty can be crucial for safety. An alternative approach
to allow the comparison and detailed subject analysis is
provided in [7]. For a survey of other applications, see [2].

The battery cell total capacity, θ , measured in ampere-
hours arises in the linear structure, q = ∆zθ . The linearly
dependent variables are the accumulated ampere hour mea-
surement, q =

∫ t2
t1

η i(τ)
3600 dτ , and the state of charge difference,

∆z = z(t2)−z(t1)
100 . The z(t) is the percentage of the battery cell

state of charge at time t, η denotes the unitless efficiency
factor, and i(t) represents the battery cell current measured
in amperes at time t. For a full explanation of the parameters,
refer to [7].

Both the q and the ∆z embody measured variables and
are therefore burdened with noise. Under the common as-
sumption, the noise components are an independent and
identically distributed Gaussian noise with zero mean and
the proportional variances σq and σz, respectively. Due to
the proportionality, the measurement scaling makes the total
least-squares the optimal estimator of the θ .

The simulated errors-in-variables data are generated with
the true battery cell total capacity θ = 10 and σq = σz =
0.5. The proposed algorithm settings are identical to those
in the previous section and can be studied in the Appendix.

For comparison, the recursive least-squares (LS) and re-
cursive total least-squares (TLS) algorithms from [7] are
displayed. The LS algorithm assumes no error in the ∆z. Both
of the comparison algorithms (LS and TLS) approximate
the posterior credible intervals by the inverse of the Fisher
information matrix. This approximation is too simplistic be-
cause the likelihood and posterior densities are not Gaussian.
The algorithms are initialized with a synthetic true value
measurement, ∆z = 1, q = θ .

The results of the recursive estimation can be observed in
Fig. 4. It is apparent that the mean of the surrogates qVB(θ |z)
and qL(θ |µ) provided by Algorithms 2 and 3, respectively,
coincides with the mean of the TLS algorithm, which is
the maximum-likelihood solution. While the mean value of
the algorithms converges to the true value, θ , the mean of
the LS algorithm provides biased results; this is due to ∆z

4212



0 100 200 300 400 500

8

10

12

k

θ
[A

h]
LS
TLS
qVB(θ |z)
qL(θ |µ)

Fig. 4. The battery cell total capacity estimation results for the different
algorithms. The mean and 3σ interval approximations are represented by
the bold line and transparent area, respectively.

noise negligence of the LS algorithm.
The closest credible interval approximation is expected

for the qVB(θ |z), as the surrogate posterior is an optimal
approximation of the true posterior. While the qL(θ |µ)
exhibits results similar to those of the qVB(θ |z), the TLS
and LS algorithm intervals are underestimated; this is due
to the oversimplified approach using the Fisher information
matrix.

VIII. CONCLUSION

Applying analytical Bayesian inference in solving prob-
lems with errors-in-variables has numerous disadvantages
that complicate further derivations. The disadvantages in-
clude the intractable normalization constant of the posterior
distribution, absence of computationally efficient algorithms
allowing for implementation in real-time applications, and
unknown credible intervals for the posterior distribution.

Several procedures to solve the drawbacks are proposed in
this article. The intractable posterior complicating the deriva-
tion of the credible intervals is solved by a Gaussian approxi-
mation of the posterior density function for the Bingham and
the Gaussian priors. The proposed surrogate posteriors are re-
covered as a Laplace approximation and a variational Bayes
approximation with the functional form fixed to a Gaussian,
as the factorizing free-form VB would not entail covariance
and the unknown parameters are not factorizable.

Inverse iteration and Levenberg-Marquardt inspired algo-
rithms are proposed; they are suitable for the implementation
and practical real-time use. All the three algorithms allow
batch and recursive identification and facilitate credible in-
terval approximation.

The most numerically efficient option is Algorithm 1; it
provides a suboptimal Laplace approximation to the surro-
gate posterior for the case of the Bingham prior. Expressing
prior beliefs via the Bingham distribution can be more
challenging than with the Gaussian prior.

A suboptimal Laplace posterior approximation for
the Gaussian prior is enabled by Algorithm 2; however,
the computational cost is higher than in Algorithm 1.

The numerically least efficient algorithm is Algorithm 3,
which delivers an optimal Gaussian posterior approximation

for the Gaussian prior. The Faddeeva function appearing
in the Hessian evaluated at each step of Algorithm 3, to-
gether with the complicated optimization problem, embodies
the leading cause of the increased computational cost.

The proposed approximation methods and the correspond-
ing algorithms are numerically evaluated for both of the an-
alyzed prior alternatives (Bingham and Gaussian). The eval-
uation shows convergence and numerical stability.

The practical use of the proposed algorithms and the com-
parison with the existing methods are presented on a sim-
ulated estimation of battery cell total capacity. The results
expose that the maximum a posteriori estimates of the pro-
posed algorithms are compatible with the state-of-the-art
maximum-likelihood outcomes of the recursive total least-
squares algorithm. Additionally, the proposed algorithms
provide an approximation of the credible intervals and,
compared to the inverse of the Fisher information matrix,
do not underestimate the variance.

While the proposed algorithms are suitable for practical
applications, further optimizations and enhancements are
possible, such as minimizing the computational complexity
and memory requirements or implementing forgetting fac-
tors; the last of these modifications then allows for iden-
tifying the time-variant parameters, similarly to [24], [25],
[26]. Providing a tractable posterior density function also
facilitates deriving novel methods for estimation, smoothing,
filtering, decision, and control problems with the errors-in-
variables.

APPENDIX

The Hessian of the p(X |θ)p(θ) in the case of the Bingham
prior is derived as

HB(µ) =4
t1Tθ

t3
0
−2

Tθ Ξθ −µΞT
n

t2
0

+

−2
Ξθ Tθ −ΞnµT

t2
0

− It1
t2
0
+

Ξθ

t0
, (20)

where the t0 = µT µ +1, t1 = [µT −1]Ξ[µT −1]T , Tθ = µµT ;
Ξθ ∈ Rn×n, Ξn ∈ Rn×1 are the submatrices of Ξ =

[
Ξθ Ξn
ΞT

n ξ 2
n

]
and Ξ = P−1.

In the case of the Gaussian prior,

HG(µ) = HB(µ)+Σ
−1
p , (21)

where the Ξ = Φ and Σp is the Gaussian prior covariance
matrix.

The univariate analytical variational free energy (ELBO)
for the joint p(X |θ)pG(θ) in the case of the Gaussian prior
can be evaluated as

L(qVB(θ |z)) =
∫

∞

−∞

q(θ |z) ln p(Φ|θ)dθ+

+
∫

∞

−∞

q(θ |z) ln p(θ)dθ −
∫

∞

−∞

q(θ |z) lnq(θ |z)dθ . (22)

While the evaluation of the latter two terms is trivial,
the first term is solved as a convolution problem similar to
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the Voight profile [27], resulting in∫
∞

−∞

q(θ |z) ln p(Φ|θ)dθ =−1
2

(
σ2+(µ−µp)

2

σ2
p

−ln
(

σ22πe
ea

)
+

+

√
π√

2σ2

[
(c−a)V

(
−µ√
2σ2

,
1√
2σ2

)
−bL

(
−µ√
2σ2

,
1√
2σ2

)])
,

(23)

where the µ and σ are the surrogate posterior mean and
variance, respectively, and the µp and σp are the Gaussian
prior mean and variance, respectively. The a, b, and c are
elements of the Φ =

[
a b
b c

]
. The V (α,β ) and L(α,β ) are

the real and the imaginary parts of the Faddeeva function
w(γ) [28] respectively, which can be estimated efficiently
[29] or with a guaranteed accuracy [30]. The derivation of
the ELBO gradient gL, and the Hessian HL is straightfor-
ward, as

∂w(γ)
∂γ

=
2i√
π
−2γw(γ). (24)

All the derivatives are implemented with precision instead
of covariance to improve the numerical stability.

For the numerical tests, the following constants were
used: µp = 5, Σp = σ2

p = 100, µ0 = µp, z0 = [µp, Σp]
T ,

β = diag([10,10]), λmin = 10−10, λmax = 1010, λ0 = λmin,
ι = 2.
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