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Abstract— Extended Dynamic Mode Decomposition (eDMD)
is a powerful tool to generate data-driven surrogate models
for the prediction and control of nonlinear dynamical systems
in the Koopman framework. In eDMD a compression of
the lifted system dynamics on the space spanned by finitely
many observables is computed, in which the original space is
embedded as a low-dimensional manifold. While this manifold
is invariant for the infinite-dimensional Koopman operator,
this invariance is typically not preserved for its eDMD-based
approximation. Hence, an additional (re-)projection step is often
tacitly incorporated to improve the prediction capability. We
propose a novel framework for consistent reprojectors respect-
ing the underlying manifold structure. Further, we present
a new geometric reprojector based on maximum-likelihood
arguments, which significantly enhances the approximation
accuracy and preserves known finite-data error bounds.

I. INTRODUCTION

In the Koopman framework nonlinear dynamical systems
are lifted to the infinite-dimensional space of observables, in
which the system dynamics are governed by a semi-group
of linear operators. Since a compression of the Koopman
operator can be efficiently computed in a purely data-based
manner based on the extended Dynamic Mode Decomposi-
tion (eDMD), see, e.g., [1], Koopman-based prediction and
control has attracted considerable attention in recent years,
see, e.g., the collection [2], the recent survey [3], and the
references therein. In eDMD, finitely-many observables are
evaluated along a finite number of sample trajectories to
compute a compression of the infinite-dimensional Koopman
operator by means of a regression problem [4]. The approxi-
mation is subject to an estimation error due to a finite amount
of data [5], and a projection error stemming from a finite
dictionary size [6].

The observables map the state space to a manifold in the
lifted space, which is preserved by the Koopman operator,
i.e., both the lifted state trajectories and the corresponding
Koopman flow evolve on this manifold. However, the finite-
dimensional approximation does not satisfy this property if
one neglects particular cases typically linked to Koopman
invariance of the dictionary [7], see also the recent work [8].
While the mentioned references provide, at least up to a
certain degree, a remedy for the prediction and analysis of
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dynamical systems, the respective conditions w.r.t. control
systems are quite restrictive except for the drift-free case [9].
Hence, we are concerned with the case that the dictionary is
not Koopman invariant, which is often present in practice.
This is of paramount importance since the learned compres-
sion is based on information on the manifold only and, thus,
may exhibit large errors if applied on the lifted space, but
not on the manifold itself. The respective errors often even
amplify for increasing dictionary size increases. Often a (re-)
projection step is tacitly incorporated to ensure consistency,
i.e., projecting back to the manifold [10], and, thus, to
counteract these deteriorating effects. To be more precise,
following each prediction step, the propagated observables
are projected back onto the manifold before the surrogate
model is used for the next prediction step. If the coordinate
functions are included in the dictionary, the canonical choice
is the coordinate projection [11]. Whereas the coordinate
projection may be an attractive choice due to its simplicity,
we demonstrate that it is, in general, by far not the best.
Additionally, it requires that the coordinate functions are
included in the dictionary.

The contribution of this paper is twofold. First, we
prove that the additional projection step cannot deteriorate
the overall performance much. To this end, we link the
respective error to the one resulting from the regression
problem for computing the finite-dimensional compression
of the Koopman operator. In addition, we explicate why the
coordinate projection performs well if the right-hand side of
the differential equation is contained in the dictionary V.
Second, we propose a novel framework for closest-point
projections containing the standard coordinate projection
as well as an alternative geometric projection based on a
Maximum-Likelihood estimator. To this end, we introduce a
semi-inner product on the ambient space RN , where N is the
dimension of the dictionary V, which induces a Riemannian
metric on the manifold. This allows for different weightings,
and we show that this does not interfere with solving the
regression problem. To be more precise, we prove that the
solution of the L2-regression problem is also a solution
w.r.t. this new weighted counterpart. In conclusion, the
different projections correspond to different choices of semi-
inner product. To illustrate the superiority of the presented
approach w.r.t. approximation accuracy, we provide several
numerical examples.

The outline of the paper is as follows: In Section II,
we briefly recap eDMD in the Koopman framework and in
Section III we provide the problem formulation. Then, in
Section IV, we consider the coordinate projection to show
that a projection step between predictions in the lifted space
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is (highly) beneficial. In Section V, the novel projection
framework is introduced and the key results are presented
before the geometric projection and numerical simulations
are conducted in the following two sections. In Section VII,
conclusions are drawn before a brief outlook is given.
Notation: Let R be the field of the real numbers. Further,
for integers a, b ∈ Z with a ≤ b, we set [a : b] := [a, b] ∩ Z.
For η > 0, Bη(x̂) denotes the ball centered at x̂ ∈ Rd with
radius η, i.e., the set {x ∈ Rd : ∥x − x̂∥ < η}, where
∥ · ∥ : Rd → R is the Euclidean norm. Moreover, for two
sets A,B ⊂ Rd, A ⊕ B := {x + y : x ∈ A, y ∈ B} is
the Pontryagin sum. The pseudodeterminant det†(W ) of a
matrix W ∈ RN×N is defined as the product of the nonzero
singular values of W . For a function φ : Rn → Rm, the
differential at a point x ∈ Rn is written as Dφ(x) ∈ Rm×n.

II. EXTENDED DYNAMIC MODE DECOMPOSITION

For a compact set X and (sufficiently large) η > 0, we
consider the system dynamics

ẋ(t) = f(x(t)) (1)

with Lipschitz continuous vector field f : D := X⊕Bη(0) ⊂
Rd → Rd. We denote the solution of (1) at time t ∈ R≥0

for the initial condition x(0) = x̂ ∈ X by x( · ; x̂) on its
maximal interval [0, tx̂) of existence. For given ∆t > 0,
tx̂ ≥ ∆t holds for all x̂ ∈ X if η > 0 is sufficiently large,
which is tacitly assumed in the following to streamline the
presentation. Alternatively, forward invariance of the set X
w.r.t. the flow of the dynamical system governed by (1) is
assumed, see, e.g., [12].

The Koopman semigroup (Kt)t≥0 of linear operators on
L2(D,R) is defined via the identity

(Ktφ)(x̂) = φ(x(t; x̂)) ∀ x̂ ∈ X, φ ∈ L2(D,R) (2)

for all t < tx̂ and, thus, in particular on the interval [0,∆t].
By means of this semigroup, one may either propagate the
observable φ forward in time using the Koopman operator Kt

and evaluate the propagated observable at x̂ or evaluate the
observable φ at the solution x(t; x̂) as depicted in Figure 1.

observable
φ ∈ L2(D,Rn)

Ktφ

Koopman

(Ktφ)(x̂)

evaluate

initial state
x̂ ∈ X

x(t; x̂)

ODE

φ(x(t; x̂))

evaluate

φ(x(t; x̂)) = (Ktψ)(x̂)

equate

Fig. 1. Schematic sketch of the Koopman framework.

For N ∈ N and linearly independent observables ψi ∈
L2(D,R), i ∈ [1 : N ], V := span{ψi | i ∈ [1 : N ]} is
called the dictionary. Define the vector-valued function

Ψ : D → RN , x 7→ (ψ1(x) . . . ψN (x))⊤. (3)

Invoking the identity (2), we get

KtΨ =

Ktψ1

...
KtψN

 = Ψ(x(t; x̂)) ∈ L2(X,R)N ≃ L2(X,RN ).

Then, the approximation of the Koopman operator is defined
as a best-fit solution in an L2-sense by means of the
regression problem

K̂ = arg min
K∈RN×N

∫
X
∥Ψ(x(t; x̂))−KΨ(x̂)∥22 dx̂. (4)

A solution to Problem (4) can easily be calculated by

K̂ = ΨY Ψ
−1
X , (5)

where ΨX and ΨY are given by ΨX =
∫
X Ψ(x̂)Ψ(x̂)⊤ dx̂

and ΨY =
∫
X Ψ(x(t; x̂))Ψ(x̂)⊤ dx̂, respectively. K̂ is a

compression of Kt, that is, K̂ = PVKt
|V holds, where PV

is the L2-orthogonal projection onto V. The projection error
was first analyzed in [12] by means of a dictionary of finite
elements, see also [6] for an extension to control systems.
In particular, if V is Koopman-invariant, then K̂ = Kt

|V.
Remark 2.1: An empirical estimator of K̂ given m ∈ N

i.i.d. data points x1, . . . , xm can be computed via

K̂m = arg min
K∈RN×N

m∑
i=1

∥Ψ(x(t;xi))−KΨ(xi)∥22.

For m ≥ N , K̂m = (Ψm
XΨm

Y
⊤)(Ψm

XΨm
X

⊤)−1 is a closed-
form solution using the (N ×m)-data matrices Ψm

X and Ψm
Y

with entries ψi(xj) and ψi(x(t;xj)), (i, j) ∈ [1 : N ] × [1 :
m], respectively. The convergence K̂m → K̂ for m → ∞
follows by the law of large numbers [13, Section 4]. For
finite-data error bounds we refer to [5] and the references
therein, where also an extension to Stochastic Differential
Equations (SDEs) with ergodic sampling (along a single,
sufficiently long trajectory) is given. For a recent result in
reproducing kernel Hilbert spaces, we refer to [14].

In fact, the regression problem (4) is the ideal formulation
for the compression in the infinite-data limit. In our numer-
ical simulations, we solve an approximation of this using
m = 10, 000 i.i.d. data points drawn from the compact set X.

III. PROBLEM FORMULATION

The dictionary V is defined by the span of linearly-
independent observables ψ1, ..., ψN . In (4), K̂ is computed
by stacking the observables ψ1, .., ψN into Ψ ∈ L2(X,R)N .
Correspondingly, we define the set

M := im(Ψ) = {Ψ(x) | x ∈ X} ⊂ RN . (6)

By definition, the set M is invariant w.r.t. the Koopman
operator Kt, t ∈ [0,∆t], i.e.,

(KtΨ)(x̂) = Ψ(x(t; x̂)) ∈M ∀ x̂ ∈ X. (7)
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The following example taken from [7] nicely illustrates that
this property also holds for the eDMD-based surrogate model
if the dictionary V is Koopman-invariant, i.e., KtV ⊆ V.

Example 3.1: Consider the system

d

dt

(
x1(t)
x2(t)

)
=

(
x1(t)

λ(x2(t)− x21(t))

)
. (8)

in R2 with λ ∈ R. Choosing the observables ψ1(x) = x1,
ψ2(x) = x2, and ψ3(x) = x21, we get ψ̇1(x(t)) = ψ1(x(t)),
ψ̇2(x(t)) = λ(ψ2(x(t))− ψ3(x(t))), ψ̇3(x(t)) = 2ψ3(x(t)),
which can be written as the linear system

d

dt

y1y2
y3

 (t) =

1 0 0
0 λ −λ
0 0 2

y1y2
y3

 (t) =: Ay(t). (9)

As the prediction of observables in V = span{ψ1, ψ2, ψ3}
can be performed by means of (9), the subspace V is
Koopman invariant and the matrix representation Kt ∈ R3×3

of the Koopman operator Kt|V w.r.t. the basis {ψ1, ψ2, ψ3}
is given by Kt = etA. The prediction of an observable
φ =

∑3
i=1 aiψi along the flow emanating from x̂ is given

by φ(x(t; x̂)) = ⟨a, etAΨ(x̂)⟩2.
The invariance of V for Example 3.1 is preserved if

the x1-component of the right-hand side is multiplied by
µ ∈ R \ {0} or the term x21 in the x2-component is replaced
by an arbitrary polynomial p(x1), see [7]. However, this
desirable property does not hold in general as showcased
in the following example.

Example 3.2: Let us replace the linear term x1 in the first
component of Example 3.1 by −x21, i.e.,

d

dt

(
x1(t)
x2(t)

)
=

(
−x21(t)

λ(x2(t)− x21(t))

)
.

Then, the dictionary spanned by ψi(x) = xi, i ∈ {1, 2}, and
ψi(x) = xi−1

1 , i ∈ N≥3, is Koopman invariant, but infinite
dimensional.

In conclusion, one cannot expect K̂Ψ(x̂) ∈ M for the
approximated Koopman operator K̂ as depicted in Figure 2.
This causes two issues in using K̂ (or data-driven approxima-

Ψ(Rd)

Rd

RN−d

x(∆t; x̂)

x̂

Ψ(x(∆t; x̂))

Ψ(x̂)

(K tΨ(x̂))t≥0

K̂Ψ(x̂)

Rd

πW ◦K̂Ψ(x̂)

Ψ−1◦πW ◦K̂Ψ(x̂)

Fig. 2. Geometric projection after applying the approximation K̂.

tions thereof) to model the system dynamics (1). The first is

that it is unclear how to recover the state values underlying
the propagated observables. Specifically, if K̂Ψ(x̂) /∈ M ,
then by definition there is no value x ∈ D ⊂ Rd satisfying
Ψ(x) = K̂Ψ(x̂). The second issue is that the learning pro-
cess, i.e., the regression problem (4), only uses measurements
of the form z = Ψ(x), i.e, only points contained in the
set M are taken into account. Hence, one cannot expect K̂z
to be meaningful if z /∈ M , which may render a repeated
application of K̂ questionable. Both of these issues can be
mitigated by projecting the dynamics z+ = K̂z, z = Ψ(x),
back to the set M after each iteration, see, e.g., [10].

Within this paper, we propose a framework for un-
derstanding a wide class of projections and propose two
particular choices: the regularly used coordinate projection
and our newly introduced geometric projection. Such a
projection step in particular is crucial for future applica-
tions in Koopman-based (predictive) control [6], [15] using
eDMDc [16] or a bilinear surrogate model [17], where the
construction of Koopman-invariant subspaces is a highly-
nontrivial issue, see, e.g., [9].

IV. THE COORDINATE PROJECTION

In this section, we consider the coordinate projection – an
approach that has been used by various authors, including
those developing neural-network based EDMD [11].

If the first d observables are chosen to be the coordinate
functions, i.e., ψi(x) = xi holds for all i ∈ [1 : d], we get

Ψ(x) =

(
x

Ψ̄(x)

)
:=
(
x1 . . . xd ψd+1(x) . . . ψN (x)

)⊤
where Ψ̄ = Ψ[d+1:N ] consists of the last N − d components
of Ψ. Then, assuming that Ψ̄ : Rd → RN−d is a smooth
function, the set M is a graph and, thus, a smooth manifold.
We emphasize that, for each z ∈ M , there exists a unique
x = z[1:d] ∈ Rd such that Ψ(x) = z holds, i.e., Ψ is
invertible by simply taking the first d coordinates. Hence,
the coordinate projection π : RN →M is defined by

π(z) := (z1,...,d, Ψ̄(z1,...,d)) ∈M, (10)

for all z ∈ RN . The associated approximated discrete-time
dynamics on X ⊂ Rd are defined as

x+ = F̂π(x) := Ψ−1 ◦ π(K̂Ψ(x)). (11)

Using the particular structure of the coordinate projec-
tion (10), this simplifies to

F̂π(x) = Ψ−1 ◦ π
(

K̂[1:d]Ψ(x)

K̂[d+1:N ]Ψ(x)

)
= Ψ−1

(
K̂[1:d]Ψ(x)

Ψ̄(K̂[1:d]Ψ(x))

)
= K̂[1:d]Ψ(x),

where K̂[1:d] ∈ Rd×N and K̂[d+1:N ] ∈ RN−d×N are the
first d and last N − d rows of K̂, respectively. Thus,
only the first d rows corresponding to the dynamics of the
state are relevant for the predictions. Hence, Koopman-based
prediction with coordinate projection resembles a discrete-
time version of SINDy [18] without the sparsity aspect.
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Fig. 3. Comparison of the surrogate models with coordinate projection
using V3 (11; −−), coordinate projection using V5 (11; ·−) and no
projection using V5 (14; · · · ) for Example 4.1 on X = [−2, 2]2 in
comparison to the exact solution (—): exemplary trajectories (left) and mean
error over time averaged over x0 ∈ X (right).

The benefits of using such a projection π are demonstrated
in the following example.

Example 4.1: On the domain X = [−2, 2] × [−2, 2], we
consider the unforced and undamped Duffing oscillator,

ẋ = v, v̇ = x− x3. (12)

For n ∈ N, define the monomial dictionaries

Vn = span{xavb | a, b ∈ [0 : n] : a+ b ≤ n}. (13)

Using the time step δ = 0.01, we approximate the Koopman
operator as described in Section II. The dynamics of the
corresponding lifted, i.e., not projected, data-based surrogate
model are obtained simply by

z(n+ 1) = K̂z(n), z(0) = Ψ(x(0)). (14)

Then, we have x(n) = z1(n), v(n) = z2(n), n ∈ N0. Fig-
ure 3 shows that the additional projection step in the dynam-
ics (11) significantly improves the approximation accuracy
and allows for predictions on much larger time intervals in
comparison to its counterpart (14) without projection step.

While the additional projection step typically yields a sig-
nificant improvement of the approximation quality, we pro-
vide some additional insight why the coordinate projection is
particularly well suited for the Duffing oscillator considered
in Example 4.1. The reasoning is the close relationship
between the system equations (12) and the choice of the
dictionary V5, which can be shown in a more general fashion:
Let V be a dictionary including the coordinate functions, i.e.,
Ψ can be written as (3), and assume that fi ∈ V holds for
i ∈ [1 : d] (each component of the right hand side (1) is
contained in the dictionary). The representation (3) allows
to rewrite the argument of the regression problem (4) as

∥Ψ(x(t; x̂))−KΨ(x̂)∥22

=

∥∥∥∥( x(t; x̂)−K[1:d]Ψ(x̂)
Ψ̄(x(t; x̂))−K[d+1:N ]Ψ(x̂)

)∥∥∥∥2
2

=

∥∥∥∥(x̂+ tf(x̂) +O(t2)−K[1:d]Ψ(x̂)
Ψ̄(x(t; x̂))−K[d+1:N ]Ψ(x̂)

)∥∥∥∥2
2

,

where we tacitly imposed sufficient smoothness of the vector
field f such that x(t; x̂) = x̂ + tf(x̂) + O(t2) holds.
Then, invoking fi ∈ V, the approximation error of the
solution K̂[1:d] is bounded by O(t2). In particular, we obtain

F̂π(x̂) = x(t; x̂) +O(t2)

for all initial conditions x̂ ∈ X.

V. CLOSEST-POINT PROJECTIONS

In the following we assume that the set M defined by (6),
which is induced by Ψ ∈ L2(X,R)N , is a smooth and d-
dimensional embedded manifold in RN , where continuous
differentiability is a sufficient smoothness assumption for
our purposes. Alternatively, one may consider any injective
immersion Ψ which satisfies any of the conditions of [19,
Proposition 4.22].

Let W ∈ RN×N be a positive semi-definite matrix and
define the weighted semi-inner product

⟨u1, u2⟩W := u⊤1 Wu2 ∀u1, u2 ∈ RN .

If W is invertible or the weaker condition

det(DΨ(x)⊤WDΨ(x)) ̸= 0 ∀x ∈ X (15)

holds, then W induces a Riemannian metric on M . This then
defines the notion of distance on the manifold M .

Based on the chosen semi-inner product ⟨·, ·⟩W , we con-
struct the closest-point projection.

Definition 5.1: For a given (N×N)-matrix W =W⊤ ≥
0 satisfying Condition (15), the closest-point projection πW :
RN →M is defined as

πW (z) := argminp∈M ∥z − p∥W . (16)
Condition (15) ensures that πW is well-defined in a neigh-
bourhood of the manifold embedded in RN , and, in par-
ticular, πW (z) = z for all z ∈ M . Since the projection
operator (16) is invariant under scalings of W , i.e., πW (z) =
παW (z) holds for all z ∈ RN and α > 0, it suffices
to consider semi-inner product W satisfying det†(W ) =
1. This corresponds to the choices of W for which the
Riemannian volume of M is constant.

Next, we show that the coordinate projection is a closest-
point projection.

Proposition 5.2: Let Ψ be given by Equation (3), i.e., Ψ
contains the coordinate functions. Then,

C :=

(
Id 0d×N−d

0N−d×d 0N−d×N−d

)
∈ RN×N (17)

induces a Riemannian metric on M , and the coordinate
projection (10) coincides with the closest-point projection
with W = C.

Proof: We verify Condition (15) to show that C induces
a Riemannian metric on M . Let x ∈ X be given. Then, we
have det(DΨ(x)⊤CDΨ(x)) = det(Id) ̸= 0, which can be
directly inferred by rewriting the left hand side as

det

((
Id

DΨ̄(x)

)⊤(
Id 0d×N−d

0N−d×d 0N−d×N−d

)(
Id

DΨ̄(x)

))
.
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Now, for any z ∈ RN , one has

πC(z) = argminp∈M ∥z − p∥C
= Ψ ◦ argminx∈X ∥z −Ψ(x)∥C

= Ψ ◦ argminx∈X

∥∥∥∥( z[1:d] − x
z[d+1:N ] − Ψ̄(x)

)∥∥∥∥
C

= Ψ ◦ argminx∈X
∥∥z[1:d] − x

∥∥ = Ψ(z[1:d]),

which completes the proof.
We emphasize that the matrix C is not invertible. Further, the
closest-point projection πW is, in general, a nonlinear pro-
jection, and, may be implemented using variants of steepest
descent or Newton’s method [20].

The following proposition shows that the error resulting
from the closest-point projection is proportionally bounded
to the approximation error in the regression problem (4).

Proposition 5.3: The closest point projection of Defini-
tion 5.1 satisfies∥∥∥πW (K̂Ψ(x))−KtΨ(x)

∥∥∥
W

≤ 2
∥∥∥K̂Ψ(x)−KtΨ(x)

∥∥∥
W

for all x ∈ Rd. That is, its error is bounded by twice the
training error in the given metric W .

Proof: Since KtΨ(x) ∈ M , the definition of
πW (K̂Ψ(x)) implies∥∥∥πW (K̂Ψ(x))− K̂Ψ(x)

∥∥∥
W

≤
∥∥∥KtΨ(x)− K̂Ψ(x)

∥∥∥
W
.

Hence, using the triangle inequality and the definition of the
regression problem (4) weighted with W yields the assertion.

One may observe that the bound of Proposition 5.3 uses
the semi-inner product W , which is not the metric used in
the construction of the surrogate model K̂, cp. the regression
problem (4). However, we show in the following proposition
that the solution of problem (4) also solves the weighted
regression problem.

Proposition 5.4: The solution K̂ to the regression prob-
lem (4) satisfies

K̂ ∈ arg min
K∈RN×N

∫
X
∥Ψ(x(t; x̂))−KΨ(x̂)∥2W dx̂ (18)

for all W =W⊤ ≥ 0, W ∈ RN×N .
Proof: Using ΨX ,ΨY given by (5), differentiation of

the cost w.r.t. K in an arbitrary direction ∆ yields

2

∫
X
⟨KΨ(x̂)−Ψ(x(t; x̂)) , ∆Ψ(x̂)⟩W dx̂

=2⟨
∫
X
KΨ(x̂)Ψ(x̂)⊤ −Ψ(x(t; x̂))Ψ(x̂)⊤ dx̂,∆⟩W

=2⟨KΨX −ΨY ,∆⟩W = 2⟨W (KΨX −ΨY ),∆⟩.

This expression is nullified for K̂ = ΨY Ψ
−1
X , which is thus

indeed a solution to the regression problem (18); indepen-
dently of the chosen weighting matrix W =W⊤ ≥ 0.

VI. GEOMETRIC PROJECTION

The choice of a suitable metric is a non-trivial task. We
propose a geometrically-motivated one, which exhibits a
superior performance as demonstrated in this section.

Definition 6.1: Let Σ ∈ RN×N be given by

Σ =

∫
X
(K̂Ψ(x)−KtΨ(x))(K̂Ψ(x)−KtΨ(x))⊤ dx (19)

and be invertible. Then, the geometric projection πW is the
closest point projection of Definition 5.1 associated with the
metric W = det(Σ)1/NΣ−1.
Recalling the scaling invariance, it is straightforward to see
that the geometric projection is a special case of closest-point
projection with the metric W = Σ−1, where Σ is defined
as in (19). The geometric projection can be interpreted
from a probabilistic viewpoint. Suppose that we approximate
the Koopman operator based on normally distributed i.i.d.
random variables, i.e., K̂Ψ(x) ∼ N(KtΨ(x),Σ) for every
x ∈ D with Σ defined by (19). Then, for every x ∈ D, the
likelihood of a point p ∈ RN being equal to KtΨ(x) can be
written as

ρ( p | K̂Ψ(x)) =
exp

(
−0.5 · ∥p− K̂Ψ(x)∥2Σ−1

)
√

(2π)N det(Σ)
.

If we restrict ourselves to look for points p ∈ M , then the
maximum likelihood solution is exactly

argmaxp∈M ρ( p| K̂Ψ(x)) = πW (K̂Ψ(x)),

where W = Σ−1 holds.
Next, we consider the example of a pendulum to demon-

strate the advantages of the geometric projection in compar-
ison to its coordinate-based counterpart. To this end, we use
the notation ∆t in the following to indicate the time step,
i.e., K̂ approximates K∆t.

Example 6.2: Consider the pendulum with dynamics

ẋ = v, v̇ = − sin(x) (20)

on the domain X = [−π, π] × [−3, 3]. We approximate the
Koopman operator by taking 10, 000 data points x̂ drawn
uniformly i.i.d. from X and the respective solution x(∆t; x̂)
as described in Section II using monomial dictionaries Vn,
n ∈ N, cp. (13).

The projection methods are compared by examining the
approximated system dynamics (11) with those obtained
through a high-order numerical integration scheme with step-
size control. The one-step error at a given value x̂ ∈ X is

EW
1−Step(x̂) := ∥F̂πW

(x̂)− x(∆t; x̂)∥ (21)

for a given projection πW . Figure 4 shows the one-step
errors for the coordinate and geometric projections using the
dictionary V2. For a better comparison and the impact of
using, in addition, monomials of order three in the dictionary,
Figure 5 shows the difference in one-step errors. For V2, the
geometric projection has a lower one-step error in most of the
domain, which is consistent with the underlying regression
problem, in which the L2-error is minimized. For V3, the
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Fig. 4. Example 6.2 with dictionary V2: Comparison of the one-step
errors (21) for the approximated dynamics using coordinate (left) and
geometric projection (right), respectively.
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Fig. 5. The difference in 1-Step errors EW
1−Step(x̂) − EC

1−Step(x̂) for
the approximated dynamics using geometric and coordinate projections and
dictionary orders 2 (left) and 3 (right).

geometric projection has a lower one-step error everywhere.
The underlying reasoning is that the geometric projection
exploits its additional freedom by taking more dictionary
elements into account to return to the manifold M .

The 1-step error depends on ∆t for any projection method.
Figure 6 shows how the 1-step error statistics change for
the coordinate and geometric projections depending on the
time step ∆t. Again, the geometric projection clearly out-
performs its coordinate-based counterpart if the dictionary
size increases, i.e., for Vn and n ∈ {3, 4, 5} (see Figure 6
for n = 2, 3). Regardless of dictionary size, both projections
degrade as the time-step is increased.
Next, we consider the Lorenz system for a dictionary Ψ
without ψ1(x, y, z) = x, i.e., the dictionary does not contain
all coordinate functions, see also [21, Section III.C].

Example 6.3: Consider the Lorenz system given by

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz,

on the domain X = [−20, 20]× [−20, 20]× [10, 50].
In this case, the coordinate projection can be realised

by selecting three observables from which x, y, z can be
recovered: xz, y, and z, i.e., x can be reconstructed by
x = xz/z since z ∈ [10, 50]. Figure 7 shows an examplary
trajectory from the true and approximated dynamics using the
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Fig. 6. Comparison of median 1-step error for the geometric and coordinate
projections using V2 (above) and V3 (below) depending on time step ∆t.

dictionary V4\{x}. While the geometric projection performs
well without the coordinate function, the accuracy of the
reconstructed coordinate projection is poor.

VII. CONCLUSIONS AND OUTLOOK

Our key contributions are the following: First, we have
demonstrated the need for a reprojection step whenever the
dictionary is not Koopman invariant. Second, we proposed
a general framework to conduct the reprojection step based
on a large class of semi-inner products. In particular, it is
not necessary that the coordinate functions are contained
in the dictionary to conduct the reprojection step, see, e.g.,
the novel closest-point projection supposing invertibility of
the map Ψ. Third, we have rigorously shown that the addi-
tional reprojection step essentially maintains the estimation
error resulting from the regression problem and, indeed,
significantly reduces the approximation error as shown in
our numerical simulations. A key reason is that the chosen
weighting does not interfere with the regression problem to
be solved for computing the data-based compression K̂.

Clearly, the proposed framework is directly applicable to
nonlinear control-affine systems, if bilinear surrogate models
are used, see, e.g., [22], [6] and the references therein. Here,
already the coordinate projection has turned out to be very
beneficial in simulation and experiments for non-holonomic
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Fig. 7. 1-step errors along a sample trajectory of Example 6.3 for the
coordinate (left) and geometric projections (right) using the dictionary V4 \
{x}.

robots [23] such that we expect clear benefits if the novel
geometric projection is applied. This claim also applies to
eDMD with control [24] since the weighting W of the
control in the augmented state may be set to zero.

Future work might be devoted to leveraging recently
introduced concepts [8] for the analysis of systems with
a globally-stable attractor in our setting more tailored to-
wards control systems typically lacking such structures.
Here, taking into account the recent results of [9] is of
interest. Furthermore, we will leverage known results from
regression [25] to further analyze and potentially improve
the proposed framework.
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“Towards reliable data-based optimal and predictive control using
extended DMD,” IFAC-PapersOnLine, vol. 56, no. 1, pp. 169–174,
2023.

[7] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PloS one, vol. 11, no. 2, p. e0150171,
2016.
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bounds for kernel-based approximations of the Koopman operator,”
2023, preprint: arXiv:2301.08637.
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