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Abstract— We provide a new non-asymptotic analysis of
distributed temporal difference learning with linear function
approximation. Our approach relies on “one-shot averaging,”
where N agents run identical local copies of the TD(0) method
and average the outcomes only once at the very end. We
demonstrate a version of the linear time speedup phenomenon,
where the convergence time of the distributed process is a factor
of N faster than the convergence time of TD(0). This is the first
result proving benefits from parallelism for temporal difference
methods.

I. INTRODUCTION

Recent years have seen reinforcement learning used in a
variety of multi-agent systems. However, a rigorous under-
standing of how standard methods in reinforcement learning
perform in a multi-agent setting with limited communication
is only beginning to be available.

One of the most fundamental problems in reinforcement
learning is policy evaluation, and one of the most basic
policy evaluation algorithms is temporal difference (TD)
learning, originally proposed in [18]. TD learning works
by updating a value function from differences in predictions
over a succession of steps in the underlying Markov Decision
Process (MDP).

Developments in the field of multi-agent reinforcement
learning have led to an increased interest in decentralizing TD
methods, which is the subject of this paper. We will consider
a simple model where N agents all have access to their own
copy of the same MDP. Naturally, the agents can simply
ignore each other and run any policy evaluation method
without communication. However, this ignores the possibility
that agents can benefit from mixing local computations by
each agent and inter-agent interactions. Our goal will be to
quantify how much TD methods can benefit from this.

A. Related Literature

A natural benchmark to compare the performance of dis-
tributed TD methods to is the performance of centralized TD
methods. Precise conditions for the asymptotic convergence
result were first given in [20] by viewing TD as a stochastic
approximation for solving a Bellman equation. Recently, there
has been an increased interest in non-asymptotic convergence
results, e.g., [3], [2]. The state of the art results show
that, under i.i.d samples, TD algorithm with linear function
approximation converges with rates of O(1/

√
T ) for value

function with step-size 1/
√

T and converge as fast as O(1/t)
with step-size O(1/t) [2].
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Prior to this work, there have been several analyses of
distributed TD with linear function approximation [17], [5],
[21]. However, the model considered by those papers is very
different than the model considered here, as those papers
considered agents interacting collectively with an environment
with a transition function that depends on all the actions taken
by the agents. This is a much more difficult setting than what
we consider in this paper, where we have N MDPs which
are completely decoupled, except insofar as the agents may
choose to couple them via an exchange of messages.

Perhaps the most relevant previous work is [16] which
addresses actor-critic rather than temporal difference methods.
It is shown there, up to a certain approximation error, it
is possible to obtain a speedup proportional to the number
of nodes for a distributed model of actor-critic. Besides
[16], another example of a similar result we are aware of
is [8]. However, [8] came after the present work (note that
[8] cites the arxiv version [10] of the present paper, which
appeared on the arxiv about a year before the arxiv version
of [8]). The paper [8] considers the much more general
problem of distributed (or federated) stochastic approximation,
which includes temporal difference learning as studied here,
alongside many other problems (such as Q-learning). A linear
speedup is obtained similar to our results here, but it requires
N averages throughout the course of the algorithm – in
contrast to the single averaging round required in this work.

B. Our contributions
We show a version of a “linear speedup” phenomenon:

under a number of assumptions, we show that the convergence
bounds of a distributed algorithm with N agents is a factor
of N faster than the corresponding convergence time bounds
associated with a centralized version. To our knowledge, this
is the first example of this phenomenon being demonstrated
in reinforcement learning.

These results arguably justify the introduction of our
model in this paper, which should be contrasted with the
much harsher models considered in the previous multi-agent
reinforcement learning literature. Indeed, the model presented
here allows for the possibility of speeding up reinforcement
learning by parallelizing computations.

II. PRELIMINARIES

We begin by standardizing notation and providing standard
background information on Markov Decision Processes and
temporal difference methods.

A. Markov Decision Processes
A discounted reward MDP is described by a 5-tuple

(S,A,P,r,γ), where S = [n] = {1,2, · · · ,n} is a finite state
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space, A is a finite action space, P(s′|s,a) : S ×A×S →
[0,1] is transition probability from s to s′ determined by
a, r(s,a,s′) : S ×A×S → R are deterministic rewards and
γ ∈ (0,1) is the discount factor.

Let µ denote a fixed policy that maps a state s ∈ S to a
probability distribution µ(·|s) over the action space A, so
that ∑a∈A µ(a|s) = 1. For such a fixed policy µ , define the
instantaneous reward vector Rµ : S → R as

Rµ(s) = ∑
s′∈S

∑
a∈A

µ(a|s)P(s′|s,a)r(s,a,s′).

Fixing the policy µ induces a probability transition matrix
between states:

Pµ(s,s′) = ∑
a∈A

µ(a|s)P(s′|s,a).

We will use rt = r(st ,at ,st+1) to denote the instantaneous
reward at time t, where st , at are the state and action taken
at step t. The value function of µ , denoted by V µ : S → R
is defined as V µ(s) = Eµ,s [∑

∞
t=0 γ trt ], where Eµ,s [·] indicates

that s is the initial state and the actions are chosen according
to the policy µ . In the following, we will treat V µ and Rµ

as vectors in Rn and treat Pµ as a matrix in Rn×n.
Next, we state a standard assumption on the underlying

Markov chain.

Assumption 1. The Markov chain with transition matrix Pµ

is irreducible and aperiodic.

A consequence of Assumption 1 is that there exists a
unique stationary distribution π = (π1,π2, · · · ,πn), a row
vector whose entries are positive and sum to 1. This stationary
distribution satisfies πT Pµ = πT and πs′ = limt→∞(Pµ)t(s,s′)
for any two states s,s′ ∈ S . Note that we use π to denote the
stationary distribution and µ to denote the policy.

We next provide definitions of two norms that we will
have occasion to use later. For a positive definite matrix
A ∈ Rn×n, we define the inner product ⟨x,y⟩A = xT Ay and
the associated norm ∥x∥A =

√
xT Ax respectively. Since the

numbers πs are positive for all s ∈S , then the diagonal matrix
D = diag(π1, · · · ,πn) ∈ Rn×n is positive definite. Therefore,
for any two vectors V,V ′ ∈ Rn, we can also define an inner
product as ⟨V,V ′⟩D = V T DV ′ = ∑s∈S πsV (s)V ′(s),and the
associated norm as

∥V∥2
D =V T DV = ∑

s∈S
πsV (s)2.

Finally, we introduce the definition of Dirichlet seminorm,
following the notation of [14]:

∥V∥2
Dir =

1
2 ∑

s,s′∈S
πsPµ(s,s′)(V (s′)−V (s))2.

B. Temporal Difference Learning

We next introduce the update rule of the classical temporal
difference method with linear function approximation Vθ , a
linear function of θ :

Vθ (s) =
K

∑
l=1

θlφl(s) ∀s ∈ S, (1)

where φl = (φl(1), · · · ,φl(n))T ∈ Rn for l ∈ [K] are K given
feature vectors. Together, all K feature vectors form a
n × K matrix Φ = (φ1, · · · ,φK). For s ∈ S, let φ(s) =
(φ1(s), · · · ,φK(s))T ∈ RK denote the s-th row of matrix Φ, a
vector that collects the features of state s. Then, Eq. (1) can
be written in a compact form Vθ (s) = θ T φ(s). For brevity,
we will omit the superscript µ throughout from now on.

The TD(0) method maintains a parameter θ(t) which
is updated at every step to improve the approximation.
Supposing that we observe a sequence of states {s(t)}t∈N0 ,
then the classical TD(0) algorithm updates as

θ(t +1) = θ(t)+αtδ (t)φ(s(t)),

where {αt}t∈N0 is the sequence of step-sizes, and letting
s′(t) denote the next state after s(t), the quantity δ (t) is the
temporal difference error

δ (t) = r(t)+ γθ
T (t)φ(s′(t))−θ

T (t)φ(s(t)).

A common assumption on feature vectors in the litera-
ture [20], [2] is that features are linearly independent and
uniformly bounded, which is formally given next.

Assumption 2. The matrix Φ has full column rank, i.e.,
the feature vectors {φ1, . . . ,φK} are linearly independent.
Additionally, we have that ∥φ(s)∥2

2 ≤ 1 for s ∈ S .

Under Assumption 1 and 2, we introduce the steady-state
feature covariance matrix ΦT DΦ. Note that, this is a positive
definite matrix as an immediate consequence of Assumptions
1 and 2, and we let ω > 0 be a lower bound on its smallest
eigenvalue.

We will use the fact, shown in [20], that under Assumptions
1-2 as well as an additional assumption on the decay of the
step-sizes αt , the sequence of iterates {θt} generated by TD(0)
learning converges almost surely to a vector satisfying a
certain projected Bellman equation; we will use θ ∗ to refer
to this vector.

C. The Distributed Model

We consider the scenario where each agent has its own
independently evolving copy of the same MDP. More formally,
each agent has the same 6-tuple (S,V,A,P,r,γ); at time t,
agent v will be in a state sv(t); it will apply action av(t) ∈A
with probability µ(av(t)|sv(t)); then agent v moves to state
s′v(t) with probability P(s′v(t)|sv(t),av(t)), with the transitions
of all agents being independent of each other; finally agent v
gets a reward rv(t) = r(sv(t),av(t),s′v(t)). Note that, although
the rewards obtained by different agents can be different, the
reward function r(s,a,s′) is identical across agents.

Naturally, each agent can easily compute θ ∗ by simply
ignoring all the other agents and running TD(0) locally.
However, this ignores the possibility that agents can benefit
from communication with each other. Along these lines, we
propose our main method below as Algorithm 1: each agent
runs TD(0) locally without any communication, and, at the
end, the agents simply average the results.
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Algorithm 1 Parallel TD(0)

1: For v ∈ V , initialize θv(0), sv(0)
2: for t = 0 to T −1 do
3: for v ∈ V do
4: Observe a tuple (sv(t),s′v(t),rv(t)).
5: Compute temporal difference:

δv(t) = rv(t)−
(
φ(sv(t))− γφ(s′v(t))

)T
θv(t). (2)

6: Execute local TD update:

θv(t +1) = θv(t)+αtδv(t)φv(sv(t)). (3)

7: Update the local running average:

θ̂v(t +1) =
(

1− 1
t +2

)
θ̂v(t)+

1
t +2

θv(t +1).

8: end for
9: end for

10: Return θ̂(T ) = 1
N ∑v∈V θ̂v(T ) and θ̄(T ) = 1

N ∑v∈V θv(T ).

Distributed implementation: The final averaging step repre-
sents the only interactions among the agents. Under the as-
sumption that the nodes are connected to a server, computing
the average in step 10 takes a single round of communication
with a server. In the more common “nearest neighbor” model
where the agents are connected over an undirected graph
and nodes know the total number of nodes N, it is possible
to find an ε-approximation of the average in O(N log(1/ε))
time using the average consensus algorithm from [15]. One
could also a finite-time average consensus method, see e.g.,
[6]. If knowledge of the number of nodes not available,
and the communication graph is further time-varying, it is
possible to do the same in O(N2 log(1/ε) using the average
consensus algorithm from [13]. Finally, if the underlying
graph is directed, one can use the popular push-sum for
average consensus method [7], [1] whose convergence rate is
geometric, though the question of whether a version of it can
have a polynomial convergence rate in terms of N is open.

As we will later discuss, it suffices to choose ε in the
previous paragraph proportional to a power of 1/T (where
T is the number of iterations, decided on ahead of time), so
that the distributed message complexity of step 10 is O(logT )
under any of the models discussed.

III. CONVERGENCE ANALYSES OF OUR METHOD

We next describe the main result of this paper, which is
an analysis of Algorithm 1 under the assumption that the
tuples in step 4 are i.i.d. In the literature, the i.i.d model is
sometimes referred to as having a “generator” for the MDP
and is a more restrictive assumption compared to assuming
that the state evolves as a Markov process with a fixed starting
state. Nevertheless, this is a standard assumption under which
many TD and Q-learning methods are analyzed (e.g., [3], [4],
[5], [9] among others).

We begin with some notations. For centralized TD(0),
convergence bounds generally scale both with the distance
to the initial solution, and with the variance of the temporal
difference error with average reward:

σ
2 = E

[(
r(s,a,s′)−

(
φ(s)− γφ(s′)

)T
θ
∗
)2
]
.

Here the expectation is taken with respect to the distribution
that generates the state s with probability πs, the actions
(a1, . . . ,an) from the policy, and the next state s′(t) from
the transition of the MDP. We will use the same notation in
the distributed setting, where this quantity is identical across
agents, since the agents are all simulating the same MDP.

Further, we need a notion of the initial distance to the
optimal solution; for simplicity, we take the maximum over
all the agents to define:

R̂0 = max
v∈V

E
[
∥θv(0)−θ

∗∥2
2

]
.

The following theorem is our main result. Note that the
equations are color-coded, with the meaning of the colors
explained below.

Theorem 1. Suppose Assumptions 1-2 hold and suppose that
the tuples in step 4 of Algorithm 1 are generated i.i.d. with
each sv(t) sampled from the stationary distribution π , and
rv(t) being the reward and s′v(t) being the next state when
the action is taken from the policy µ . Then:

(a) For any constant step-size sequence α0 = · · ·= αT =
α ≤ (1− γ)/8, we have

E
[
(1− γ)

∥∥∥Vθ ∗ −V
θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ ∗ −V
θ̂(T )

∥∥∥2

Dir

]
≤ 1

T

(
1

2α
E
[
||θ̄(0)−θ

∗||22
]
+

4R̂0

1− γ

)
+

ασ2

N
+

8α2σ2

1− γ
.

(b) For any T ≥ 64
(1−γ)2 and constant step-size sequence

α0 = · · ·= αT = 1√
T

, we have

E
[
(1− γ)

∥∥∥Vθ ∗ −V
θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ ∗ −V
θ̂(T )

∥∥∥2

Dir

]
≤ 1

2
√

T

(
E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
+

2σ2

N

)
+

1
T

(
4R̂0 +8σ2

1− γ

)
.

(c) For the decaying step-size sequence αt =
α

t+τ
with

α = 2
(1−γ)ω and τ = 16

(1−γ)2ω
. Then,

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
≤2α2σ2/N

t + τ
+

8α2ζ̂

(t + τ)2

+
(τ −1)4E

[∥∥θ̄(0)−θ∗∥∥2
2

]
(t + τ)4 ,

where ζ̂ = max
{

2α2σ2,τR̂0
}

.

The proof of Theorem 1 is given in the section IV. To parse
Theorem 1, note that all the terms in brown are “negligible”
in a limiting sense. Indeed, in part (a), the first brown term
scales as O(1/T ) and consequently goes to zero as T → ∞

(whereas the remaining terms do not). In parts (b) and (c),
the terms in brown go to zero at an asymptotically faster
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rate compared to the dominant term (i.e., as 1/T vs the
dominant 1/

√
T term in part(b) and as 1/t2,1/t4 compared

to the dominant 1/t in part (c)). Finally, the last term in part
(a) scales as O(α2) and will be negligible compared to the
term preceding it, which scales as O(α), when α is small.

Moreover, among the non-negligible terms, whenever σ2

appears, it is divided by N; this is highlighted in blue.
To summarize: parts (b) and (c) show that, when the

number of iterations is large enough, we can divide the
variance term by N as a consequence of the parallelism
among N agents. Part (a) shows that, when the number of
iterations is large enough and the step-size is small enough,
the size of the final error will be divided by N.

Note that, in part (c), the result of this is a factor of N
speed up of the entire convergence time (when T is large
enough). In part (a), this results in a factor of N shrinking of
the asymptotic error (when the step-size α is small enough).
In part (b), however, this only shrinks the “variance term” by
a factor of N; the term depending on the initial condition is
unaffected. The explanation for this is that in parts (a) and
(c), the variance of the temporal difference error dominates
the convergence rate, while in part (b) this is not the case.

As far as we are aware, these results constitute the first
example where parallelism was shown to be helpful for
distributed temporal difference learning.

Required accuracy for the averaging step. For simplicity,
we have given Theorem 1 under the assumption that the final
averages θ̂(T ), θ̄(T ) are computed exactly. We now come
back to the question of how accurate the final averaging
step needs to be to preserve our theoretical guarantees. It
is immediate that all the quantities we bound in Theorem 1
(i.e., the left-hand sides of all the equations) are Lipschitz in
a neighborhood of θ ∗. Thus in Theorem 1(a) we need only
a constant error in the averaging step, while in Theorem
1(b) and 1(c) we need an error rate proportional to a power
or 1/T . Since all average consensus methods previously
discussed compute an ε-approximation to average consensus
in O(log1/ε) steps (treating all other variables as constants),
this means that step 10 in our method requires us to run a
distributed average consensus method for at most O(logT )
(treating all variables except T as constants) as previously
claimed.

IV. PROOF OF OUR MAIN RESULT

We now provide the proof of Theorem 1. Let Θ(t)∈RN×K

be a matrix whose rows are θ T
1 (t), · · · ,θ T

N (t). The following
proposition follows immediately from the definitions (and
recall here our notation of putting a bar to denote the network-
wide average).

Proposition 1. Suppose Assumptions 1-2 hold, and suppose
that {θv(t)}v∈V are generated by Algorithm 1. Then,

(a) h̄(t) is a linear function of θ̄(t) and we can write
h̄(t) = b−Aθ̄(t).

(b) The conditional expectation of m̄(t) given Θ(t) is equal
to zero:

E[m̄(t)|Θ(t)] = 0. (4)

Our next step is to prove a recurrence relation satisfied by
the average of the iterates, stated as the following lemma.
Recall that θ ∗ is the fixed point of TD(0) on the MDP
(S,V,A,P,r,γ).

Lemma 1. Suppose Assumptions 1-2 hold. Further suppose
that {θv}v∈V are generated by Algorithm 1. For t ∈ N0, we
have that

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
≤ E

[∥∥θ̄(t)−θ
∗∥∥2

2

]
+α

2
t

(
2σ2

N
+

8
N ∑

v∈V
E
[
∥Vθv(t)−Vθ ∗∥2

D

])

−2αtE
[
(1− γ)

∥∥∥Vθ ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ ∗ −V
θ̄(t)

∥∥∥2

Dir

]
. (5)

Proof of Lemma 1. We have θ̄(t + 1) = θ̄(t) +
αt
[
h̄(t)+ m̄(t)

]
. By taking expectations:

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
= E

[∥∥θ̄(t)−θ
∗∥∥2

2

]
+α

2
t E
[∥∥h̄(t)+ m̄(t)

∥∥2
2

]
−2αtE

[(
h̄(t)+ m̄(t)

)T (
θ
∗− θ̄(t)

)]
. (6)

We first consider the second term on the right hand side
of Eq. (6). Following the definition of h̄(t) and m̄(t) and
plugging in the expression for TD error δv(t) with Eq. (2),
we obtain E

[∥∥h̄(t)+ m̄(t)
∥∥2

2

]
= E

[
∥a∗−b∗∥2

2
]
, where

aaa∗ =
1
N ∑

v∈V

[
rv(t)−

(
φ(sv(t))− γφ(s′v(t))

)T
θ
∗
]

φ(sv(t)),

bbb∗ =
1
N ∑

v∈V
φ(sv(t))

(
φ(sv(t))− γφ(s′v(t))

)T
(θv(t)−θ

∗).

Using inequality ∥aaa∗−bbb∗∥2 ≤ 2∥aaa∗∥2 +2∥bbb∗∥2, we obtain

E
[∥∥h̄(t)+ m̄(t)

∥∥2
2

]
≤2E

[
∥aaa∗∥2]+2E

[
∥bbb∗∥2]

≤2σ2

N
+

8
N ∑

v∈V
E
[
∥Vθv(t)−Vθ∗∥2

D
]
. (7)

We next consider the third term on the right hand side of Eq.
(6):

E
[[

h̄(t)+ m̄(t)
]T

(θ ∗− θ̄(t))
]
= E

[
h̄T (t)(θ ∗− θ̄(t))

]
=E
[
(1− γ)

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

Dir

]
. (8)

Here we use that by Proposition 1 part (a), we have that
h̄(t) = b− Aθ̄(t). Furthermore, if we let h̄(θ) denote the
linear function b−Aθ , we have that h̄(θ ∗) = 0. Now applying
Corollary 1 in [11] proves the last equation.

Combining equations (6), (7), and (8), we obtain Eq.(5)
■

With this lemma in place, we are now ready to provide a
proof of Theorem 1.

Proof of Theorem 1. Starting from Lemma 1 and
Eq.(5), we first consider the bound for the term
∑

T
t=1 ∑

N
v=1 E

[
∥Vθv(t)−Vθ∗∥2

D
]
. We can plug in that N = 1

into Lemma 1 to obtain the next inequality:

E
[
∥θv(t +1)−θ

∗∥2
2

]
≤ E

[
∥θv(t)−θ

∗∥2
2

]
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+α
2
t

(
2σ

2 +8E
[
∥Vθv(t)−Vθ ∗∥2

D

])
−2αtE

[
(1− γ)

∥∥∥Vθ ∗ −Vθv(t)

∥∥∥2

D
+ γ

∥∥∥Vθ ∗ −Vθv(t)

∥∥∥2

Dir

]
.

If the sequence of step-sizes are non-increasing and satisfies
8α2

t −2αt(1− γ)≤−αt(1− γ), then we obtain

αtE
[
(1− γ)

∥∥Vθ∗ −Vθv(t)
∥∥2

D +2γ
∥∥Vθ∗ −Vθv(t)

∥∥2
Dir

]
≤E
[
∥θv(t)−θ

∗∥2
2

]
−E

[
∥θv(t +1)−θ

∗∥2
2

]
+2α

2
t σ

2.

Since E
[
2γ
∥∥Vθ∗ −Vθv(t)

∥∥2
Dir

]
is non-negative, it now follows

that

αtE
[
(1− γ)

∥∥Vθ∗ −Vθv(t)
∥∥2

D

]
≤E
[
∥θv(t)−θ

∗∥2
2

]
−E

[
∥θv(t +1)−θ

∗∥2
2

]
+2α

2
t σ

2.

Multiplying αt on both sides and summing over t, we have
T−1

∑
t=0

α
2
t E
[
(1− γ)

∥∥∥Vθ ∗ −Vθv(t)

∥∥∥2

D

]
=α0E

[
∥θv(0)−θ

∗∥2
2

]
+

T−1

∑
t=1

(αt−1 −αt)E
[
∥θv(t)−θ

∗∥2
2

]
−αT−1E

[
∥θv(T )−θ

∗∥2
2

]
+2

T−1

∑
t=0

α
3
t σ

2

≤α0E
[
∥θv(0)−θ

∗∥2
2

]
+2

T−1

∑
t=0

α
3
t σ

2,

where the last inequality is because that {αt}t are non-
increasing step-sizes. Summing over agents v, we get

N

∑
v=1

T−1

∑
t=0

α
2
t E
[
(1− γ)

∥∥∥Vθ ∗ −Vθv(t)

∥∥∥2

D

]
≤ Nα0R̂0 +2N

T−1

∑
t=0

α
3
t σ

2.

(9)

With this equation in place, we now turn to the proof of all
the parts of the theorem.

Proof of part (a): We consider the constant step-size
sequence α0 = · · ·= αT ≤ (1− γ)/8. Then let α denote the
constant step-size. Plugging into Eq. (5) and rearranging it,
we get

2αE
[
(1− γ)

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

Dir

]
≤E
[∥∥θ̄(t)−θ

∗∥∥2
2

]
−E

[∥∥θ̄(t +1)−θ
∗∥∥2

2

]
+α

2

(
2σ2

N
+

8
N ∑

v∈V
E
[
∥Vθv(t)−Vθ∗∥2

D
])

.

Summing over t gives

2
T−1

∑
t=0

αE
[
(1− γ)

∥∥∥Vθ ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ ∗ −V
θ̄(t)

∥∥∥2

Dir

]
≤E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
−E

[∥∥θ̄(T )−θ
∗∥∥2

2

]
+

2T α2σ2

N
+

8
N

T−1

∑
t=0

∑
v∈V

α
2E
[
∥Vθv(t)−Vθ ∗∥2

D

]
≤E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
+

2T α2σ2

N
+

8α

1− γ

(
R̂0 +2T α

2
σ

2
)

where we used Eq. (9).
Now dividing by 2α on both sides:

T−1

∑
t=0

E
[
(1− γ)

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

Dir

]
≤ 1

2α
E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
+

T ασ2

N
+

4
1− γ

(
R̂0 +2T α

2
σ

2) .
Let θ̂(T ) = 1

T ∑
T
t=1 θ̄(t). Then, by convexity

E
[
(1− γ)

∥∥∥Vθ∗ −V
θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̂(T )

∥∥∥2

Dir

]
≤ 1

T

T

∑
t=1

E
[
(1− γ)

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

Dir

]
≤ 1

T

(
1

2α
E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
+

4R̂0

1− γ

)
+

ασ2

N
+

8α2σ2

1− γ
,

which is what we wanted to show.
Proof of part (b): We now consider the step-size α0 =

· · · = αT = 1√
T

. When T ≥ 64
(1−γ)2 , it can be observed that

α = 1√
T
≤ 1−γ

8 . As a consequence of part (a), it is immediate
that,

E
[
(1− γ)

∥∥∥Vθ∗ −V
θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ∗ −V
θ̂(T )

∥∥∥2

Dir

]
≤ 1

2
√

T

(
E
[∥∥θ̄(0)−θ

∗∥∥2
2

]
+

2σ2

N

)
+

1
T

(
4R̂0 +8σ2

1− γ

)
,

which is what we wanted to show.
Proof of part (c): Using that γ

∥∥∥Vθ∗ −V
θ̄(t)

∥∥∥2

Dir
is non-

negative and rearranging Eq. (5), we have

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
≤ α

2
t

(
2σ2

N
+

8
N ∑

v∈V
E
[
∥Vθv(t)−Vθ ∗∥2

D

])
+E

[∥∥θ̄(t)−θ
∗∥∥2

2

]
−2αt(1− γ)E

∥∥∥Vθ ∗ −V
θ̄(t)

∥∥∥2

D
.

Applying Lemma 1 in [2], which states that
√

ω∥θ∥2 ≤
∥Vθ∥D ≤ ∥θ∥2, we get

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
≤ (1−2αt(1− γ)ω)E

[∥∥θ̄(t)−θ
∗∥∥2

2

]
+α

2
t

(
2σ2

N
+

8
N ∑

v∈V
E
[
∥Vθv(t)−Vθ∗∥2

D
])

. (10)

We first consider the last term on the right hand side, i.e.,
E
[
∥Vθv(t)−Vθ∗∥2

D
]
. Since each agent in the system executes

the classical TD(0) at time t for t ∈ N0, then by part (c) of
Theorem 2 and Lemma 1 in [2], for v ∈ V , we have that
E
[
∥Vθv(t)−Vθ∗∥2

D
]
≤ E

[
∥θv(t)−θ ∗∥2

2
]
≤ ζ̂

t+τ
, where ζ̂ =

max
{

2α2σ2,τR̂0
}
. Hence, 8

N ∑v∈V E
[
∥Vθv(t)−Vθ∗∥2

D
]
≤

8ζ̂

t+τ
, and plugging it into Eq. (10), we can obtain

E
[∥∥θ̄(t +1)−θ

∗∥∥2
2

]
≤(1−2αt(1− γ)ω)E

[∥∥θ̄(t)−θ
∗∥∥2

2

]
+α

2
t

(
2σ2

N
+

8ζ̂

t + τ

)

7795



=

(
1− 4

t + τ

)
E
[∥∥θ̄(t)−θ

∗∥∥2
2

]
+

2α2σ2/N
(t + τ)2 +

8α2ζ̂

(t + τ)3 ,

where we use that αt =
α

t+τ
with α = 2

(1−γ)ω and τ = 16
(1−γ)2ω

to get the last line. This recursion now immediately implies
part(c) of the theorem using the standard estimate

t

∏
i=0

(
1− 4

t + τ − i

)
<

(
τ −1
t + τ

)4

. (11)

■

V. NUMERICAL EXPERIMENTS

In this section, we perform some experiments comparing
Algorithm 1 with earlier distributed TD methods from [5],
[17] and [21] in terms of TD error. Note that the distributed
TD methods of [5] and [17] are the same except that [5] has
an additional projection step. We consider the case of constant
step-size, which is the most widely used in practice, taking
N = 100 agents. The communication graph among agents is
generated by the Erdos–Renyi model, which is connected.
We consider two simple examples: Gridworld (see Chapter
3 of [19]) and MountainCar-v1 from OpenAI Gym; for the
latter, we use the tile coding [19] to discretize continuous
state spaces into overlapping tiles. We use 5 tilings, and each
tiling has 7×7 grids.

Recall that our method only uses one run of average
consensus at the end, whereas the other methods require
a communication at every step. The graphs for our method
show the TD error at each iteration if we stopped the method
and run the average consensus to average the estimates across
the network. Figure 1 shows that the TD errors of Algorithm
1 perform essentially identically to the other methods in spite
of the reduced communication.

(a) Grid World (b) MountainCar-v1

Fig. 1: Comparison of our method to the previous literature
for a policy that takes uniformly random actions.

VI. CONCLUSION

We have presented convergence results for distributed
TD(0) with linear function approximation. Our results are
unique in terms of utilizing almost no communication: only
one run of average consensus is needed. In particular, this
means we need to do O(logT ) average consensus steps for T
steps of TD(0) at every node of the network. The convergence
bounds we derive reduce the variance by a factor of N when
the nodes generate their samples independently. The main
question left by this work is whether it is possible to extend
these results to other methods popular in the reinforcement

learning, such as Q-learning. It would also be of interest to
to apply these results to policies in the context of control of
epidemics using the problem formulation in [12].
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[1] Florence Bénézit, Vincent Blondel, Patrick Thiran, John Tsitsiklis,
and Martin Vetterli. Weighted gossip: Distributed averaging using
non-doubly stochastic matrices. In 2010 ieee international symposium
on information theory, pages 1753–1757. IEEE, 2010.

[2] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis
of temporal difference learning with linear function approximation. In
Conference on Learning Theory, pages 1691–1692, 2018.
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