
Actor-Critic or Critic-Actor? A Tale of Two Time Scales

Shalabh Bhatnagar1, Vivek S. Borkar2, and Soumyajit Guin1

Abstract— We revisit the standard formulation of tabular
actor-critic algorithm as a two time-scale stochastic approxima-
tion with value function computed on a faster time-scale and
policy computed on a slower time-scale. This emulates policy
iteration. We observe that reversal of the time scales will in
fact emulate value iteration and is a legitimate algorithm. We
provide a proof of convergence and compare the two empirically
with and without function approximation (with both linear
and nonlinear function approximators) and observe that our
proposed critic-actor algorithm performs on par with actor-
critic in terms of both accuracy and computational effort.

Keywords: Reinforcement learning; approximate dynamic pro-
gramming; critic-actor algorithm; two time-scale stochastic
approximation.

I. INTRODUCTION

The actor-critic algorithm of Barto et al. [1] is one of the
foremost reinforcement learning algorithms for data-driven
approximate dynamic programming for Markov decision
processes. Its rigorous analysis as a two time-scale stochastic
approximation was initiated in [9] and [10], first in tabular
form, then with linear function approximation, respectively.
The algorithm has a faster time scale component for value
function evaluation (the ‘critic’), with policy evaluation on
a slower time scale (the ‘actor’). Using two time-scale
philosophy, the former sees the latter as quasi-static, i.e.,
varying slowly enough on the time-scale of the critic that
critic can treat the actor’s output essentially as a constant.
In turn, the actor sees the critic as quasi-equilibrated, i.e.,
tracking the value function corresponding to the current
policy estimate of the actor. Thus the scheme emulates policy
iteration, wherein one alternates between value function
computation for a fixed policy and policy update based on
this value function by minimization of the associated ‘Q-
value’. Another interpretation is that of a Stackelberg game
between the actor and the critic, with the actor leading and
being followed by the critic. That is, the actor tunes the
policy slowly and the critic reacts to it rapidly, so that the
actor can factor in the critic’s reaction in her update.

This raises the issue as to what would happen if the time
scales of the actor and the critic are reversed, rendering critic
the leader. We observe below that in this case, the scheme

SB was supported by a J. C. Bose Fellowship, Project No. DFTM/ 02/
3125/M/04/AIR-04 from DRDO under DIA-RCOE, a project from DST-
ICPS, and the RBCCPS, IISc.

VSB was supported by the S. S. Bhatnagar Fellowship from the Council
of Scientific and Industrial Research, Government of India.

1Department of Computer Science and Automation, Indian Insti-
tute of Science, Bengaluru 560012, India shalabh@iisc.ac.in,
gsoumyajit@iisc.ac.in

2Department of Electrical Engineering, Indian Institute of Technology
Bombay, Mumbai 400076, India borkar.vs@gmail.com

emulates value iteration, making it a valid reinforcement
learning scheme. We call it the ‘critic-actor’ algorithm. This
structure as such is not novel and was explored in the context
of Q-learning in [3], [4] with a different motivation. Its
incorporation into the actor-critic facilitates a dimensionality
reduction and a clean convergence analysis. This is so
because we work with value and not Q-value functions.

While there are multiple variations of the actor-critic based
on the exact scheme used for policy updates, we stick to one
of the three proposed in [9] to make our point. It may be
recalled that one of the purported advantages of the actor-
critic algorithm is that because of the slow time scale of the
policy update which renders it quasi-static, the value function
update is ‘essentially’ a linear operation and therefore one
can legitimately use schemes such as TD(λ) [12], [14] that
are based on linear function aproximation. This is in contrast
with, e.g., Q-learning [15] where the nonlinearity of the
iterate is not linear function approximation friendly. This
problem returns to actor-critic if we interchange the time
scales. Nevertheless, given the current trend towards using
neural networks for function approximation, this theoretical
advantage is no longer there. In particular, this puts the actor-
critic and critic-actor schemes a priori on equal footing as
far as nonlinear function approximation is concerned.

II. THE BASIC FRAMEWORK

Our Markov decision process (MDP) is a random process
Xn, n ≥ 0, in a finite state space S satisfying, a.s.,

P (Xn+1 = j | Xk, Ak, k ≤ n) = p(Xn, An, j), ∀n ≥ 0.

Here An ∈ U(Xn) is the action at time n when the state is
Xn where U(i) := the finite set of actions admissible in state
i. Also, p(i, a, j) denotes the transition probability from state
i to j when a feasible action a is chosen in state i. ϕ := {An}
with each An as above will be said to be admissible. For
simplicity, we take U(·) ≡ U . A stationary deterministic
policy (SDP) f is one where An = f(Xn) for some f : S →
U . Similarly, if given Xn, An is conditionally independent
of {Xm, Am,m < n} and has the same conditional law
π : S → P(U) ∀n, then π is called a stationary randomised
policy (SRP). Here P(U) := the space of probability vectors
on U . We shall denote the probability vector π(i) as π(i) =
(π(i, a), a ∈ U(i))T . Let g : S × U × S → R denote the
single-stage cost function and γ ∈ (0, 1) the discount factor.

For a given admissible sequence ϕ = {An}, consider the
infinite horizon discounted cost

Vϕ(i)
4
= E

[∞∑
n=0

γng(Xn, An, Xn+1) | X0 = i

]
, i ∈ S.

(1)

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 807

The function Vπ := Vϕ for ϕ ≈ an SRP π is called the
value function under the SRP π. The corresponding (linear)
Bellman equation takes the form

Vπ(i) =
∑
a∈U(i)

π(i, a)
∑
j∈S

p(i, a, j)(g(i, a, j) + γVπ(j)).

(2)
Define the ‘value function’

V ∗(i) = min
ϕ
Vϕ(i). (3)

This satisfies the Bellman equation

V ∗(i) = min
a∈U(i)

∑
j∈S

p(i, a, j)(g(i, a, j) + γV ∗(j)

 . (4)

Define the Q-value function Q∗(·, ·) : S × U → R so that
Q∗(i, a) := the total cost incurred if starting in state i, action
a is chosen and the optimal action is chosen in each state
visited subsequently, i.e.,

Q∗(i, a) =
∑
j∈S

p(i, a, j)(g(i, a, j) + γV ∗(j)). (5)

Then an SRP π∗ would be optimal if support(π∗(i)) ⊂
arg minQ∗(i, ·). In particular, an optimal SDP (hence SRP)
exists and is given by any choice of minimiser of Q∗(i, ·)
for each i. See [11] for an extensive treatment.

Policy iteration (PI) and value iteration (VI) are two of
the numerical procedures for solving the Bellman equation.
Whereas actor-critic algorithms [9] emulate PI, the algorithm
with the timescales of the actor-critic algorithm reversed will
be seen to mimic VI.

III. THE PROPOSED CRITIC-ACTOR ALGORITHM

Let Vn(·) and πn(·, ·) denote the estimates at instant n of
the value function and the optimal SRP. We consider here
an off-policy setting where states and state-action tuples are
sampled from a priori given distributions in order to decide
the particular state whose value is updated next, as well as
the action-probability estimate (in the SRP) of the sampled
state-action tuple to be updated. This is more general than
the on-policy setting commonly considered in standard actor-
critic algorithms such as [10], [5], as the latter turns out to
be a special case of the off-policy setting we consider.

Let {Yn} and {Zn} be S and S × U valued processes
such that if Yn = i ∈ S, then the value of state i, denoted by
Vn(i), is updated at the nth iterate. Likewise if Zn = (i, a),
then the policy component corresponding to the (i, a)-tuple
is updated. Define {ν1(i, n)}, {ν2(i, a, n)} by (for n > 0):

ν1(i, n) =

n−1∑
m=0

I{Ym = i}, with ν1(i, 0) = 0,

ν2(i, a, n) =

n−1∑
m=0

I{Zm = (i, a)}, with ν2(i, a, 0) = 0.

As with policy gradient schemes [13], we parameterize the
policy. Specifically we consider a parameterised Boltzmann
or Gibbs form for the SRP as below.

πθ(i, a) =
exp(θ(i, a))∑
b exp(θ(i, b))

, i ∈ S, a ∈ U. (6)

For a given θ0 � 0, let Γθ0 : R → [−θ0, θ0] denote the
projection map. Let {a(n)}, {b(n)} be positive step size
sequences satisfying conditions we specify later.

The Critic-Actor Algorithm
The proposed critic-actor algorithm has similar set of up-

dates as Algorithm 3 of [9] but with the timescales reversed,
i.e., a(n) = o(b(n)). Let {ξn(i, a)} and {ηn(i, a)}, i ∈ S,
a ∈ U be independent families of i.i.d random variables with
law p(i, a, ·). Let {φn(i)} be a sequence of U -valued i.i.d
random variables with the conditional law of φn(i) given
the sigma-algebra σ(Vm(·), πm(·), ξm(·, ·), ηm(·, ·),m ≤ n)
generated by the random variables realised till n, being
denoted by πn(i, ·). The critic and actor recursions now take
the following form:

Vn+1(i) = Vn(i) + a(ν1(i, n))[g(i, φn(i), ξn(i, φn(i)))

+ γVn(ξn(i, φn(i)))− Vn(i)]I{Yn = i},
(7)

θn+1(i, a) = Γθ0(θn(i, a) + b(ν2(i, a, n))[Vn(i)

− g(i, a, ηn(i, a))− γVn(ηn(i, a))]I{Zn = (i, a)}).
(8)

The Vn update is governed by the step-size sequence
a(n), n ≥ 0, while the θn update is governed by b(n), n ≥ 0.
From Assumption 1 below, this implies that the Vn update
proceeds on a slower timescale in comparison to the θn
update. In the next section, we give a proof of convergence
of our critic-actor algorithm.

IV. CONVERGENCE OF CRITIC-ACTOR SCHEME

For x > 0, define

N1(n, x) = min{m > n |
m∑

i=n+1

ā(i) ≥ x},

N2(n, x) = min{m > n |
m∑

i=n+1

b̄(i) ≥ x},

where ā(n) ≡ a(ν1(i, n)) and b̄(n) ≡ b(ν2(i, a, n)), respec-
tively. We make the following assumptions.

Assumption 1 (Step-Sizes): a(n), b(n), n ≥ 0 are eventu-
ally non-increasing and satisfy the following conditions:
(i)
∑
n

a(n) =
∑
n

b(n) =∞.

(ii)
∑
n

(a(n)2 + b(n)2) <∞.

(iii) a(n) = o(b(n)).

(iv) For any x ∈ (0, 1), sup
n

a([xn])

a(n)
, sup

n

b([xn])

b(n)
<∞,

where [xn] denotes the integer part of xn.

(v) For any x ∈ (0, 1), A(n) :=

n∑
i=0

a(i), B(n) :=

n∑
i=0

b(i),

n ≥ 0, we have
A([yn])

A(n)
,
B([yn])

B(n)
→ 1, as n → ∞,

uniformly over y ∈ [x, 1].

808

Assumption 2 (Frequent Updates): (i) There exists a
constant κ > 0 such that the following conditions

hold almost surely: lim inf
n→∞

ν1(i, n)

n
≥ κ, ∀i ∈ S,

lim inf
n→∞

ν2(i, a, n)

n
≥ κ, ∀(i, a) ∈ S × U .

(ii) For x > 0, the limits

lim
n→∞

∑ν1(i,N1(n,x))
j=ν1(i,n) a(j)∑ν1(k,N1(n,x))
j=ν1(k,n) a(j)

, lim
n→∞

∑ν2(i,a,N2(n,x))
j=ν2(i,a,n) b(j)∑ν2(k,b,N2(n,x))
j=ν2(k,b,n) b(j)

,

exist almost surely for states i, k and state-action tuples
(i, a) and (k, b) in the two limits respectively.

Since ν1(i, n) ≤ n, ∀i, and ν2(i, a, n) ≤ n, ∀(i, a) tuples, we
have, for n sufficiently large, a(n) ≤ ā(n), and b(n) ≤ b̄(n),
respectively. Assumption 1(i)-(ii) are the standard Robbins-
Monro conditions for stochastic approximation algorithms
(see Ch. 2 of [8]). Condition (iii) is standard for two time-
scale stochastic approximations (Section 8.1, [8]). Conditions
(iv), (v) and Assumption 2 are required for handling the
asynchronous nature of the iterates (see Ch. 6 of [8], also
[7]). Examples of step-sizes that satisfy Assumptions 1
and 2(ii) include (see [9]) (i) a(n) = 1/(n + 1), b(n) =
log(n + 2)/(n + 2), (ii) a(n) = 1/((n + 2) log(n + 2)),
b(n) = 1/(n + 1), etc., for n ≥ 0. Assumption 2(i)
is satisfied for instance if {Zn} is ergodic and {Yn} is
ergodic under any given policy dictated by {θn}. If these
are independently sampled from some distributions, the same
should assign positive probabilities to all state and state-
action components.

A. Convergence of the Faster Recursion

It has been shown in Lemma 4.6 of [9] that ā(n), b̄(n)→ 0
as n → ∞. Further, ā(n) = o(b̄(n)). Since our V -update
proceeds on the slower timescale, we let Vn ≈ V for the
analysis of the faster recursion. For all (i, a), let

gia(V) = V (i)−
∑
j

p(i, a, j)(g(i, a, j) + γV (j)),

kia(V) =
∑
j

p(i, a, j)(g(i, a, j) + γV (j))− V (i).

Let Fn
4
= σ(ξm(i, a), ηm(i, a), φm(i),m < n; Ym, Zm, Vm,

θm(i, a), m ≤ n, i ∈ S, a ∈ U), n ≥ 0, denote an increasing
family of associated sigma fields. Let

µ2
n(i, a) = I{Zn = (i, a)}, ∀(i, a) ∈ S × U,
µ1
n(i) = I{Yn = i}, ∀i ∈ S,
Mµ2

n = diag(µ2
n(i, a), (i, a) ∈ S × U),

Mµ1
n = diag(µ1

n(i), i ∈ S).

For n ≥ 0, define the {Fn}-adapted sequences

Mn(i, a) = V (i)− g(i, a, ηn−1(i, a))− γV (ηn−1(i, a))

+ kia(V),

Nn(i) = g(i, φn−1(i), ξn−1(i, φn−1(i)))− V (i)

+γV (ξn−1(i, φn−1(i)))−
∑
a∈U

πθn(i, a)kia(V).

Lemma 1: The sequences
m∑
n=1

b(ν2(i, a, n))Mn+1(i, a)I{Zn = (i, a)}, m ≥ 1, and

m∑
n=1

a(ν1(i, n))Nn+1(i)I{Yn= i}, m ≥ 1,

converge almost surely as m→∞.
Proof: Follows as in Lemma 4.5 of [9].

The analysis of (7) proceeds by rewriting it as:

θn+1(i, a) = Γθ0(θn(i, a) + b̄(n)Mµ2
n [V (i)

− g(i, a, ηn(i, a))− γV (ηn(i, a))]).

One may further rewrite it as follows:

θn+1(i, a) =Γθ0(θn(i, a) + b̄(n)Mµ2
n [gia(V) +Mn+1(i, a)]).

Let

Γ̄θ0(gia(V)) = lim
∆→0

(
Γθ0(θ(i, a) + ∆gia(V))− θ(i, a)

∆

)
.

Consider now the ODE

θ̇(i, a) = Γ̄θ0(gia(V)). (9)

Let

γia(θ) =

 0 if θ(i, a) = θ0 and kia(V) ≤ 0,
or θ(i, a) = −θ0 and kia(V) ≥ 0,

1 otherwise.

Then it can be seen (see Sec.5.4 of [9]) that

Γ̄θ0(gia(V)) = −kia(V)γia(θ).

Thus, the ODE (9) takes the form:

θ̇(i, a) = −kia(V)γia(θ). (10)

From the parameterised form of the policy (6), it follows
from (10) that for (i, a) ∈ S × U ,

π̇θ(i, a) = πθ(i, a)(θ̇(i, a)−
∑
b∈U

πθ(i, b)θ̇(i, b)),

= πθ(i, a)(Γ̄θ0(gia(V))−
∑
b∈U

πθ(i, b)Γ̄θ0(gib(V))),

= −πθ(i, a)(kia(V)γia(θ)−
∑
b∈U

πθ(i, b)kib(V)γib(θ)).

This is a replicator dynamics whose stable attractors are
sets consisting of the πθ that minimize

∑
(i,a)∈S×U

kia(V),

i.e., θ that satisfy θ(i, a) = θ0 for at least one a ∈
arg min(ki·(V)) and θ(i, a) = −θ0 otherwise (see Lemma
5.10 of [9])1. Let π̂ denote one such policy and V̂ the
corresponding value function. Then

V̂ (i) =
∑
a∈U

π̂(i, a)
∑
j

p(i, a, j)(g(i, a, j) + γV̂ (j)), ∀i.

1Under reasonable conditions on noise, it is known that stochastic
approximation converges a.s. to its stable attractors, see, e.g., section 3.4 of
[8] and the references therein.

809

Define a policy π∗ that corresponds to θ0 → ∞ in the
above. Then this is an optimal policy and the correspond-
ing value function V ∗ satisfies the corresponding dynamic
programming equation.

V ∗(i) =
∑
a∈U

π∗(i, a)
∑
j

p(i, a, j)(g(i, a, j) + γV ∗(j)), ∀i.

Proposition 2: We have

‖V̂ − V ∗‖∞ ≤
maxi ‖π̂(i, ·)− π∗(i, ·)‖1 maxi ‖ḡ(i, ·)‖∞

(1− γ)2
,

where ḡ(i, a) =
∑
j

p(i, a, j)g(i, a, j).

Proof: Note that

|V̂ (i)− V ∗(i)| ≤
∑
a

|π̂(i, a)− π∗(i, a)||ḡ(i, a)|+

γ
∑
a

π̂(i, a)
∑
j

p(i, a, j)|V̂ (j)− V ∗(j)|+

γ
∑
a

|π̂(i, a)− π∗(i, a)|
∑
j

p(i, a, j)|V ∗(j)|. (11)

Thus,

‖V̂ − V ∗‖∞ ≤ max
i
‖π̂(i, ·)− π∗(i, ·)‖1 max

i
‖ḡ(i, ·)‖∞

+ γ‖V̂ −V ∗‖∞+ γmax
i
‖π̂(i, ·)−π∗(i, ·)‖1‖V ∗‖∞. (12)

Now note that by definition

‖V ∗‖∞ ≤ (1− γ)−1 max
i
‖ḡ(i, ·)‖∞. (13)

The claim follows upon substituting (13) in (12).
Theorem 3: Given ε > 0, there exists θ̄ > 0 such that

∀ θ0 > θ̄, ‖V̂ − V ∗‖∞ < ε, i.e., the policy π̂ is ε-optimal.
Proof: The way π̂ and π∗ are defined, we have

π̂(i, ·) → π∗(i, ·) as θ0 → ∞. The claim now follows from
Proposition 2 using the facts that maxi ‖ḡ(i, ·)‖∞ ≤ B <∞
for some scalar B > 0, and that γ ∈ [0, 1).

B. Convergence of the Slower Recursion

The policy update in this algorithm is on the faster time
scale and sees the value update as quasi-static. We have the
following important result.

Lemma 4: Given ε > 0, there exists θ̄ sufficiently large
such that for θ0 > θ̄ and V ≈ Vn (i.e., V is tracking Vn on
a slower time scale), recursion (7) on the slower timescale
satisfies

max
i

∣∣∣∣∣∣min
u

∑
j

p(i, u, j)(g(i, u, j) + γV (j))− V (i))

∣∣∣∣∣∣ < ε,

for n ≥ 0.
Proof: Follows as in Lemma 5.12 of [9].

It follows that the iteration for Vn on the slower time scale
satisfies

Vn+1(i) ≈ Vn(i) + ā(n) minu[
∑
j(p(i, u, j)g(i, u, j)

+γVn(j))− Vn(i) +Nn+1(i))],

where, for any i ∈ S, n ≥ 0,

Nn+1(i) := g(i, φn(i), ξn(i, φn(i))) + γVn(ξn(i, φn(i)))

−E[g(i, φn(i), ξn(i, φn(i))) + γVn(ξn(i, φn(i)))|Fn],

is a martingale difference sequence, with the change from
the previous definition of Nn being that we use Vn(·) here
in place of V (·) The approximate equality ‘≈’ accounts for
the error

E[g(i, φn(i), ξn(i, φn(i))) + γVn(ξn(i, φn(i)))|Fn]

−min
u

[
∑
j

(p(i, u, j)g(i, u, j) + γVn(j))],

which is seen from Lemma 4 to be O(ε).
We thus have a result similar to Theorem 5.13, [9]:
Theorem 5: Given ε > 0, ∃ θ̄ ≡ θ̄(ε) > 0 such that for

all θ0 ≥ θ̄, (Vn, θn), n ≥ 0, governed according to (7)-(8),
converges almost surely to the set

{(Vπθ , θ) | Vγ(i) ≤ Vπθ (i) ≤ Vγ(i) + ε,∀i ∈ S},

where Vγ(i), i ∈ S is the unique solution to the Bellman
equation (4).

V. NUMERICAL RESULTS

We show here the results of experiments to study the
empirical performance of the CA algorithm (7)-(8) and its
comparison with the AC algorithm (Algorithm 3 of [9]). We
compare these algorithms initially in tabular form so as to
put both on a common footing and so that the comparison is
legitimate, and also because we have shown the convergence
analysis in tabular form. The difficulty in practice with the
tabular form is its high dimensionality which can put it
at a disadvantage, so the practical usage is invariably with
function approximation. We also provide some comparisons
with function approximations, but because of the possibility
of multiple equilibria etc., there are other factors playing a
role, so it is less conclusive evidence than the tabular form.

We present experiments on Grid World settings of various
sizes and dimensions for different step-size schedules. For
finite state-action MDP, there is always a unique optimal
value function that we compute for our experiments. Our
main performance metric is thus the value function error as
obtained by the two algorithms, viz., the Euclidean distance
between the running value function estimates from each
algorithm and the optimal value function. We also study here
performance comparisons using the running average cost as
a function of the number of iterates. The figures show the
performance comparisons in terms of (a) the value error
estimates and (b) the running average cost obtained from the
two algorithms. We also plot alongside in each figure the tail
of the plots separately (after removing initial transients) for
a better depiction of the performance of the two algorithms
when closer to convergence. Finally, we compare the amount
of computational time required by the two algorithms on
each of the settings. All results are shown by averaging over
5 different runs of each algorithm with different initial seeds.
The standard error from these runs is also shown.

810

Fig. 1. Experiment 1: |S| = 1000, |U | = 6, α1 = 1, β1 = 0.55, α2 = 1, β2 = 0.55

Fig. 2. Experiment 5: |S| = 10000, |U | = 8, α1 = 0.75, β1 = 0.55, α2 = 0.95, β2 = 0.75

Fig. 3. Experiment 7: |S| = 10000, |U | = 8, α1 = 0.95, β1 = 0.75, α2 = 0.75, β2 = 0.55

Exp. Value Error Average Reward Computational Time (hours)
AC CA AC CA AC CA

1 79.33
±4.23

17.57
±1.59

91.59
±1.13

92.21
±0.41

11.18 ±0.36 11.23 ±0.26

2 41.27
±4.63

41.49
±4.00

91.67
±0.90

92.18
±0.49

11.25 ±0.22 11.28 ±0.32

3 80.88
±5.15

21.88
±0.85

91.73
±0.70

91.72
±0.49

10.87 ±0.20 11.28 ±0.30

4 24.78
±1.64

23.38
±2.22

86.53
±0.34

86.01
±1.28

11.05 ±0.20 10.97 ±0.06

5 370.12
±5.08

155.51
±4.04

88.71
±0.18

88.84
±0.25

20.80 ±0.30 20.98 ±0.81

6 2825.67
±1.63

2824.96
±0.72

75.96
±0.42

76.11
±0.71

28.30 ±0.43 28.91 ±0.93

7 8028.80
±41.38

7899.68
±51.49

77.28
±0.43

76.94
±0.46

53.17 ±1.12 52.39 ±0.50

TABLE I
MEAN AND STANDARD DEVIATION AFTER 108 TIME-STEPS OF AVERAGE REWARD, VALUE ERROR AND COMPUTATIONAL TIME

811

We conducted seven sets of experiments labelled Exp.
1 to 7. Experiments 1 to 5 are for the tabular setting as
described in the paper. Experiments 6 and 7, on the other
hand, are conducted with function approximation. Specifi-
cally, Experiment 6 is for the case when a linear function
approximation architecture is used to approximate the value
function, while Experiment 7 does so with a neural network
architecture. All these experiments are conducted for various
grid world settings. Specifically, Experiments 1 – 3 are on a
3-dimensional grid world of size 10× 10× 10 (1000 states)
and 6 actions (+x,-x,+y,-y,+z,-z). Experiment 4 is for the case
of a 2-dimensional grid of size 20× 20 and 4 actions (+x,-
x,+y,-y). Experiment 5 is conducted on a 4-dimensional grid
of size 10 in each dimension (10,000 states) and 8 actions.
In the experiments for the tabular setting, we use step-
sizes of the form a(n) = 1

(b n100 c+1)α1
, b(n) = 1

(b n100 c+1)β1

for AC and a(n) = 1
(b n100 c+1)α2

, b(n) = 1
(b n100 c+1)β2

for
CA. We decrease the step-size every 100 time-steps in both
algorithms for faster convergence. These step-sizes follow
Assumptions 1(i)-(iii) but not Assumptions 1(iv)-(v) and
2(ii). We observe similar performance patterns when step-
sizes that fully satisfy Assumptions 1 and 2 are used. The
results of these experiments are shown in Figures 10-11 of
[6] and discussed in detail there2. This indicates that CA is a
promising new algorithm. For Experiment 6 (linear function
approximation), we decrease the step-sizes every 100 time-
steps (same as in the tabular case). We take features for
state i ∈ S so that the value at the b i10c-th position is 1
and the rest are 0. Note that the basis functions are linearly
independent (see [14]). In Experiment 7 (neural network
architecture), we decrease the step-size at every time-step in
both algorithms. This ensures good performance for both. We
use, for this experiment, a fully connected feedforward neural
network with two hidden layers, 10 neurons per layer, tanh
activation function, and the single number state as input.
We run all our experiments for 108 time-steps. The mean
and standard deviation values from 5 runs after 108 time-
steps for the various experiments are shown in Table I in the
form µ ± σ, where µ and σ denote the mean and standard
deviation respectively. For lack of space, we show here the
plots for Experiments 1, 5 and 7, respectively, in Figures 1–
3. Plots for the remaining experiments can be found in [6].
From Figures 1-2 and the other plots in [6] (see Figures 1–5
there), we see that the value function error successfully goes
to almost zero. From the figures and the table, it is seen that
the performance of our Critic-Actor algorithm is as good (in
fact, slightly better overall) as the well-studied Actor-Critic
algorithm. In [6], we also show the results of experiments
where we compare the performance of the CA, AC and Q-
learning algorithms when function approximation is used in
each. We use policy gradient for the actor update and TD(0)
for the critic update. The experiments are run on a two-
dimensional grid of size 100× 100, and 9 actions. Figures 8

2One cannot infer numerical superiority of one algorithm over another
merely by the number of states and actions in the setting because whereas
actor is the faster recursion in CA, critic is slower when compared to AC.

and 9 in [6] show the plots for the cases when linear function
approximation and neural network based approximators are
used respectively for each algorithm. Both CA and Q-
Learning show similar performance in Figure 8 and both
algorithms show superior performance than AC. From Figure
9, all three algorithms show similar performance except that
DQN takes significantly more computational time than CA
and AC. We also see greater variance in the performance of
AC.

VI. CONCLUSIONS

We presented for the first time an important and previously
unstudied class of algorithms – the critic-actor algorithms,
that holds much promise. Like actor-critic, these are also
two-timescale algorithms, however, where the value critic is
run on a slower timescale as compared to the policy actor.
Whereas actor-critic algorithms emulate policy iteration, we
argue that critic-actor mimics value iteration. We proved the
convergence of the algorithm. Further, we showed the results
of several experiments on a range of Grid World settings
and observed that our critic-actor algorithm shows similar or
slightly better performance as compared to the corresponding
actor-critic algorithm. We hope that our work will result
in further research in this hitherto unexplored direction. In
particular, it would be of interest to study further the critic-
natural actor algorithms such as [5] with time scales reversed.

REFERENCES

[1] Barto, A. G., Sutton, R. S. and Anderson, C. W., 1983. “Neuronlike
adaptive elements that can solve difficult learning control problems”.
IEEE transactions on Systems, Man and Cybernetics, (5), pp. 834-846.

[2] Berstekas, D. P., 2019. Reinforcement Learning and Optimal Control.
Athena Scientific.

[3] Bhatnagar, S. and Babu, K. M., 2008. “New algorithms of the Q-
learning type”. Automatica, 44(4), pp. 1111-1119.

[4] Bhatnagar, S. and Lakshmanan, K., 2016. “Multiscale Q-learning with
linear function approximation”. Discrete Event Dynamic Systems,
26(3), pp. 477-509.

[5] Bhatnagar, S., Sutton, R., Ghavamzadeh, M., and Lee, M., 2009.
“Natural actor-critic algorithms”. Automatica, 45(11), pp. 2471-2482.

[6] Bhatnagar, S., Borkar, V. S., and Guin, S. 2022. “Actor-Critic or Critic-
Actor? A Tale of Two-Timescales”. ArXiv Preprint arXiv preprint
arXiv:2212.10477.

[7] Borkar, V. S., 1998. “Asynchronous stochastic approximation”. SIAM
Journal on Control and Optimization, 36(3), pp. 840-851. (Erratum
in SIAM Journal on Control and Optimization, 38(2), 2000, pp. 662-
663).

[8] Borkar, V. S., 2022. Stochastic Approximation: A Dynamical Systems
Viewpoint (2nd edition), Hindustan Publishing Agency and Springer.

[9] Konda, V.R. and Borkar, V.S., 1999. “Actor-critic–type learning algo-
rithms for Markov decision processes”. SIAM Journal on control and
Optimization, 38(1), pp. 94-123.

[10] Konda, V. R. and Tsitsiklis, J. N., 2003. “On actor-critic algorithms”.
SIAM journal on Control and Optimization, 42(4), pp. 1143-1166.

[11] Puterman, M. L., 2014. Markov decision processes: discrete stochastic
dynamic programming. John Wiley and Sons.

[12] Sutton, R., 1988. “Learning to predict by the method of temporal
differences”. Machine Learning, 3, pp. 9-44.

[13] Sutton, R., McAllester, D., Singh, S., and Mansour, Y., 1999. “Policy
gradient methods for reinforcement learning with function approxima-
tion”. Proceedings of NeurIPS, pp. 1057-1163.

[14] Tsitsiklis, J. N. and Van Roy, B., 1997. “An analysis of temporal
difference learning with function approximation”, IEEE Transactions
on Automatic Control, 42(5), pp. 674-690.

[15] Watkins, C. J. C. H. and Dayan, P., 1992. “Q-learning”. Machine
Learning, 8, pp. 279-292.

812

