
One-Shot Averaging for Distributed TD(λ) Under Markov Sampling

Haoxing Tian1, Ioannis Ch. Paschalidis2 and Alex Olshevsky2

Abstract— We consider a distributed setup for reinforcement
learning, where each agent has a copy of the same Markov Deci-
sion Process but transitions are sampled from the corresponding
Markov chain independently by each agent. We show that in
this setting, we can achieve a linear speedup for TD(λ), a family
of popular methods for policy evaluation, in the sense that N
agents can evaluate a policy N times faster provided the target
accuracy is small enough. Notably, this speedup is achieved
by “one shot averaging,” a procedure where the agents run
TD(λ) with Markov sampling independently and only average
their results after the final step. This significantly reduces the
amount of communication required to achieve a linear speedup
relative to previous work.

I. INTRODUCTION

Actor-critic method achieves state-of-the-art performance
in many domains including robotics, game playing, and
control systems ([1], [2], [3]). Temporal Difference (TD)
Learning may be thought of as a component of actor critic,
and better bounds for TD Learning are usually ingredients of
actor-critic analyses. We consider the problem of policy eval-
uation in reinforcement learning: given a Markov Decision
Process (MDP) and a policy, we need to estimate the value
of each state (expected discounted sum of all future rewards)
under this policy. Policy evaluation is important because it
is effectively a subroutine of many other algorithms such
as policy iteration and actor-critic. The main challenges
for policy evaluation are that we usually do not know the
underlying MDP directly and can only interact with it, and
that the number of states is typically too large forcing us to
maintain a low-dimensional approximation of the true vector
of state values.

We focus here on the simplest class of methods overcom-
ing this set of challenges, namely TD methods with linear
function approximation. These methods try to maintain a low
dimensional parameter which is continuously updated based
on observed rewards and transitions to maintain consistency
of estimates across states. The proof of convergence for these
methods was first given in [4].

In this paper, we focus on the multi-agent version of policy
evaluation: we consider N agents that have a copy of the
same MDP and the same policy, but transitions in the MDP

Research partially supported by the NSF under grants CCF-2200052 and
IIS-1914792, by the ONR under grants N00014-19-1-2571 and N00014-
21-1-2844, by the DOE under grant DE-AC02-05CH11231, by the NIH
under grant UL54 TR004130, by ARPA-E under grant DE-AR0001282,
and by the Boston University Kilachand Fund for Integrated Life Science
and Engineering.

1Department of Electrical Engineering, Boston University, Boston, MA,
USA tianhx@bu.edu.

2Department of Electrical Engineering and Division of System
Engineering, Boston University, Boston, MA, USA {yannisp,
alexols}@bu.edu.

by different agents are independent. The question we wish
to ask is whether the agents can cooperate to evaluate the
underlying policy N times faster, since now N transitions
are generated per unit time.

Although there is some previous work on distributed
temporal difference methods (e.g., [5], [6], [7]), this question
has only been considered in the recent papers [8], [9],
[10], [11]. The answer was positive in both [8], [9] in a
“federated learning” setting, provided the nodes have N
rounds of communication with a central server before time
T , with environment heterogeneity additionally considered
in [9]. In [10], the answer was also positive (i.e., linear
speedup was obtained) under a distributed erasure model
where each node communicated with neighbors in a graph a
constant fraction of time, leading to O(T) communications
in T steps. Our previous work [11] established that, in
fact, only one communication round with a central server
is sufficient in the case of i.i.d. observations and TD(0), the
most basic method within the temporal difference family.
This was accomplished via the “one-shot averaging” methods
where the N agents just ignore each other for T steps, and
then simply average their results. Further, the final averaging
step could be replaced with O(log T) rounds of an average
consensus method.

The i.i.d. observation assumption is a limiting feature of
our previous work in [11]: it is assumed that at each time, we
can generate a random state from the underlying MDP. This
is convenient for analysis but rarely satisfied in practice.

In this paper, our contribution is to show that one-shot
averaging suffices to give a linear speedup without the i.i.d.
assumption and for the more general class of temporal dif-
ference methods TD(λ) (precise definitions are given later).
Our method of proof is new and does not overlap with the
arguments given in our previous work.

II. BACKGROUND

A. Markov Decision Process (MDP)

A finite discounted-reward MDP can be described by a
tuple (S,A, Penv, r, γ), where S is the state-space whose
elements are vectors, with s0 being the starting state; A
is the action space; Penv = (Penv(s

′|s, a))s,s′∈S,a∈A is
the transition probability matrix, where Penv(s

′|s, a) is the
probability of transitioning from s to s′ after taking action
a; r : S × S → R is the reward function, where r(s, s′)
associates a deterministic reward with each state transition;
and γ ∈ (0, 1) is the discount factor.

A policy π is a mapping π : S×A → [0, 1] where π(a|s)
is the probability that action a is taken in state s. Given a

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Copyright ©2024 IEEE

policy π, the state transition matrix Pπ = (Pπ(s
′|s))s,s′∈S

and the state reward function rπ(s) is defined as

Pπ(s
′|s) =

∑
a∈A

Penv(s
′|s, a)π(a|s), rπ(s) =

∑
s′∈S

Pπ(s
′|s)r(s, s′).

Since the policy is fixed throughout the paper, we will omit
the subscript π and thus write P (s′|s) and r(s) instead of
Pπ(s

′|s) and rπ(s).
The stationary distribution µ is a nonnegative vector with

coordinates summing to one and satisfying µT = µTP . The
Perron-Frobenius theorem guarantees that such a stationary
distribution exists and is unique subject to some conditions
on P , e.g., aperiodicity and irreducibility [12]. The entries
of µ are denoted by µ(s). We also define D = diag(µ(s))
as the diagonal matrix whose elements in the main diagonal
are given by the entries of the stationary distribution µ.

The value function V ∗
π (s) is defined as V ∗

π (s) =

Eπ

[∑+∞
t=0 γ

tr(st)
]
, where Eπ stands for the expectation

when actions are chosen according to policy π. Since the
MDPs is finite, it is without loss of generality to assume a
bound on rewards.

Assumption 2.1: For any s, s′ ∈ S×S, |r(s, s′)| ≤ rmax.

B. Value Function Approximation

Given a fixed policy, the problem is to efficiently estimate
V ∗
π . We consider a linear function approximation architecture

Vπ,θ(s) = ϕ(s)T θ, where ϕ(s) ∈ Rd is a feature vector for
state s and θ ∈ Rd. Without loss of generality, we assume
||ϕ(s)|| ≤ 1 for all states s. For simplicity, we define Vπ,θ =
(Vπ,θ(s))s∈S to be a column vector, Φ =

(
ϕ(s)T

)
s∈S

to be
a |S| × d matrix and R = (r(s))s∈S to be a column vector.
We are thus trying to approximate Vπ,θ ≈ Φθ. We make the
following assumptions:

Assumption 2.2 (Input assumption): It is standard to
assume the following statements hold:

• The matrix Φ has linearly independent columns.
• The stationary distribution µ(s) > 0,∀s ∈ S.

With this assumption, if ω is the smallest eigenvalue of Σ :=
ΦTDΦ, then ω > 0 and ω∥x∥2 ≤ xTΣx.

C. Distributed Model and Algorithm

We assume that there are N agents and each agent shares
the same tuple (S,A, Penv, r, γ) as well as the same fixed
policy π. However, each agent independently samples its
trajectories and updates its own version of a parameter θt.

We will study an algorithm which mixes TD learning and
one-shot averaging: after all agents finish T steps, they share
their information and compute the average parameter as the
final result. These agents do not communicate before the final
step. The averaging can take place using average consensus
(using any average consensus algorithm) or, in a federated
manner, using a single communication with a coordinator.

We next spell out the details of our algorithm. Every
agent runs TD(0) with Markov sampling as follows. Agent i
generates an initial state s0(i) from some initial distribution.
It also maintains an iterate θt(i), initialized arbitrarily. At

time t, agent i generates a transition according to P . It then
computes the so-called TD-error

δs,s′(θt(i)) = r(s, s′) + γϕ(s′)T θt(i)− ϕ(s)T θt(i),

with s = st(i), s
′ = st+1(i) coming from the transition it

just generated; and then updates

θt+1(i) = θt(i) + αtgst(i),st+1(i)(θt(i)) (1)

where the update direction is gs,s′(θ) = δs,s′(θ)ϕ(s). At the
end, the agents average their results.

We will further use ḡ to denote the expectation of gs,s′

assuming s are sampled from the stationary distribution µ
and s′ is generated by taking a step from P . We use EI to
denote this expectation. Therefore, ḡ(θ) = EI [gs,s′(θ)]. We
can also rewrite ḡ in matrix notation:

ḡ(θ) = ΦTD(R+ (γP − I)Φθ).

In order to perform our analysis, we need to define the
stationary point. We adopt the classic way of defining such
point as shown in [4]. We call θ∗ the stationary point if
ḡ(θ∗) = 0. According to [13], in matrix notation, it is
equivalent to say that θ∗ satisfies the following:

ΦTD (R+ (γP − I)Φθ∗) = 0. (2)

Naturally, each agent can easily compute θ∗ by running
TD(0) for infinite times and simply ignore all the other
agents. However, this ignores the possibility that agents can
benefit from communicating with each other.

We next focus on TD(λ), which is a popular generalization
of the conceptually simpler TD(0) and attains better perfor-
mance with an appropriate choice of λ [14]. For any fixed
λ ∈ [0, 1], TD(λ) executes the update

θt+1(i) = θt(i) + αtxst(i),st+1(i)(θt(i), z0:t). (3)

Here, z0:t =
∑t

k=0(γλ)
kϕ(st−k(i)) is called eligibility trace

and xst(i),st+1(i)(θt(i), z0:t) is given by

xst(i),st+1(i)(θt(i), z0:t) = δst(i),st+1(i)(θt(i))z0:t

For convenience of the analysis, we define the eligibility
trace going back to minus infinity:

z−∞:t = lim
t→∞

z0:t =

∞∑
k=0

(γλ)kϕ(st−k(i)).

We also introduce the operator T (λ)
π which is defined as(

T (λ)
π V

)
(s) = (1− λ)

∞∑
k=0

λk

· E

[
k∑

t=0

γtr(st, st+1) + γk+1V (sk+1) | s0 = s

]
.

In matrix notation:

T (λ)
π V = (1− λ)

∞∑
k=0

λk

(
k∑

t=0

γtP tR+ γk+1P k+1V

)
.

(4)

We denote x̄(θt(i)) = EI [xs,s′(θt(i), z−∞:t)]. This expec-
tation assumes that si(k) ∼ µ,∀k, and that the history of
the process then extends to −∞ according to a distribution
consistent with each forward step being taken by P ; for more
details, see [4]. We also note that Lemma 8 in [4] implies

x̄(θt) = ΦTD
(
T (λ)
π (Φθ)− Φθ

)
.

We call θ∗ the stationary point if x̄(θ∗) = 0. In matrix
notation, it is equivalent to say that θ∗ satisfies the following:

ΦTD
(
T (λ)
π (Φθ∗)− Φθ∗

)
= 0. (5)

Finally, we define κ = γ 1−λ
1−γλ which will be useful later. An

obvious result is that κ ≤ γ.

D. Markov Sampling and Mixing

As mentioned in the previous section, the ideal way
of generating st(i) is to draw from stationary distribution
µ. However, the typical way is generating a trajectory is
s1(i), . . . , sT (i). Every state in this trajectory is sampled by
taking a transition st(i) ∼ P (·|st−1(i)) (and recall our policy
is always fixed). This way of sampling is called Markov sam-
pling, and we denote EM = Est(i)∼P (·|st−1(i)). Analyzing
algorithms under Markov sampling can be challenging since
one cannot ignore the dependency on previous samples. The
following “uniform mixing” assumption is standard [15]. We
also note that this assumption always holds for irreducible
and aperiodic Markov chains [16].

Assumption 2.3: There are constants m and ρ such that

||P (st ∈ ·|s0)− µ||1 ≤ mρt, ∀t.
A key definition from the uniform mixing assumption is
called the mixing time. We define the mixing time τmin(ϵ):

τmix(ϵ) = min{t | mρt ≤ ϵ}.

In this paper, we always set ϵ = αt which is the step-size at
time t, typically αt = β/(c + t), and simplify τmix(αt) as
τmix. An obvious result is that mρt ≤ αt,∀t ≥ τmix.

E. Convergence times for centralized TD(0) and TD(λ)

We now state the state-of-the-art results for the centralized
case which are based on using ideas from gradient descent
to analyze TD(0) and TD(λ). These results are first proposed
by [15] and they considered Projected TD Learning, where
θt is projected onto a ball of fixed radius after the update is
performed. However, one can show these results also hold
when the projection is removed. We use them as a basis for
comparison for our distributed results.

Lemma 2.1: In TD(0) with the Markov sampling,
suppose Assumptions 2.2, 2.3 hold and tth =
max{τmix,

18
(1−γ)2ω2 − 1}. For a decaying stepsize sequence

αt = 2/(ω(t+ 1)(1− γ)),

E
[
||θT+tth(i)− θ∗||2

]
≤ νcentral ∼ O

(
(log T)2

T

)
,∀T ≥ 0.

We next discuss convergence times for TD(λ). It is usually
assumed that the algorithm extends back to negative infinity,
and that every st(i) has distribution µ (but the samples are,

of course, correlated since each successive state is obtained
by taking a step in the Markov chain P from the previous
one). Similarly as before, we define τ

(λ)
mix(ϵ) as

τ
(λ)
mix(ϵ) = max{τmix(ϵ), τ

′
mix(ϵ)},

where

τmix(ϵ) = min{t | mρt ≤ ϵ}, τ ′mix(ϵ) = min{t | (γλ)t ≤ ϵ}.

As before, we choose ϵ = αt and simplify τ
(λ)
mix(αt) as τ

(λ)
mix.

A quick result is max{mρt, (γλ)t} ≤ αt,∀t ≥ τ
(λ)
mix(αt).

With these notations, we can state the following result.
Lemma 2.2: In Projected TD(λ) with the Markov sam-

pling, suppose Assumptions 2.2, 2.3 hold and t
(λ)
th =

max{τ (λ)mix,
28

(1−κ)2ω2(1−γλ) − 1}. For a decaying stepsize
sequence αt = 2/(ω(t+ 1)(1− κ)),

E
[
∥θ

T+t
(λ)
th

(i)− θ∗∥2
]
≤ ν

(λ)
central ∼ O

(
(log T)2

T

)
,∀T ≥ 0.

III. MAIN RESULT

We now state our main result which claims a linear speed-
up for both distributed TD(0) and distributed TD(λ). Recall
that we use θt(i) to denote the parameters of agent i at time t,
θ̄t = (

∑
i θt(i))/N to denote the averaged parameters among

all N agents, and θ̄t(i) = E [θt(i)] to denote the expectation
of θt(i). We now have the following two theorems for
TD(0) and TD(λ) respectively. Notice that Õ omits logarithm
factors.

Theorem 3.1: Suppose Assumptions 2.2 and 2.3 hold.
Denote t0 = max{τmix,

8
ωωI(1−γ) − 1, tth}. With νcentral in

Lemma 2.1, TD(0) with αt = 2/(ω(t+ 1)(1− γ)) satisfies

E
[
||θ̄T+t0 − θ∗||2

]
≤ 1

N
νcentral + Õ

(
1

T 2

)
,∀T ≥ 0.

Theorem 3.2: Suppose Assumptions 2.2 and 2.3 hold.
Denote t

(λ)
0 = max{2τ (λ)mix,

8

ωω
(λ)
I (1−κ)

− 1, t
(λ)
th }. With

ν
(λ)
central in Lemma 2.2, TD(λ) with αt = 2/(ω(t+1)(1−κ))

satisfies

E
[
||θ̄T+t0 − θ∗||2

]
≤ 1

N
ν
(λ)
central + Õ

(
1

T 2

)
,∀T ≥ 0.

In brief, the distributed version with N nodes is N times
faster than the comparable centralized version for large
enough T (note that vcentral and v

(λ)
central are Õ(1/T) whereas

the term that does not get divided by N is Õ(1/T 2) in both
theorems). This significantly improves previous results from
[11], which only showed this for TD(0).

We note that the proofs given in this paper have no
overlaps with the proof from [11], which could not be
extended to either TD(λ) or Markov sampling (and here both
extensions are done simultaneously). Instead, our analysis
here is based on the following simple observation, at each
step of which we just use independence plus elementary

algebra:

E
[
||θ̄T − θ∗||2

]
≤ 1

N2

N∑
i=1

E
[
∥θT (i)− θ∗∥2

]
+

2

N2

∑
1≤i<j≤N

E
[
(θT (i)− θ∗)

T
(θT (j)− θ∗)

]

=
1

N2

N∑
i=1

E
[
∥θT (i)− θ∗∥2

]
+

2

N2

∑
1≤i<j≤N

(
θ̄T (i)− θ∗

)T (
θ̄T (j)− θ∗

)
.

(6)

Here, the last equality uses the fact that θT (i) are indepen-
dent of each other since there is no communication during
learning. This immediately implies a linear speed-up if only
we could prove that the first term dominates. This is quite
plausible, since the second term involves the convergence
speed of the expected updates. In other words, all that is
really needed is to prove that the expected update converges
faster than the unexpected update.

IV. PROOF OF THEOREM 3.1

Before we go into the proof, we first introduce some
notations. We rewrite ḡ(θ) in matrix notation as

ḡ(θ) =ΦTD(I − γP)Φ (θ∗ − θ) := ΣI (θ
∗ − θ) . (7)

This matrix has some nice properties, which is pointed out
in [17], [18]. Indeed, we have the following lemmas whose
proofs we postpone:

Lemma 4.1: There exists ωI > 0 such that

inf
∥x∥=1

xTΣIx ≥ ωI ≥ (1− γ)ω.

Lemma 4.2: For any x, ∥ΣIx∥2 ≤ 4∥x∥2.
In the rest of this section, we will omit i since the analysis

holds for all i ∈ {1, 2, . . . , n}. For example, we will use θt
instead of θt(i).

We define ḡ′(θt) = EM [gs,s′(θt)] where EM is defined in
Section II-D. We call ḡ′(θt)− ḡ(θt) Markov noise:

ḡ′(θt)− ḡ(θt) =
∑
st,s′t

(Pt(st|s0)− µ(st))ϕ(st)

· (rt − (ϕ(st)− γP (s′t|st)ϕ(s′t)) θt)

=
∑
st,s′t

(Pt(st|s0)− µ(st))P (s′t|st)gst,s′t(θt),

where Pt(s
′|s) stands for the t step transition probability.

To further address both the Markov noise and the recursion
relations we will derive, we need the following lemmas,
whose proofs we also postpone.

Lemma 4.3: In TD(0), ||θ∗|| ≤ R with R := rmax/ωI.
Lemma 4.4: For a sequence of numbers {xt} and three

constants a, b, c such that a > 1, we have the following
recursive inequality:

xt+1 ≤
(
1− a

c+ t

)
xt +

b2

(c+ t)2
, ∀t ≥ τ.

Then we have the following result:

xt ≤
ν

c+ t
, where ν = max

{
b2

a− 1
, (c+ τ)xτ

}
.

Given all preliminaries, we can begin our proof.
Proof: [Proof of Theorem 3.1]

For simplicity, denote ∆t = θ̄t − θ∗. Letting t = T + t0,
we take expectation on both sides in (1),

∆t+1 = ∆t + αtE [ḡ(θt)] + αtE [ḡ′(θt)− ḡ(θt)] .

By (7), we know that E [ḡ(θt)] = −ΣI∆t. Notice that,
Assumption 2.2 immediately implies ∥ΣI∥ ≤ 1. Therefore,

∥(I − αtΣI)∆t∥2 ≤(1− 2ωIαt + 4α2
t)∥∆t∥2

≤(1− ωIαt)∥∆t∥2.

Here we use Lemma 4.1, 4.2 and the fact that 4αt ≤ ωI

(recall we assume t ≥ t0). This immediately implies

∥(I − αtΣI)∆t∥ ≤ (1− ωIαt/2)∥∆t∥,

where we use the fact
√
1− x ≤ 1− x/2. Therefore,

∥∆t+1∥ ≤ (1− ωIαt/2)∥∆t∥+ αtE [∥ḡ′(θt)− ḡ(θt)∥] .

To address the second term on the right-hand side, by
Assumption 2.3, for all t ≥ t0,

E
[
∥ḡ′(θt)− ḡ(θt)∥

]
≤E
[
(rmax + 2∥θt − θ∗∥+ 2∥θ∗∥) · ∥Pt(·|s0)− µ∥1

]
≤αt (rmax + 2u+ 2R) .

where u is defined as u = maxi,t E∥θt(i)− θ∗∥. Notice that
Lemma 2.1 guarantees u is finite. This immediately indicates

||∆t+1|| ≤ (1− ωIαt/2) ||∆t||+ α2
t (rmax + 2u+ 2R) .

We set xt = ∥∆t∥, a = ωI/(ω(1 − γ)), b2 = rmax + 2u +
2R, c = 1 and τ = t0. By Lemma 4.4,

||∆t|| ≤
ν

1 + t
, ν = max{α, β}

where

α =
rmax + 2u+ 2R

ωI

ω(1−γ) − 1
, β =(1 + t0)∥∆t0∥.

Since all the above facts holds for every agent i, the result
directly follows after plugging the above fact as well as
Lemma 2.1 into (6).

A. Proof of Lemma 4.1
Proof: Based on [17], [18], one can show that

xTΣIx =(1− γ)
∑
s∈S

µ(s)y(s)2 + γ
∑

s,s′∈S

µ(s)P (s′|s)(y(s′)− y(s))2

≥(1− γ)ω
∑
s∈S

x(s)2.

Here, x ∈ Rd is an arbitrary vector and y = Φx ∈ R|S|,
whereas x(s), y(s) is the entry of x, y corresponding to the
state s. Then, it is obvious that ωI ≥ (1− γ)ω.

B. Proof of Lemma 4.2

Proof: According to the definition of EI before (2),
ΣIx = EI

[
(ϕ(s)Tx− γϕ(s′)Tx)ϕ(s)

]
. Therefore,

∥ΣIx∥2 ≤ EI

[∥∥(ϕ(s)Tx− γϕ(s′)Tx)ϕ(s)
∥∥2] ≤ 4∥x∥2

where we use ∥ϕ(s)∥ ≤ 1 and γ ≤ 1.

C. Proof of Lemma 4.3

Proof: By the Gershgorin circle theorem, D(γP − I)
is invertible, and thus so is ΦTD(γP − I)Φ. By (2),

θ∗ =
[
ΦTD(I − γP)Φ

]−1
ΦTDR.

By Lemma 5.9 in [19] and Lemma 4.1, ∥ΣI∥−1 ≤ ω−1
I .

Furthermore, since ∥ΦT
√
D∥2 ≤ 1 which is because all

features vectors have norm at most one by assumption, and
∥
√
DR∥2 ≤ r2max, we obtain ||θ∗|| ≤ rmax/ωI.

D. Proof of Lemma 4.4

Proof: We prove it by induction. First, it is easy to see
xτ ≤ ν

c+τ . Now suppose xt ≤ ν
c+t ,

xt+1 ≤ (1− a · αt)xt +
b2

(c+ t)2

≤c+ t− 1

(c+ t)2
ν +

(1− a)ν + b2

(c+ t)2

≤ 1

c+ t+ 1
ν,

where the last inequality uses the facts that x2 ≥ (x−1)(x+
1),∀x and (1−a)ν+b2 ≤ 0 (This is because of the definition
of ν as defined in Lemma 4.4).

V. PROOF OF THEOREM 3.2

Our proof here follows the same strategy as for TD(0).
For simplicity, we define

Σ
(λ)
I := ΦTDΦ− (1− λ)

∞∑
k=0

λkγk+1ΦTDP k+1Φ.

One could use (4) and (5) to show that

x̄(θ) = ΦTD
(
T (λ)
π (Φθ)− Φθ

)
= Σ

(λ)
I (θ − θ∗). (8)

Inspired by [17], we claim the following lemma whose proofs
we postpone:

Lemma 5.1: These exists ω
(λ)
I > 0 such that

inf
∥x∥=1

xTΣ
(λ)
I x ≥ ω

(λ)
I ≥ (1− κ)ω.

Lemma 5.2: For any x, ∥Σ(λ)
I x∥2 ≤ 4∥x∥2.

For the rest of this section, we will also omit i since the
analysis holds for all i ∈ {1, 2, . . . , n}.

As before, we denote x̄′(θt) = EM [xs,s′(θt, z0:t)]. This
expectation assumes that s0 ∼ µ while the subsequent states
are sampled according to the transition probability of the
policy, i.e., sk ∼ P (·|sk−1). We call the quantity x̄′(θt) −
x̄(θt) Markov noise.

Finally, for the stationary point defined in (5), we have the
following lemmas whose proof we postponed:

Lemma 5.3: In TD(λ), ∥θ∗∥ ≤ R(λ), R(λ) := rmax

ω
(λ)
I (1−γ)

.
Now we are ready to begin the proof.

Proof: [Proof of Theorem 3.2]
For simplicity, denote ∆t = θ̄t−θ∗. Assuming t ≥ t0, we

take expectation on both sides in (3),

∆t+1 = ∆t + αtE [x̄(θt)] + αt (E [x̄′(θt)− x̄(θt)]) .

By (8), we have E [x̄(θt)] = Σ
(λ)
I ∆t. Notice that

∥(I − αtΣ
(λ)
I)∆t∥2

=∥∆t∥2 − αt∆
T
t (Σ

(λ)
I

T
+Σ

(λ)
I)∆t + α2

t∆
T
t Σ

(λ)
I

T
Σ

(λ)
I ∆t

≤(1− ω
(λ)
I αt)∥∆t∥2.

Here we use both Lemma 5.1, 5.2 and the fact that 4αt ≤
ω
(λ)
I (recall we assume t ≥ t

(λ)
0). This immediately implies

∥(I − αtΣ
(λ)
I)∆t∥ ≤ (1− ω

(λ)
I αt/2)∥∆t∥,

where we use the fact
√
1− x ≤ 1− x/2. Therefore,

∥∆t+1∥ ≤ (1− ω
(λ)
I αt/2)∥∆t∥+ αtE [∥x̄′(θt)− x̄(θt)∥] .

To deal with the Markov noise, for simplicity, we write

x̄(θ) =

+∞∑
k=0

(γλ)k
∑
st−k

µ(st−k)ϕ(st−k)lt−k(θ)

x̄′(θ) =

t∑
k=0

(γλ)k
∑
st−k

Pt−k(st−k|s0)ϕ(st−k)lt−k(θ),

where lt−k(θ) = Es∼Pk(·|st−k),s′∼P (·|s) [δs,s′(θ)]. Let lθ =
|lt−k(θ)|/(1− γλ). A simple bound for lθ is

lθ ≤ rmax + 2u(λ) + 2R(λ)

1− γλ
,

where we both use Lemma 5.3 and denote u(λ) =
maxi,t E∥θt(i)−θ∗∥. Notice that Lemma 2.2 guarantees that
u(λ) is finite. With these notations, we have

x̄(θ)− x̄′(θ)

=

t∑
k=0

(γλ)k
∑
st−k

[µ(st−k)− Pt−k(st−k|s0)]ϕ(st−k)lt−k(θ)

+

+∞∑
k=t+1

(γλ)k
∑
st−k

µ(st−k)ϕ(st−k)lt−k(θ).

We denote the first term as I0:t and divide it into two terms,
I
0:τ

(λ)
mix

and I
τ
(λ)
mix+1:t

. By Assumption 2.3,

∥Pt−k(·|s0)− µ∥1 ≤ αt, ∀t ≤ τ
(λ)
mix,

where we use the fact t ≥ 2τ
(λ)
mix. Therefore,

E∥I
0:τ

(λ)
mix

∥ ≤E

|lt−k(θ)|
τ
(λ)
mix∑
k=0

(γλ)k ∥Pt−k(·|s0)− µ∥1

 ≤ E [lθ]αt.

By the definition of τ (λ)mix, (γλ)t ≤ αt. Therefore,

E
[
∥I

τ
(λ)
mix+1:t

∥
]
≤E

|lt−k(θ)|
t∑

k=τ
(λ)
mix+1

(γλ)k ∥Pt−k(·|s0)− µ∥1


≤2E [lθ]αt.

The second term (under expectation) also has upper-bound
E [lθ]αt since (γλ)t ≤ αt and the remaining terms are
bounded by E [lθ]. So far, we have

∥∆t+1∥ =(1− αtω
(λ)
I /2)∥∆t∥+ α2

t

4

1− γλ

(
rmax + 2u(λ) + 2R(λ)

)
,

We set xt = ∥∆t∥, a = ω
(λ)
I /(ω(1 − κ)), b2 =

4
(
rmax + 2u(λ) + 2R(λ)

)
/(1 − γλ), c = 1 and τ = t

(λ)
0 .

By Lemma 4.4,

||∆t|| ≤
ν(λ)

1 + t
, ν(λ) = max

{
α(λ), β(λ)

}
where

α(λ) =
4rmax + 8u(λ) + 8R(λ)

(
ω

(λ)
I

ω(1−κ) − 1)(1− γλ)
, β(λ) = (1 + t

(λ)
0)∥∆t0∥.

Since all the above facts hold for every agent i, the result
directly follows after plugging the above fact as well as
Lemma 2.2 into (6).

A. Proof of Lemma 5.1

Proof: As pointed out in Theorem 2 in [17], xTΣ
(λ)
I x

equals to a convex combination of D-norm and Dirichlet
semi-norm. Since Dirichlet semi-norm is always no less than
zero, we have

xTΣ
(λ)
I x ≥ (1− κ)xTΦTDΦx, ∀x ∈ Rd,

which implies ω
(λ)
I ≥ (1− κ)ω.

B. Proof of Lemma 5.2
Proof: According to the definition of EI after (4),

Σ
(λ)
I x = EI

[(
ϕ(s0)

Tx− (1− λ)

∞∑
k=0

λkγk+1ϕ(sk+1)
Tx

)
ϕ(s0)

]
.

Since ∥ϕ(s)∥ ≤ 1 and κ ≤ 1,

∥Σ(λ)
I x∥ ≤ (1 + (1− λ)

∞∑
k=0

λkγk+1)∥x∥ ≤ 2∥x∥.

C. Proof of Lemma 5.3
Proof: Solving for θ∗ using (4) and (5), we arrive at

θ∗ =
(
Σ

(λ)
I

)−1

ΦTD(1− λ)

∞∑
k=0

λk
k∑

t=0

γtP tR.

By Lemma 5.9 in [19] and Lemma 5.1, ∥
(
Σ

(λ)
I

)−1

∥ ≤

ω
(λ)
I

−1
. Furthermore, since ∥ΦT

√
D∥2 ≤ 1 which is because

all features vectors have norm at most one by assumption,
and ∥

√
D(1−λ)

∑∞
k=0 λ

k
∑k

t=0 γ
tP tR∥2 ≤ r2max/(1−γ)2,

we obtain ∥θ∗∥ ≤ rmax

ω
(λ)
I (1−γ)

.

CONCLUSION

We have shown that one-shot averaging suffices to give a
linear speedup for distributed TD(λ) under Markov sampling.
This is an improvement over previous works, which had
alternatively either O(T) communication rounds per T steps
or O(N) averaging rounds per T steps to achieve the same.
An open question is whether a similar result can be proven
for tabular Q-learning.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[2] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

[4] John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-
diffference learning with function approximation. Advances in Neural
Information Processing Systems, 9, 1996.

[5] Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis
of distributed TD(0) with linear function approximation on multi-
agent reinforcement learning. In International Conference on Machine
Learning, pages 1626–1635. PMLR, 2019.

[6] Jun Sun, Gang Wang, Georgios B Giannakis, Qinmin Yang, and
Zaiyue Yang. Finite-time analysis of decentralized temporal-difference
learning with linear function approximation. In International Confer-
ence on Artificial Intelligence and Statistics, pages 4485–4495. PMLR,
2020.

[7] Gang Wang, Songtao Lu, Georgios Giannakis, Gerald Tesauro, and
Jian Sun. Decentralized TD tracking with linear function approxi-
mation and its finite-time analysis. Advances in Neural Information
Processing Systems, 33:13762–13772, 2020.

[8] Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja
Maguluri. Federated reinforcement learning: Linear speedup under
Markovian sampling. In International Conference on Machine Learn-
ing, pages 10997–11057. PMLR, 2022.

[9] Han Wang, Aritra Mitra, Hamed Hassani, George J Pappas, and James
Anderson. Federated temporal difference learning with linear function
approximation under environmental heterogeneity. arXiv preprint
arXiv:2302.02212, 2023.

[10] Chenyu Zhang, Han Wang, Aritra Mitra, and James Anderson. Finite-
time analysis of on-policy heterogeneous federated reinforcement
learning. arXiv preprint arXiv:2401.15273, 2024.

[11] Rui Liu and Alex Olshevsky. Distributed TD(0) with almost no
communication. IEEE Control Systems Letters, 2023.

[12] FR Gantmacher. The theory of matrices. New York, 1964.
[13] Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming.

Athena Scientific, 1996.
[14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.
[15] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analy-

sis of temporal difference learning with linear function approximation.
In Conference on learning theory, pages 1691–1692. PMLR, 2018.

[16] David A Levin and Yuval Peres. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017.

[17] Rui Liu and Alex Olshevsky. Temporal difference learning as gradient
splitting. In International Conference on Machine Learning, pages
6905–6913. PMLR, 2021.

[18] Haoxing Tian, Ioannis C. Paschalidis, and Alex Olshevsky. On the
performance of temporal difference learning with neural networks. In
The Eleventh International Conference on Learning Representations,
2022.

[19] Alex Olshevsky and Bahman Gharesifard. A small gain analysis
of single timescale actor critic. SIAM Journal on Control and
Optimization, 61(2):980–1007, 2023.

