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Abstract— We provide extensions to the new flexible-step
model predictive control (MPC) scheme, which is based on the
idea of generalized discrete-time control Lyapunov functions.
These facilitate the implementation of a flexible number of
control inputs in each iteration of the MPC scheme. We present
relaxed recursive feasibility and stability results and provide a
converse Lyapunov result. These results combined simplify the
design of the flexible-step MPC scheme. We demonstrate the
capabilities of the flexible-step MPC algorithm for a nonholo-
nomic system, where the standard one-step implementation may
suffer from lack of asymptotic convergence.

Index Terms— Predictive control for nonlinear systems, Lya-
punov methods, stability of nonlinear systems.

I. INTRODUCTION

Recent advances in performance of optimization algo-
rithms, along with the increased availability of computational
power, have made model predictive control (MPC) one of
the most utilized-in-practice branches of control theory. In
order to deal with some key challenges, such as certificates
for guaranteed stability, most MPC algorithms at their core
heavily rely on imposing terminal costs and/or terminal
constraints to achieve a strict decay of the Lyapunov function
(optimal value function) along the trajectories of a system.
In addition to potentially degenerating the performance of
MPC, terminal conditions can lead to major technical issues,
for instance when dealing with nonholonomic systems [11].
With the exception of linear-quadratic control, where the
solution of the Riccati equation comes to rescue, it is also
unclear how such terminal conditions need to be selected
and imposed. There is a large literature devoted to the issues
highlighted above, which we are unable to review here, but
we point out that several modifications have been proposed
to overcome some of these challenges.

The classical Lyapunov function with its classical de-
cay condition was first replaced by higher-order Lyapunov
functions (continuous time) [14] and later in discrete-time
by non-monotonic Lyapunov functions [15]. In general,
MPC approaches that incorporate a Lyapunov function decay
constraint in the optimization problem are called Lyapunov-
based [12], [13]. Most relevant to our work, so-called “finite-
step” approaches [5], [6] instead consider the implementation
of a finite number of steps, while inheriting stability from
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finite-step control Lyapunov functions. Notably, these func-
tions may increase along the trajectories of a system, but are
guaranteed to decrease compared to the function value at
the beginning of the prediction. For instance, in [6], finite-
step Lyapunov functions are used together with finite-step
contractive sets, which are motivated by the stabilization of
periodically time-varying systems [10] and allow the states
of a system to leave the set for only a finite number of steps
before returning to it.

Another approach worthy of mentioning here is called
“flexible-step” [7], [8], where a flexible number of elements
of the optimal input sequence is implemented. This flexible
number is deduced from the prediction horizon, which is an
integer decision variable in this scheme.

The computation of a controlled invariant set to be used as
the terminal set is still a challenge in much of the literature
on MPC. Putting linear systems aside, there are mainly
two approaches to tackle this challenge. One where the
machinery of terminal sets is avoided since stability can be
obtained without a terminal constraint, if a sufficiently long
prediction horizon is used [9] and another where the terminal
set is relaxed by using the above-mentioned contractive sets.

The purpose of this work is to build on the new flexible-
step MPC, an approach which revisits the core idea from
Lyapunov theory that has led to the existing MPC schemes.
Even though it has its roots in optimization theory, the
requirement for ensuring stability has restricted the “explo-
ration” capabilities of most MPC schemes, a fundamental
feature of efficient optimization algorithms. The idea of
flexible-step MPC, extensively outlined in [1], is to replace
the strict descent requirement of the Lyapunov function
values with an average descent through the novel notion
of generalized Lyapunov functions, while still preserving
stability. This way, our algorithm allows for the implemen-
tation of a flexible number of elements of the optimal input
sequence. In [1], we already shed light on some of the
benefits that come with this novel MPC scheme, in particular
when working with nonholonomic systems where standard
MPC may suffer from lack of stability guarantees. The
focus of the current work is to present a collection of key
relaxed stability and feasibility results in comparison to [1],
which allow us to subsume finite-step MPC techniques, while
demonstrating the added benefits of using our flexible-step
MPC protocol. We also provide a converse Lyapunov result,
and show the performance and versatility of our algorithm on
a simulation example of navigating a nonholonomic system
in an environment with obstacles.

The paper is organized as follows. We explain our notation
in Section I-A. We give a summary of the flexible-step MPC
scheme in Section II. The main results can be found in
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Section III and IV, covering feasibility, stability and converse
results. In Section V, we apply the flexible-step MPC scheme
to a nonholonomic system and present the numerical results.
We discuss our future directions in Section VI.

A. Notation

We denote the set of non-negative (positive) integers by
N (N>0), the set of (non-negative) reals by R (R≥0), and
the interior of a subset S ⊆ Rn by intS. The set of real
matrices of the size p× q is denoted by Rp,q . We make use
of boldface when considering a sequence of finite vectors,
e.g. u = [u0, . . . , uN−1] ∈ Rp,N , we refer to jth component
by uj and to the subsequence going from component i
to j by u[i:j]. Similarly, U[0:N−1] ⊆ Rp,N denotes a set
of (ordered) sequences of vectors with components zero to
N − 1. When such a set depends on the initial state x, it is
expressed by U[0:N−1](x). As usual, u∗ denotes the solution
to the optimal control problem solved in the iteration of an
MPC scheme, the symbol u∗− denotes the optimal control
sequence of the previous iteration. For later use, we recall
that a function V : Rn × Rp,q → R is called positive
definite if V (x,u) = 0 is equivalent to (x,u) = (0,0)
and V (x,u) > 0 for all (x,u) ∈ Rn × Rp,q \ {(0,0)}.
Furthermore, a function α : Rn×Rp,q → R is called radially
unbounded if ∥(x,u)∥ → ∞ implies α(x,u) → ∞, where
∥·∥ is the Euclidean norm. Note that x is a vector and u is a
matrix here, so with ∥(x,u)∥ we implicitly refer to the norm
of [xT , vec(u)T ], where vec(u) is the usual vectorization of a
matrix into a column vector. We now provide the definitions
of some comparison functions. A positive definite function
α : R≥0 → R≥0 is of class-K (α ∈ K) if it is continuous
and strictly increasing. It is of class-K∞ (α ∈ K∞) if α ∈ K
and also α(s) → ∞ as s → ∞. A continuous function
β : R≥0×R≥0 → R≥0 is of class-KL (β ∈ KL), if for each
s ≥ 0, β(·, s) ∈ K and for each r ≥ 0, β(r, ·) is decreasing
with β(r, s) → 0 as s → ∞.

In the setting of MPC, it is important to distinguish
between predictions and the actual implementations at a
given time index k ∈ N. In particular, we use xk, uk to
refer to predictions, whereas we use x(k), u(k) to refer to
the actual states and implemented inputs, respectively.

II. FLEXIBLE-STEP MPC SCHEME

The flexible-step MPC scheme introduced in [1] can
handle nonlinear discrete-time control systems of the form

xk+1 = f(xk, uk), (1)

where k ∈ N denotes the time index, xk ∈ X ⊆ Rn is the
state with the initial state x0 ∈ X and uk ∈ U ⊆ Rp is an
input. The state and input constraints satisfy 0 ∈ intX , 0 ∈
intU and f : X × U → Rn is continuous with f(0, 0) = 0.
Before we can describe the flexible-step MPC scheme itself,
we introduce the notion of g-dclfs.

Definition 1 (Set of Feasible Controls): For x ∈ X , we
define a set of feasible controls as

U[0:N−1](x) := {u[0:N−1] ∈ Rp,N : with x0 = x,

uj ∈ U, xj+1 = f(xj , uj) ∈ X, j = 0, . . . , N − 1}. (2)

An infinite sequence of control inputs is called feasible when
equation (2) is fulfilled for all times j ∈ N.

Definition 2 (g-dclf): Consider the control system (1). Let
m ∈ N>0 and q ∈ N. We call V : Rn × Rp,q → R a
generalized discrete-time control Lyapunov function of order
m (g-dclf) for system (1) if V is continuous, positive definite
and additionally:

When q = 0:
i) there exists a continuous, radially unbounded and posi-

tive definite function α : Rn → R such that for any x0 ∈
Rn we have V (x0)− α(x0) ≥ 0;

ii) for any x0 ∈ Rn there exists ν [0:m−1] ∈ U[0:m−1](x
0),

which steers x0 to some xm, such that

1
m (σmV (xm)+· · ·+σ1V (x1))−V (x0) ≤ −α(x0), (3)

where σm, . . . , σ1 ∈ R≥0 and

1
m (σm + σm−1 + . . .+ σ1)− 1 ≥ 0. (4)

When q ̸= 0:
i’) there exists a continuous, radially unbounded and posi-

tive definite function α : Rn × Rp,q → R such that for
any (x0,u[0:q−1]) ∈ Rn ×U[0:q−1](x

0) we have

V (x0,u[0:q−1])− α(x0,u[0:q−1]) ≥ 0; (5)

ii’) for any (x0,u[0:q−1]) ∈ Rn×U[0:q−1](x
0) there exists

ν [0:q+m−1] ∈ Rp,q+m with ν [l:q+l−1] ∈ U[0:q−1](x
l)

for every l ∈ {0, 1, . . . ,m}, which steers x0 to some
xm, such that

1
m (σmV (xm,ν [m:q+m−1]) + · · ·+ σ1V (x1,ν [1:q]))

− V (x0,u[0:q−1]) ≤ −α(x0,u[0:q−1]), (6)

where σm, . . . , σ1 ∈ R≥0 satisfy (4).
The interpretation of Definition 2 is that the sequence

of Lyapunov function values decreases on average every m
steps (condition (6)) and not at every step like a classical
Lyapunov function. As we will see later, this allows us
to relax the assumptions on the terminal conditions used
in standard MPC schemes. Definition 2 also allows for a
g-dclf V to depend on the state and on a q-long control
sequence.

We now utilize the concept of g-dclfs to present a novel
MPC scheme. Whereas the inequality (5) is satisfied for
all x0 ∈ Rn and all u[0:q−1] ∈ U[0:q−1], Definition 2
only guarantees the existence of ν [0:q+m−1] satisfying (6).
These controls need to be found through an optimization
problem. More precisely, the flexible-step MPC scheme is
based on the optimal control Problem 3, where the con-
dition (6) has been added as a constraint. The fraction
in (6) (or (3) in the case q = 0) represents a weighted
average, which is why we will refer to this constraint as the
average decrease constraint (adc). Recall that such finite-
horizon problems in MPC schemes are solved in a receding
horizon fashion. The q-long control strategy of the previous
iteration is denoted by u∗−

[0:q−1]. To be precise, u∗−
[0:q−1] =
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u∗
[ℓdecr:q+ℓdecr−1], where u∗

[ℓdecr:q+ℓdecr−1] was the optimal control
strategy with the index of descent ℓdecr of the g-dclf in
that previous iteration. The adc constraint guarantees, that
there exists an index 1 ≤ ℓdecr ≤ m at which a descent
of the g-dclf is achieved, that is V (x∗ℓdecr ,u∗

[ℓdecr:q+ℓdecr−1])−
V (x,u∗−

[0:q−1]) ≤ −α(x,u∗−
[0:q−1]). Otherwise, a contradiction

arises [1, Proposition 3.1]. The current state is x = x(k) and
the decision variables are [u0, u1, . . . , uN−1, x1, . . . , xNp ],
where N = max {q +m,Np}. This means if q+m > Np we
will consider control inputs which go beyond the prediction
horizon and help us decrease V on average.

Problem 3: Choose the following parameters a-priori:
Np ∈ N, q ≤ Np with q ∈ N,m ≤ Np with m ∈
N>0, X

Np ⊆ X ⊆ Rn with 0 ∈ intXNp , σm, . . . , σ1 ∈ R≥0

satisfying (4), a positive semi-definite function ϕ : Rn → R
and a g-dclf V : Rn×Rp,q → R of order m. Solve the finite-
horizon optimal control problem (7), where the function
f0 : Rn × Rp → R is positive definite and 0 ∈ intU ,
U ⊆ Rp.

min

Np−1∑
j=0

f0(x
j , uj) + ϕ(xNp)

s.t. xj+1 = f(xj , uj), j = 0, . . . , Np − 1,

x0 = x,

uj ∈ U, xj ∈ X, xNp ∈ XNp , j = 0, . . . , Np − 1

[ul, . . . , ul+q−1] ∈ U[0:q−1](x
l) for l = 0, 1, . . . ,m

1
m

m∑
j=1

σjV (xj , [uj , . . . , uj−1+q])− V (x0,u∗−
[0:q−1])

≤ −α(x0,u∗−
[0:q−1])

(7)

The flexible-step MPC scheme is given in Algorithm 1.
Note that within Algorithm 1, Problem 3 needs to be solved.
Like in any MPC scheme, any suitable solver for this nonlin-
ear constrained optimization problem can be used. Similar to
standard [2] or finite-step MPC [5] certain design parameters
need to be chosen a-priori in order to use Algorithm 1. We
anticipate that the flexibility, coming from our novel scheme,
simplifies the design of said parameters.

Algorithm 1 Flexible-step MPC scheme
1: set k = k0, measure the initial state x(k0) and choose

an arbitrary u∗−
[0:q−1] ∈ U[0:q−1](x(k0))

2: measure the current state x(k) of (1)
3: solve Problem 3 with x = x(k) and obtain the optimal

input u∗
[0:N−1], where N = max{q +m,Np}

4: choose an index 1 ≤ ℓdecr ≤ m for which
V (x∗ℓdecr ,u∗

[ℓdecr:q+ℓdecr−1]) − V (x,u∗−
[0:q−1]) ≤

−α(x,u∗−
[0:q−1])

5: implement u∗
[0:ℓdecr−1] =: [ckmpc, . . . , c

k+ℓdecr−1
mpc ] and re-

define u∗−
[0:q−1] := u∗

[ℓdecr:q+ℓdecr−1]

6: increase k := k + ℓdecr and go to 2

To explain the idea behind our implementation, we borrow
the function values generated in Section V by Algorithm 1

Fig. 1. The Lyapunov function value between the time steps 24 and 44
according to the solution of Problem 11

for the g-dclf V (x) = ∥x∥ with m = 6 . Fig. 1 focuses
on the evolution of the Lyapunov function values between
time step 24 and 44 for the sake of clarity. At k = 24,
Problem 11 is solved with the initial state x(24). We obtain
a trajectory of predicted states (x0, x1, x2, x3, x4, x5, x6)
and the corresponding Lyapunov function values seen in
Fig. 1. By definition of adc, at least one of the six future
Lyapunov function values will be strictly less than V (x(24)),
Algorithm 1 finds the index that achieves that descent in step
4, here, it chooses the index with the greatest descent. In
step 5, we implement the optimal control sequence until said
descent of the Lyapunov function values occurs. In Fig. 1,
the minimal Lyapunov function value occurs at V (x6),
which is displayed in red, thus, we implement the optimal
control sequence for six time steps and the actual states are
x(25) = x1, . . . , x(30) = x6. The new initial state for the
finite-horizon optimal control problem becomes x(30), with
the corresponding Lyapunov function value circled in black.
The arrows in Fig. 1 indicate the process of making the
current actual state the new initial state for the optimization,
during which time is frozen. We repeat this process and
decide to implement the control sequence for five steps,
x(31) = x1, . . . , x(35) = x5. The predicted state x6, whose
Lyapunov function value is colored in gray, is discarded in
this optimization instance. We define the new initial state
and proceed as before. The greatest descent is achieved after
five time steps, see Fig. 1. We observe that the Lyapunov
function value along the actual states is not monotonically
decreasing.

III. FEASIBILITY AND STABILITY RESULTS

In this section, we will discuss stability results with g-
dclfs. To this end, we recall the asymptotic stability of a
time-varying system [4]. Consider

xk+1 = F (k, xk), k ≥ k0, (8)

where F : N×X → Rn and F (k, 0) = 0 for all k ≥ k0. The
origin is an asymptotically stable equilibrium of (8) (with
region of attraction X) if

1) for all ε > 0 and any k0 ∈ N, there exists δ =
δ(ε, k0) > 0 such that xk0 ∈ X with 0 < ∥xk0∥ < δ
implies ∥xk∥ < ε for all k ≥ k0;
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2) for any k0 ∈ N and xk0 ∈ X , it holds limk→∞ xk = 0.
As a first result in this section, we give a recursive feasibility
result, which generalizes [1, Theorem 2.11]. For this, we
need the following generalized invariance assumption.

Assumption 4: Consider the sets U ⊆ Rp, XNp ⊆ X ⊆
Rn with 0 ∈ intU and 0 ∈ intXNp . Let V : Rn → R be
a g-dclf of order m = Np for system (1) and 1 < s ∈ N.
Assume that for any (x0,u[0:Np−1]) ∈ X × U[0:Np−1](x

0)
and any l ∈ {s, . . . , Np} there exists a feedback c : XNp →
Rp,l, x̃ 7→ c(x̃) such that for all x̃ ∈ XNp

1) c0(x̃), c1(x̃), . . . , cl−1(x̃) ∈ U ;
2) with x0 = x̃, we have xj+1 = f(xj , cj(x̃)) ∈ X for all

j = 0, . . . , s − 2 and xj+1 = f(xj , cj(x̃)) ∈ XNp for
all j = s− 1, . . . , l − 1;

3) [u[l:Np−1], c(x̃)] satisfies adc (3) with σ1 =
· · · = σs−1 = 0, i.e. the control sequence
[u[l:Np−1], c(x̃)] steers xl to some xNp+l such that
1
Np

∑Np

j=s σjV (xj+l)− V (xl) ≤ −α(xl).
Like the standard MPC invariance assumption [2], this
assumption consists of three conditions: 1) the feedback
c(x̃) satisfies the control constraints, 2) the feedback c(x̃)
renders XNp invariant in a generalized sense and 3) the
control sequence [u[l:Np−1], c(x̃)] satisfies adc where σs is
the first non-zero weight. To see that this assumption is a
generalization of [1, Theorem 2.11], let us elaborate more
on condition 2). It allows the states to leave the terminal
region XNp , as long as they return after at most s steps,
i.e. invariance is given after s steps and not after one step.
Meanwhile, condition 3) guarantees that the g-dclf decreases
after at least s steps, meaning that, if this assumption is
satisfied, then Algorithm 1 will implement at least s steps in
each iteration. The following theorem guarantees recursive
feasibility as defined in e.g. [2, p. 797].

Theorem 5 (Relaxed Recursive Feasibility): Let
V : Rn → R be a g-dclf of order m = Np for
system (1) with weights σ1 = · · · = σs−1 = 0 in (3).
Suppose that Assumption 4 is satisfied and that Problem 3
with x = x(k0) is feasible. If the index of descent in
Algorithm 1 is chosen between s ≤ ℓdecr ≤ Np, then the
resulting MPC scheme is recursively feasible.

Proof: To prove recursive feasibility, we make use of
the terminal set XNp . As a first step, we add the terminal
constraint xNp ∈ XNp of Problem 3 to the set of feasible
controls U[0:Np−1](x

0) of length N = Np, compare (2).
Consider now Algorithm 1 starting at some non-negative
integer k, and suppose that Problem 3 was feasible in the
previous iteration. We show that Problem 3 stays feasible
after executing Algorithm 1. To that end, suppose that we
arrived at the state x(k) ∈ X , the previous control strategy
is given by u∗−

[0:Np−1] and the previous index of descent is
given by ℓ−decr. By assumption, the states steered by u∗−

[0:Np−1]

satisfy x1, . . . , xNp−1 ∈ X,xNp ∈ XNp . Additionally,
all components of u∗−

[0:Np−1] are elements of U . For the
optimization instance starting at x(k), let us focus on the
last Np − ℓ−decr components of u∗−

[0:Np−1]. By considering
x̃ = xNp ∈ XNp for Assumption 4, the control sequence

[u∗−
[ℓ−decr:Np−1]

, c(xNp)] and the corresponding states starting at
x(k) satisfy adc. Moreover, the controller guarantees that the
states return to XNp after at most s ≤ ℓ−decr steps. Hence, the
choice of [u∗−

[ℓ−decr:Np−1]
, c(xNp)] yields a feasible controller.

In [1, Theorem 2.5], we have shown convergence of the
state to zero and asymptotic stability for strictly positive
weights σi by using the framework of g-dclfs. The strictly
positive weights are a mean for governing the state and
control pairs coming out of adc. In light of our relaxed
feasibility result, we next state an asymptotic stability result
without an additional restriction on σi. If we want to remove
the positivity restriction on the weights, we are in need of a
new assumption on the g-dclf for which we orient ourselves
to finite-step control Lyapunov functions [5]. The following
assumption ensures that the state and control pairs are K-
bounded.

Assumption 6: There exist α, α ∈ K∞ such that for any
ω = (x0,u[0:q−1]) ∈ Rn ×U[0:q−1](x

0) we have

α(∥ω∥) ≤ V (ω) ≤ α(∥ω∥). (9)

Furthermore, assume that there exist class-K func-
tions {κj}m−1

j=0 such that for any (x0,u[0:q−1]) ∈
Rn ×U[0:q−1](x

0) and j = 0, . . . ,m − 1 there exists
ν [0:q+m−1] ∈ Rp,q+m with ν [j:q+j−1] ∈ U[0:q−1](x

j) and
∥(xj ,ν [j:q+j−1])∥ ≤ κj(x

0,u[0:q−1]).
Theorem 7 (Relaxed Asymptotic Stability): Let V : Rn ×

Rp,q → R be a g-dclf of order m for (1), suppose that
Assumption 6 and for q ̸= 0 the Small Control Property [1,
Assumption 2.4] holds. Then there exists a feasible control
strategy rendering the origin asymptotically stable.

Proof: To ease notation, we will present the proof for
the case m = 2, while keeping some of the notations for
a generic m for illustrative purposes. Let us consider the
case σ1 = 0, which implies σ2 ≥ 2. By [1, Theorem 2.3]
it is guaranteed that any state xk0 can be steered to zero. It
remains to show asymptotic stability. To this end, fix ε > 0
and k0 ∈ N. Due to the radial unboundedness of V by (5),
we can choose 0 ̸= p ∈ Rn × Rp,q such that there exists
r ∈ (0, ε), where

V (x,u) ≤ V (p) ⇒ ∥(x,u)∥ ≤ r. (10)

Now define Br := {(x,u) ∈ Rn × Rp,q : ∥(x,u)∥ ≤ r},
β := V (p) > 0 and Ωβ := {(x,u) ∈ Br : V (x,u) ≤
β}. It follows Ωβ ⊆ Br. Once we choose initial data
(xk0 ,uk0

[0:q−1]), a whole sequence {(xk,uk
[0:q−1])}k≥k0

is
generated through the control strategy characterized by [1,
Proposition 3.2], whose subsequence achieves a strict descent
of the Lyapunov function values. Since we are investigating
the case σ1 = 0 and σ2 ≥ 2, we may assume, without loss of
generalization, that the descent always occurs after two time
steps, i.e. the subsequence {(xk0+2l,uk0+2l

[0:q−1])}l∈N achieves

V (xk0 ,uk0

[0:q−1]) > V (xk0+2,uk0+2
[0:q−1]) > · · · ≥ 0. (11)

Let 0 < β̂ < β. Due to the continuity of V , there exists
kN < ∞ such that V (xk,uk

[0:q−1]) < β̂ for all k ≥ kN .
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Recall that, by Assumption 6, we have the two bounds

V (xk0+j ,uk0+j
[0:q−1]) ≤ α(∥(xk0+j ,uk0+j

[0:q−1])∥)

∥(xk0+j ,uk0+j
[0:q−1])∥ ≤ κj(x

k0+j ,uk0+j
[0:q−1])

for all j = 0, . . . ,m− 1. This implies V (xk0+j ,uk0+j
[0:q−1]) ≤

α(κj(x
k0 ,uk0

[0:q−1])) for all j = 0, . . . ,m − 1. Motivated
by [3], we define

V max(xk0 ,uk0

[0:q−1]) := max
j=0,...,m−1

V (xk0+j ,uk0+j
[0:q−1])

κmax(xk0 ,uk0

[0:q−1]) := max
j=0,...,m−1

κj(x
k0 ,uk0

[0:q−1]).

Let β̃(xk0 ,uk0

[0:q−1]) := min{β̂,minj=0,··· ,N−1 b
j}, where

bj = {β − (α(κmax(xkj ,u
kj

[0:q−1]))− V (xkj ,u
kj

[0:q−1]))}.

Recall that α ∈ K∞, κj ∈ K and V is positive definite
and continuous. Hence, we have β̃(0,0) > 0. Together
with the continuity of the minimum function, this implies
that β̃(xk0 ,uk0

[0:q−1]) is continuous and for small enough
(xk0 ,uk0

[0:q−1]), it is greater than zero. Suppose for now we
have

V (xk0 ,uk0

[0:q−1]) < β̃(xk0 ,uk0

[0:q−1]) (12)

for some xk0 ∈ X \ {0} and uk0

[0:q−1] ∈ U[0:q−1](x
k0).

Then we claim that the control strategy characterized by [1,
Proposition 3.2] achieves V (xk,uk

[0:q−1]) ≤ β for all k ≥ k0.
Together with (10), this would imply that (xk,uk

[0:q−1]) stays
in Ωβ for k ≥ k0. We first observe, that by equation (11)

V (xkn ,ukn

[0:q−1]) < V (xk0 ,uk0

[0:q−1]) < β̃(xk0 ,uk0

[0:q−1]) < β

for all kn = k0 + 2l, l ∈ N. It remains to guarantee that
V (xkn ,ukn

[0:q−1]), kn = k0 + 2l + 1, stays within the bound
for all l ∈ N. Observe that for any kn = k0 + 2l <
kN and any j = 0, . . . ,m − 1, V (xkn+j ,ukn+j

[0:q−1]) ≤
V max(xkn ,ukn

[0:q−1]), which is strictly less than

β̃(xk0,uk0

[0:q−1]) + α(κmax(xkn,ukn

[0:q−1]))− V (xkn,ukn

[0:q−1])

≤ β − (α(κmax(xkn ,ukn

[0:q−1]))− V (xkn ,ukn

[0:q−1]))

+ α(κmax(xkn ,ukn

[0:q−1]))− V (xkn ,ukn

[0:q−1]).

We conclude that (xk,uk
[0:q−1]) ∈ Ωβ and therefore,

(xk,uk
[0:q−1]) ∈ Br for all k ≥ k0. Thus, we obtain

∥xk∥ ≤ ∥(xk,uk
[0:q−1])∥ ≤ r < ε for all k ≥ k0. It

remains to guarantee that we can find xk0 ∈ X \ {0} and
uk0

[0:q−1] ∈ U[0:q−1](x
k0) with (12). Similarly to before, we

make use of a continuity argument: The functions V and β̃
are continuous and V (0,0) = 0, β̃(0,0) = β̂ > 0. Hence,
there exists δ > 0 such that ∥(x,u[0:q−1])∥ < δ implies
β̃(x,u[0:q−1]) − V (x,u[0:q−1]) > 0. If q = 0, then the
continuity of V is enough, for q ̸= 0 we need to evoke Small
Control Property [1, Assumption 2.4]. It guarantees that for
all ε̄ > 0, there exists δ̄ > 0 such that for all 0 < ∥xk0∥ < δ̄
there exists uk0

[0:q−1] ∈ U[0:q−1](x
k0) with ∥uk0

[0:q−1]∥ < ε̄

satisfying the inequalities (5) and (6). Thus, for small enough
ε̄ we have ε̄+ δ̄ < δ and obtain that for any xk0 ∈ X with
0 < ∥xk0∥ < δ̄ there exists uk0

[0:q−1] ∈ U[0:q−1](x
k0) with

∥(xk0 ,uk0

[0:q−1])∥ ≤ ∥xk0∥+ ∥uk0

[0:q−1]∥ < δ̄ + ε̄ < δ.

We can deduce that the Lyapunov function value of
(xk0 ,uk0

[0:q−1]) satisfies the desired bound (12). In summary,
if xk0 ∈ X satisfies 0 < ∥xk0∥ < δ̄, then ∥xk∥ < ε for all
k ≥ k0. This completes the proof.

Remark 8: Unlike standard MPC [2], where the optimal
value function is used as the Lyapunov function to show
stability, the proof of Theorem 7 is utilizing the novel
concept of a g-dclf and does not rely on the positive-
definiteness of the cost function f0. This assumption allows
us, however, to recover standard MPC from flexible-step
MPC [1, Remark 2.14].

IV. CONVERSE RESULTS

We now give a converse result. Here, we rely on the notion
of a feasible flexible-step control law; to define this precisely,
one requires some rather cumbersome notations, which we
omit here for reasons of space, and instead refer the reader
to [1, Remark 2.8] where a similar treatment is presented.

Theorem 9 (Converse Result): Consider system (1) for
X = Rn with a feasible flexible-step control law. Assume
that the origin of the resulting closed-loop system is asymp-
totically stable, i.e. there exists a KL function β such that
for all k0 ∈ N and xk0 ∈ Rn

∥xk∥ ≤ β(∥xk0∥, k) ∀k ≥ k0. (13)

Furthermore, assume that there exists a continuous, radially
unbounded and positive definite function γ : R≥0 → R≥0

such that

1
m (σ1β(r, 1) + σ2β(r, 2) + · · ·+ σmβ(r,m))− r ≤−γ(r)

(14)
for all r > 0, with weights σ1, . . . , σm ∈ R≥0 satisfying (4).
Then V : Rn → R≥0, x 7→ η∥x∥, η > 0 is a g-dclf for the
closed-loop system.

Proof: We will show that adc with V (x) = η∥x∥, η > 0
holds for all x0, for a continuous, radially unbounded and
positive definite function α : Rn → R. For all x0, we have

σ1η∥x1∥+ σ2η∥x2∥+ · · ·+ σmη∥xm∥
m

− η∥x0∥

≤ η

(
σ1β(∥x0∥, 1) + · · ·+ σmβ(∥x0∥,m)

m
− ∥x0∥

)
≤ −ηγ(∥x0∥) =: −α(x0),

where α : Rn → R, x 7→ ηγ(∥x∥) has the desired properties.
This shows that V (x) = η∥x∥ is a g-dclf.

Proposition 10: Consider system (1) for X = Rn with a
feasible flexible-step control law. Assume that the origin of
the resulting closed-loop system is exponentially stable, i.e.
the KL function in (13) can be chosen as β(r, t) = Cµtr
with C ≥ 1 and µ ∈ [0, 1). Then if m ∈ N satisfies Cσ̄µ

1−µ <
m, for σ̄ = max(σ1, . . . , σm), the condition (14) is satisfied.
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Fig. 2. Evolution of the first and second component of the state in the
x1x2-plane according to the solution of Problem 11. The terminal region
is a four dimensional sphere, but for any fixed x3 ∈ R and x4 ∈ R this
sphere reduces to a circle, where the circle with x3 = x4 = 0 is the biggest
of such circles, displayed here in black. The obstacle is shown in red. The
initial states, where the next optimization instance starts, are circled. On
the left, we focus on the two consecutive optimization instances, where the
actual states first enter the terminal region.

With Theorem 5 and 7 at hand, recursive feasibility
and asymptotic stability with a relaxed requirement on the
terminal region (Assumption 4) is guaranteed. Additionally,
Theorem 9 yields that we can focus on g-dclfs of the form
V (x) = η∥x∥. This simplifies the design of our MPC
scheme, as we will see in the next section.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the
flexible-step MPC scheme on a nonholonomic system with
state constraints and a terminal region. The dynamics of the
state xj+1 = [xj+1

1 xj+1
2 xj+1

3 xj+1
4 ]T ∈ R4 with the sampling

time h = 0.01 and the control input uj = [uj
1 uj

2]
T ∈ R2 are

given by

xj+1 = xj + h


1
0

−xj
2

xj
3

uj
1 + h


0
1

xj
1

xj
2

uj
2 + h


0
0
0

|xj
4|

. (15)

The state constraints are imposed through an obstacle, de-
scribed by (xj

1 − 0.5)2 + (xj
2 − 0.6)2 − 0.16 < 0. Thanks

to our relaxed invariance Assumption 4, the terminal region
is simply taken to be XNp := {x ∈ R4 : ∥x∥ ≤ 0.35}. We
now solve the following optimal control problem with the
initial state [1 2 3 5]T and the prediction horizon Np = 19
within Algorithm 1 by using fmincon from MATLAB.

Problem 11:

min

Np−1∑
j=0

∥xj∥2 + 5 ∥uj∥2

s.t. (15) holds with x0 = x

0.1 · (6∥x6∥+ 5∥x5∥+ 5∥x4∥)− ∥x0∥ ≤ −ε∥x0∥4

(xj
1 − 0.5)2 + (xj

2 − 0.6)2 − 0.16 ≥ 0, xNp ∈ XNp .
The evolution of the first and second component of the state
are depicted in Fig. 2. We see that the states successfully

avoid the obstacle and remain in the terminal region after
some time. A closer look of the terminal region is given in the
left-hand corner of Fig. 2. Once the states reach the terminal
region, they leave this region for two time steps in the
next optimization instance and then return. This is precisely
where we see our relaxed invariance Assumption 4 at play,
with invariance achieved after multiple steps. All in all, we
successfully utilized the simple g-dclf V (x) = ∥x∥ and
the simple terminal region, here described by the Euclidean
distance. The flexibility in the number of implemented steps
can be seen in Fig. 1, where during the time steps 24 and
44, six, five, five and four steps were implemented.

VI. CONCLUSION

The main objective of this manuscript has been to
demonstrate some advantageous features of the flexible-MPC
scheme, particularly regarding stability and feasibility, in
addition to the ease in the selection of terminal constraints.
There are many avenues of future research, including the
connection of classical Lyapunov functions to g-dclfs, the
study of the trade-offs between exploration and robustness,
and the applications of the proposed methods in data-driven
settings.
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