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Abstract— An important problem in many areas of science is
that of recovering interaction networks from high-dimensional
time-series of many interacting dynamical processes. A common
approach is to use the elements of the correlation matrix or
its inverse as proxies of the interaction strengths, but the
reconstructed networks are necessarily undirected. Transfer
entropy methods have been proposed to reconstruct directed
networks, but the reconstructed network lacks information
about interaction strengths. We propose a network reconstruc-
tion method that inherits the best of the two approaches
by reconstructing a directed weighted network from noisy
data under the assumption that the network is sparse and
the dynamics are governed by a linear (or weakly-nonlinear)
stochastic dynamical system. The two steps of our method
are i) constructing an (infinite) family of candidate networks
by solving the covariance matrix Lyapunov equation for the
state matrix and ii) using L1-regularization to select a sparse
solution. We further show how to use prior information on the
(non)existence of a few directed edges to dramatically improve
the quality of the reconstruction.

I. INTRODUCTION

In many areas of science it is common to record the evo-
lution in time of many interacting processes. A natural and
important problem is then to develop data-driven methods
that can recover, or reconstruct, from the resulting high-
dimensional time-series the underlying interaction network.
Ideally, the reconstructed network would include information
about both the direction and the strength of the interactions.
Interaction networks reconstruction has applications, e.g., in
neuroscience (between neurons or neuronal populations), in
ecology (i.e., between species populations in a community),
in molecular biology (i.e., between expression of genes), and
in social sciences (i.e., between opinionated individuals).

An established approach, commonly employed in neuro-
science applications [1]–[3], is to use correlation measures to
approximate interaction networks through the entries of the
covariance matrix or its inverse, the precision matrix. Net-
works reconstructed from the precision matrix were found
to better correlate to the underlying anatomical network [1].
However, whether using the correlation or the precision ma-
trix, the reconstructed network will necessarily be undirected
because both matrices are symmetric.
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In order to reconstruct directed network interactions, trans-
fer entropy (TE) [4] has emerged as a powerful information-
theoretical measure of directed information transfer between
dynamical processes, with many applications in neuroscience
[5]–[9]. However, transfer entropy methods can only recon-
struct unweighted directed interaction networks, i.e., they can
only provide information about whether a process directly
affects (or not) another but not the strength or sign of this
directed interaction.

A commonly used, mathematically tractable approxima-
tion is to assume that the network dynamics can be modelled
by a linear (or weakly nonlinear) stochastic differential
equation driven by a white noise vector. When used to
describe resting-state brain activity, the resulting model is
known as the (linear) Dynamical Causal Model (DCM) [10],
[11]. Under this assumption, the covariance matrix of the
model is the solution to a Lyapunov equation that links it to
the state matrix of the network [12], [13]. If the state matrix
is assumed to be symmetric (i.e., the network is undirected)
and the noise components are uncorrelated, then solving
the Lyapunov equation for the state matrix returns exactly
the precision matrix [1]. But if no symmetry assumptions
are made, then solving the Lyapunov equation for the state
matrix returns a whole affine subspace of candidate solutions.
Methods using differential covariance [2] enable singling out
asymmetric solutions, but these methods require computing
the time-derivative of the measured time-series, which can
problematic or unfeasible when measurement or intrinsic
noise are high.

We introduce a novel method to reconstruct weighted, thus
directed, dynamical networks, using the idea that under the
extra assumption that the interaction network is sparse, L1-
regularization can effectively select such a sparse solution
from among the candidates. We also show how prior knowl-
edge of edge existence can be included in the constraints of
the resulting linear programming (LP) problem to enhance
the method performance.

The first and main contribution of the paper is to for-
mulate an L1-regularization problem for sparse network
reconstruction as an LP optimization problem over the affine
solution space of all state matrices that solve the covariance
Lyapunov equation for a given covariance matrix. Crucially,
this requires the preliminary construction of an isomorphism
from such a solution space to the solution space of an
underdetermined linear system of equations. The second
contribution is to show how to introduce prior knowledge on
edge existence into the constraints of the LP problem. The
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third contribution is to suggest the use of a TE-based network
inference algorithm as a way of obtaining some priors on
edge existence and show that it significantly improves the
quality of network reconstruction.

The paper is structured as follows. Notation is introduced
in Section II. The network model and its interpretation are
introduced in Section III. Section IV studies the geometry of
the solution space of the covariance Lyapunov equation for
the state matrix and introduces the isomorphism needed for
the LP formulation of an L1-regularization problem over this
space. Section V explicitly describes the LP formulation of
the L1-regularization problem. Section VI shows how prior
information about edge existence can be incorporated into
the constraints of the LP problem. Section VII introduces an
algorithm based on TE to provide prior knowledge on edge
existence and show how to use it to constrain the LP problem.
Finally, Section VIII presents extensive numerical validation
results obtained over large families of randomly generated
sparse Hurwitz matrices. Conclusions and perspectives are
presented in Section IX.

II. NOTATION

We denote [n] = {1, ..., n}. Given n,m ∈ N, we write
Rm×n for the set of m by n matrices with real entries.
For i ∈ [m], and j ∈ [n], the value at the i-th row and
j-th column of A ∈ Rm×n is Ai,j . The column-stack
vectorization isomorphism vec : Rm×n → Rmn is given
by (vec(A))m(j−1)+i = Ai,j . Vector 1n ∈ Rn consists
of n entries equal to 1 (and similarly for 0n). The set
of eigenvalues of B ∈ Rn×n is σ(B). The real part of
z ∈ C is denoted ℜ(z). For a pair of matrices A ∈
Rn×n, B ∈ Rn×n, ⊗ is the Kronecker product given by
∀r, v, s, w ∈ [n], (A⊗B)n(r−1)+v,n(s−1)+w = (Ar,s)(Bv,w),
so that A⊗B ∈ Rn2×n2

.

III. MODEL FORMULATION

We consider a network model described by the linear
stochastic differential equation (SDE) [13]

dx

dt
(t) = Ax(t) + w(t) (1)

where w is a white noise vector (with noise covariance
Q = I) and A ∈ Rn×n is a Hurwitz matrix, i.e., all of its
eigenvalues have a strictly negative real part. Any solution
x for system (1) is a stochastic process with mean 0 and
covariance matrix Γ = E(xxT ) (see for example Section
4.3 in [13]).

In a network modeling setting, A is interpreted as a
weighted and signed adjacency matrix. A non-zero element
Aij ̸= 0 is interpreted as the existence of a directed edge
from node j to node i. The sign of Aij determines the
nature of the interaction (excitatory or inhibitory) and |Aij |
determines its strength.

Fig. 1. Heatmaps for three examples of weighted connectivity matrices of
dimension 8 × 8. The leftmost heatmap is for a sparse matrix A ∈ R8×8

generated randomly using the algorithm in Section VIII. The other two
matrices were selected randomly from the solution space SΓ for the matrix
A. This means the solution to the system in (1) has the same covariance
matrix for all three matrices.

IV. SOLVING THE COVARIANCE LYAPUNOV EQUATION
FOR THE STATE MATRIX

It is known [12], [13] that A and Γ satisfy the following
Lyapunov equation:

ΓAT +AΓ = −I. (2)

Given A, the stable covariance matrix solution is given by

vec(Γ) = −(I ⊗A+A⊗ I)−1vec(I),

which is readily computed. However, because the covariance
matrix is symmetric, the inverse problem, i.e., solving for
A given Γ, does not have a unique solution [14]. The
differential covariance approach [2] uses the fact that the
expected value of ẋxT is equal to AΓ to obtain a unique
inverse solution A. However, when measurement or intrinsic
noise are large, computing time-series derivatives can be
problematic or unfeasible. Our goal is to propose a new algo-
rithmic method that, under suitable assumptions, can single
out a unique solution to the inverse covariance Lyapunov
equation (2). Following [14], given Γ, define its orthonormal
spectral decomposition:

Γ = UCUT (3)

where U is an orthonormal matrix and C is a diagonal matrix
of entries ci, the eigenvalues of Γ. Let Ā = UTAU . Then
we can rewrite (2) as

UT (UCUTAT +AUCUT )U = CĀT + ĀC = −I

which has solutions Ā easily shown to satisfy

Āi,j =

{
−1
2ci

, if i = j

− ci
cj
Āj,i, if i ̸= j

. (4)

The set of matrices Ā satisfying (4) is an affine subspace
of dimension m = n(n−1)

2 . Since A = UĀUT , this means
that the set of possible solutions A to the inverse covariance
Lyapunov equations is also an m-dimensional affine space
SΓ ⊆ Rn×n. Figure 1 shows a Hurwitz matrix A, with
correlation matrix Γ, together with other two matrices taken
randomly from the solution space SΓ, hence associated to
the same covariance matrix.

The following proposition characterizes the matrices in SΓ

with a linear equality constraint on the vectorized matrices.
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It is needed to formulate an L1-regularization problem over
SΓ as a LP problem.

Proposition 4.1: Given a covariance matrix Γ = UCUT ,
define a matrix M of dimensions n(n+1)

2 × n2 and a vector
b of dimension n(n+1)

2 with entries, respectively, given by

Mι1(i,j),ι2(ℓ,k) =

{
cjUℓ,iUk,j + ciUℓ,jUk,i if i ̸= j

Uℓ,iUk,j if i = j

and

bι1(i,j) =

{
0 if i ̸= j
−1
2ci

if i = j

where ι1 : {(i, j) | i, j ∈ [n], i ≤ j} → [n(n+1)
2 ] and ι2 :

[n]2 → [n2] are one-to-one functions that give the index of
the vectorizations of the upper triangle of Ā (including the
diagonal) and of the full matrix respectively. Then for v ∈
Rn2

, we have that vec−1(v) ∈ SΓ if and only if Mv = b.
Proof: Let v ∈ Rn2

and take A = vec−1(v).
Suppose A ∈ SΓ. From (4), if i ̸= j then∑n

ℓ=1

∑n
k=1 Uℓ,iAℓ,kUk,j = (UTAU)i,j = Āi,j =

− ci
cj
Āj,i = − ci

cj

∑n
ℓ=1

∑n
k=1 Uℓ,jAℓ,kUk,i, from which it

follows that
n∑

ℓ=1

n∑
k=1

(cjUℓ,iUk,j + ciUℓ,jUk,i)Aℓ,k = 0. (5)

Similarly, when i = j,

Āi,j =

n∑
ℓ=1

n∑
k=1

Uℓ,iUk,jAℓ,k =
−1

2ci
. (6)

Equations (5),(6) are precisely the n(n+1)
2 identities that are

encoded in M and b, which implies that Mv = b.
Following the same argument, for any v ∈ Rn2

, if Mv =
b, then vec−1(v) ∈ SΓ.

V. L1-REGULARIZATION ON SΓ AND SPARSE NETWORK
RECONSTRUCTION

Assume that the interaction network we are reconstructing
is sparse. Then, a reasonable way to recover a particular
solution from SΓ is to look for matrices with minimum L1

norm; this is a common approach for promoting sparsity of
solutions [15]. We pose the problem of minimizing the L1

norm of the vectorized matrices as follows:

Minimize ∥v∥1 (7)
Subject to Mv = b .

In turn, (7) can be transformed into a Linear Programming
(LP) problem by taking a new variable u ∈ Rn2

and a vector
s = (1n2 ,0n2), and defining the LP problem:

Minimize sT
[
u
v

]
(8)

Subject to
[
0 M

] [u
v

]
= b

and
[
−I I
−I −I

] [
u
v

]
≤ 02n2 .

Fig. 2. Diagram illustrating the way the optimization problem (7) can be
encoded as a linear programming problem. The top n(n+1)

2
× 2n2 sub-

matrix is used as an equality constraint, which restricts the search to matrices
on SΓ. The 2n2×2n2 sub-matrix bellow is used as an inequality constraint
which ensures that for each ℓ, k we have |v(ℓ,k)| ≤ u(ℓ,k). An example of
this encoding for the case n = 5 is show on the right.

The LP problem (8) minimizes the objective
∑

(i,j) u(i,j)

subject to the restriction that vec−1(v) ∈ SΓ and |v(i,j)| ≤
u(i,j) for all i, j ∈ [n]. A solution to the LP problem (8)
immediately gives a solution to the problem (7) and vice-
versa – in this sense the two problems are equivalent [15].

Solving (8) will return a sparse solution from SΓ. How-
ever, because there might be (and usually are) many sparse
matrices in SΓ, the solution to the L1-regularization problem
might still be very different from the true network adjacency
matrix, including under the sparsity assumption and mostly
depending on the initial problem data. In the following
section we present a way to constrain the optimization
problem by including approximate prior knowledge on edge
existence to bias the reconstruction toward solutions that are
consistent with the priors.

VI. INCLUDING PRIORS ON EDGE EXISTENCE

The idea for including priors comes from the observation
that if we knew that exactly p directed edges (and which
ones) existed in the network, then A would lie in RΓ ⊆
Rn×n of dimension p, i.e., the subspace parameterized by
the p nonzero elements of A. By Proposition 4.1, A ∈ SΓ.
Thus, A ∈ SΓ∩RΓ, that is, A must lie in the intersection of
two affine subspaces of dimension m = dim(SΓ) =

n(n−1)
2

and p = dim(RΓ), respectively.
It is well known (a consequence of Theorem 2.43 in [16])

that the transversal intersection of two linear subspaces of
Rn×n of dimension p and m, with m + p ≤ n2 is either
empty or a point. This means that if we have exact knowledge
of which edges exist in the network and the network has a
sufficiently small number of connections (i.e., m+ p ≤ n2),
then solving (8) restricted to RΓ would return A exactly.
However, given only imperfect knowledge of edge existence
and if m+p ≤ n2, then our noisy approximation R̂Γ of RΓ

and SΓ will almost surely not intersect at all. In spite of this,
looking for the matrix A ∈ SΓ with minimal distance to R̂Γ

should bias the solution (8) toward the real A. This is the
approach we use here.
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Based on this idea we define a vector with entries repre-
senting the relative importance assigned to each connection
during the optimization, Z ∈ [0, 1]n

2

. The objective of the
minimization then becomes

∑
(i,j) Z(i,j)|v(i,j)|. In the sim-

plest case, we can introduce information about the presence
of edges in the following way. Let I = {(i, j) ∈ [n]2 |
(i, j) is a known edge}. Then we can define Z as

Z(i,j) =

{
1 if (i, j) /∈ I
0 otherwise.

Written as an LP the problem becomes

Minimize sT
[
u
v

]
(9)

Subject to
[
0 M

] [u
v

]
= b

and
[
−I diag(Z)
−I −diag(Z)

] [
u
v

]
≤ 02n2 .

When there are no edge priors, Z = 1n2 , and the problem in
(9) reduces to (8). An illustrative example of the constraint
matrix in (9) is shown in Figure 2. Note in Figure 2 that
this matrix is sparse in most places except the top right
corner; thus, optimization methods that take advantage of
sparse structure can be employed. Problem (9) leads to an
optimization that prioritizes finding a solution where the
edges not in I have weight close to zero in absolute value.
The values of Z could also be adjusted to correspond with the
level of certainty about prior edge existence. For simplicity,
in the following we only consider Z ∈ {0, 1}n2

.

VII. EDGE PRIORS FROM TRANSFER ENTROPY

There are various ways to obtain prior knowledge on edge
existence, e.g., from expert knowledge or from previous
analysis. One generally applicable tool for inferring the
existence of directed interactions is Transfer Entropy (TE)
[4]. Given two discrete-time stationary stochastic processes
X and Y , the TE from X to Y is a measure of the predictive
power of X about Y at a discrete time t. In its simplest form
TE is defined as [4]

TX→Y (t) = I(X(t− 1);Y (t) | Y (t− 1))

= H(Y (t) | Y (t− 1))−H(Y (t) | X(t− 1), Y (t− 1)).

So, TX→Y (t) is the mutual information I of X(t− 1) and
Y (t) conditioned on Y (t− 1), where

I(X;Y |Z)=
∫
Z

∫
Y
∫
X pX,Y,Z(x,y,z) ln

(
pZ (z)pX,Y,Z (x,y,z)

pX,Z (x,z)pY,Z (y,z)

)
dx dy dz,

p are probability density functions of the joint distri-
butions of variables represented by the subscripts, and
X ,Y,Z are the supports of X,Y, Z respectively. TX→Y (t)
can equivalently be written in terms of H(X | Y ) =

−
∫
X
∫
Y pX,Y (x, y) ln(

pX,Y (x,y)
pY (y) ). If the processes are as-

sumed to be stationary then TE is the same for all values
of t and we can simply write TX→Y .

This measure has been shown to be a good indicator
of directed interactions between pairs of noisy dynamical

variables [7], [17], [18], and can be seen as a nonlinear gen-
eralization of Granger causality [19]. It can also be extended
to take into account factors such as redundancy and synergy
in a partial information decomposition approach [20].

A simple way to reduce the effects of redundancy when
inferring connectivity is to use conditional TE: TX→Y |Z .
The definition of TX→Y |Z is the same as for TX→Y but
conditioned on the past of Z. Connectivity can then be in-
ferred from a set of n stochastic processes Xi by calculating
TXi→Xj |X(i,j)

for each pair 1 ≤ i, j ≤ n, where X(i,j) is
the joint distribution of all the variables except Xi and Xj .
Then we say there is a significant interaction from Xi to Xj

if TXi→Xj |X(i,j)
is higher than what would be expected by

pure chance (using suitable data shuffling and significance
testing). However, this approach is usually not feasible for
large networks due to the amount of required data.

To bypass this problem in cases where the number of
edges in the network is small (i.e., the connectivity matrix
is sparse), Novelli et al. [7] proposed a greedy algorithm
that finds a set of sources for each target node by i)
creating a candidate set of source nodes with significant TEs
when conditioned only on previously selected nodes and ii)
removing all nodes for which TE became non-significant due
to redundancy with newly added nodes. This algorithm (and
others) is implemented in the IDTxl Python package [21].

In order to keep inference fast, we adapted the greedy
algorithm in [7] to a simplified version where only Step i) of
the algorithm is used. This did not seem to drastically impact
the performance of the method. However, we observed an
increase in false positives, so we introduced a strict upper
bound on the number of inferred edges.

VIII. NUMERICAL VALIDATION

We tested our method on randomly generated matrices of
the form

A = −I +
1− ε

bmax
B ,

where B is is an Erdős–Rényi graph with normally dis-
tributed edge weights, ε ∈ (0, 1] is a parameter that controls
the spectrum of A by weighting B, and bmax = max{ℜ(λ) |
λ ∈ σ(B)}. We get amax = max{ℜ(λ) | λ ∈ σ(A)} =
−1 + ε.

A. Implementation

For numerical validation, our algorithm was implemented
in standard Python libraries. The code can be found at
https://github.com/ianxul/SDE-net-reconstruction. For esti-
mating conditional TE interactions, we used the GPU-
enabled estimator in IDTxl package [21], and the adapted
algorithm described in Section VII. We further simplified the
permutation-based significance test suggested in [7] by using
a less computationally intensive threshold heuristic similar
to [18]. L1-optimization was performed using CVXPY pack-
age [22] with the splitting conic solver (SCS).

Simulations of SDEs were run with Julia’s DifferentialE-
quations solver. We used the LambaEM solver for SDEs with
a step size of 0.1 for 10, 000 time steps (giving 100, 000 data
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Fig. 3. Three examples of reconstructed connected networks using our
method with edge priors inferred using TE (middle), and no info (right),
applied to time-series generated from the weakly-nonlinear system in (10).
The ground truth connectivity matrix A is show on the left. The top row
shows examples of good reconstruction (high alignment between recon-
structed matrix and the ground truth), the middle row shows reconstruction
with median alignment, and the bottom row shows a bad reconstruction
(low alignment). The alignments for the reconstructions with TE Info were
0.99, 0.90 and 0.31 for the good, median, and bad respectively. For the
No Info the alignments were 0.43, 0.42, and 0.53 for the good, median,
and bad respectively. Examples were selected from 600 simulated dynamics
of matrices with 20 edges and different ε values by sorting according to
alignment of TE Info reconstruction and selecting the best, median, and
worst reconstructions.

points for each simulation). We applied our method to the
data generated from the linear SDE system (1) and from
the weakly nonlinear (saturated network interactions) SDE
system

dxi

dt
= Ai,ixi +

∑
i̸=j

(tanh(Ai,jxj)) + w(t). (10)

To compare different methods we computed the alignment
between the vectorized matrices, excluding the diagonal, as
it is not related to network reconstruction:

align(A,B) =

∑
i ̸=j Ai,jBi,j(∑

i ̸=j A
2
i,j

) 1
2
(∑

i ̸=j B
2
i,j

) 1
2

. (11)

We compared three cases: i) “Full Info”, in which full
information on edge existence is given and which should
lead to perfect reconstruction; ii) “TE Info”, in which edge
existence is inferred using TE methods; iii) “No Info”, in
which we simply perform L1-regularization over SΓ as in
(8). Results are exemplified in Figure 3 and summarized in
Figure 4.

B. Results and discussion

Our results show that adding edge existence priors ob-
tained through TE [7] to our reconstruction method im-
proves the alignment of reconstructions considerably when
compared against doing L1-regularization with no prior

Fig. 4. Plots showing the performance of our method for 100 samples of
random Hurwitz matrices of size 10 × 10 generated with different values
of ε, and with a) 10, b) 20, c) 30 edges. The L1 optimization methods
compared are: Full Info (blue), TE Info (red), No Info (green) on edge
existence. Performance of precision and correlation matrices were added as
reference in purple and orange respectively. Darker colors correspond to
reconstructions for data simulated using the linear system in (1), and lighter
colors for the weakly-nonlinear system in (10). Notches in boxes represent
median values and dotted lines mean values. Boxes encompass 50% of the
data points. Isolated points are outliers.

information, and against the precision and correlation ma-
trices, as can be seen in Figures 3 and 4. Interestingly, L1-
regularization with no edge priors performed worse than the
symmetric methods for both the linear and weakly nonlinear
cases. A possible reason is that for a given covariance matrix
the solution space SΓ might contain many matrices with
small L1 norm and, due to noise, one of these (potentially
very far from the true solution) can turn into a global
minimum. We observed, for instance, cases where edges
were flipped (see the top right matrix in Figure 3). By
biasing the optimization towards matrices consistent with
prior knowledge we increase the likelihood that the correct
sparse solution is selected.

All methods performed increasingly worse as the ground
truth solution A became less sparse or as ε became smaller
(i.e., as the spectrum of A got closer to the imaginary axis).
This could simply be a result of not having an optimal algo-
rithm for inferring edges using TE, since the performance of
the method with full prior knowledge of existing edges (“Full
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Info”) is mostly unaffected by changes in ε and edge number.
Applying the full IDTxl method [7] could improve results
further due to more rigorous significance tests, a redundant
edge cleanup pass and no hard limit on inferred edges. The
mean and median performance of the “TE Info” method
was always strictly better than all other methods we tested
(apart, of course, from “Full Info”) by a significant margin
(bootstrap test p < 10−5).

Another interesting observation is that introducing a weak
nonlinearity in the model usually led to only minor changes
in the median performance but often drastically reduced
the performance variance, and in some cases increased the
median performance as well. In other words, our method
performed more consistently (and sometimes better) in the
presence of weakly nonlinear network interactions as com-
pared to a purely linear network model. This effect cannot
be explained by the use of nonlinear edge inference methods
like TE, since fully linear methods like “No Info” and those
based on precision and correlation matrices also benefited
from the presence of weakly nonlinear interactions. We will
investigate this interesting phenomenon in future research.

With respect to computational complexity, our model is
fast and high performing since it has the computational
complexity of LP optimization (not including the prior edge
inference with TE, which is highly parallelizable [21]). This
has been shown to be theoretically less than or equal to
the current complexity of matrix multiplication [23], which
is ≈ O(#2.3), where # is the number of variables in
the optimization. In our case, the number of variables is
# = 2n2, and so the (theoretical) computational complexity
of the method is ≈ O(n4.6). For reference, solving the LP
optimization for a 100-dimensional system takes about 8
minutes on a single core CPU node with 2.6 GHz Intel
Skylake processor and 16 GB of memory.

IX. CONCLUSIONS AND PERSPECTIVES

We introduced a fast and high performing method to
reconstruct directed and weighted networks and analyzed its
performance using both linear and weakly nonlinear network
models. Future works will aim at improving the heuristics
used for the TE inference step. Theoretically it will also be
important to understand the role of nonlinearities on network
inference, which might be key for application to (usually
nonlinear) neuronal and other kind of biological networks.
Measures of the intrinsic timescale of each node, estimated
through auto-correlation analysis [24], can further be used
to further constraint the L1-optimization step. This will also
require consideration of the role of network self-loops, i.e.,
the diagonal elements of A, more explicitly in the method.
All these ideas will soon be implemented and tested on
experimental neuroscience (EEG) datasets.

REFERENCES
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