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Abstract—In this letter, we consider the commercial aircraft
trajectory optimization problem for a general cruise model with
arbitrary spatial wind fields to be solved using the Pontryagin’s
maximum principle. The model features two fundamental con-
trols, namely ”throttle setting” (appearing as a singular control)
and ”heading angle” (appearing as a regular control). For a
problem with state-inequality constraints and minimum time-
fuel objective, we show that the optimal ”heading angle” can
be described through the classic Zermelo’s navigation identity.
We also demonstrate, by analyzing the switching function, that
the singular ”throttle setting” can be characterized through a
feedback function that relies on both the optimal states and
”heading angle”. The switching-point algorithm is employed to
solve a case study where we inspect the optimality conditions and
graph the optimal controls together with the optimal state and
co-state variables.

Index Terms—Complete Cruise model, Two active controls,
Indirect optimization

I. INTRODUCTION

T HE optimization of commercial aircraft trajectories has
been the subject of extensive research, with a variety

of optimization techniques having been applied, however, the
Pontryagin’s maximum principle, has received comparatively
little attention in the literature [1].

Focusing only on those approaches using the Pontryagin’s
maximum principle, the commercial aircraft navigation prob-
lem in the cruise phase with various cost functions has been
solved in [2]–[8]. More specifically, the range-optimal problem
has been solved in [2]. The same problem was revisited w.r.t.
the compressibility effects in [3]. Also, the fuel-optimal cruise
at constant altitude with fixed arrival time has been solved
in [4]. Likewise, the fuel-optimal problem in a vertical plane
(including the cruise phase) has been solved for structured
flight segments in [5]. The fuel-optimal problem in the cruise
phase with a one-dimensional uniform wind field and fixed
arrival time has been solved in [6]. In the literature, there are
additional studies that take climate impact into consideration,
as exemplified by [7]. In this study, the problem of contrails
avoidance during the cruise phase was addressed. However, it
is important to note that the approach presented in [7] does not
account for the dynamics of speed and the derivative of the
Hamiltonian w.r.t. the aircraft’s mass. Despite this limitation,
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the study in [7] provides a more general navigation formula.
Furthermore, the issue of direct operating cost with multiple
cruise altitudes in the presence of wind is discussed in [8]. It
should be mentioned, however, that similar to [7], the study
in [8] also does not consider speed dynamics.

To summarize, the reviewed literature ( [2]–[8]) mainly
focuses on simplified cruise models with only one active
control (either ”throttle setting”, or ”heading angle”). However,
solving the optimal control problem associated with a general
cruise model using the Pontryagin’s maximum principle is
particularly challenging due to the involvement of the two
controls. In this research, we tackle this challenge and solve
the problem for the first time.

In this research, we consider a generic (realistic) cruise
model, comprising of two active controls. The controls are: 1)
the heading angle (a regular control), and, 2) the throttle setting
(a singular control). The objective is to minimize the direct
operating cost. We show that the optimal heading angle is fully
characterized through the classic Zermelo’s navigation identity
even if the problem is subject to some standard state-inequality
constraints (the classic Zermelo’s navigation identity is the
time-optimal, constant-speed navigation problem between two
points inside a fluid flow [9]). To determine the singular
throttle setting, we exploit the successive time-derivatives of
the switching function and leverage the optimality information
related to the heading angle. This approach enables us to
define the singular control as a complete feedback function. By
analyzing the switching function, we establish that the singular
throttle setting is dependent on the optimal heading angle. The
derived formula that captures this dependency offers valuable
analytical insights into the behavior of the optimal controls
within a realistic cruise model.

The switching-point algorithm [10] is employed to solve a
case study where the state-inequality constraints are inactive.
In short, the switching-point algorithm runs a nonlinear pro-
gramming only over the switching times and (possibly) some
other parameters with a given control feedback. The switching-
point algorithm, as in [10], is for a singular control problem
without state-inequality constraints. It is noteworthy that [10]
is an extension to the previous works in this discipline (see
e.g., [11] and [12]).

II. PROBLEM STATEMENT

The point-mass dynamics are commonly used to generate
aircraft trajectories [13], [14]. For commercial aircraft flights
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in cruise phase, the point-mass equations in Cartesian frame-
work can be approximated as [15]:

dx

dt
= v(t) cos (χ(t)) + wx(x(t), y(t), h) =: Fx,

dy

dt
= v(t) sin (χ(t)) + wy(x(t), y(t), h) =: Fy,

dv

dt
=

Π(t)Tmax(h)−D(m(t), v(t), h)

m(t)
=: Fv,

dm

dt
= −Π(t)Cs(v(t))Tmax(h) =: Fm.

(1)

In Eq. (1), x, and y are geometric variables, i.e., the cruise
flight occurs in a horizontal x−y plane, v is the aerodynamic
speed, m is the aircraft mass, and t is time. In addition, wx

and wy are x, and y components of wind respectively (wx and
wy are known geometrical functions), h is a constant altitude
where the cruise flight occurs, Tmax is the maximum thrust
force, D is the drag force, and Cs is the fuel flow. The controls
are the heading angle (χ(t)) and the throttle setting (Π(t)).

The objective is the direct operating cost (i.e., a combination
of the arrival time and fuel burn):

min
χ(t),Π(t),tf

J = αtf + (α− 1)m(tf ), 0 ≤ α ≤ 1, (2)

where tf denotes the final time.
The cruise flight envelope is defined by the dynamic con-

straints described in Eq. (1) , along with the following set of
standard state-inequality constraints that hold ∀t ∈ [t0, tf ]:

Mmin ≤ M(h, v(t)) ≤ Mmax,

vCAS,min ≤ vCAS(h, v(t)) ≤ vCAS,max,
(3)

and boundary conditions:

x(t0) = x0, y(t0) = y0, v(t0) = v0, m(t0) = m0,

x(tf ) = xf , y(tf ) = yf , v(tf ) = vf .
(4)

In above, t0 is the initial time, M is the Mach number, and
vCAS is the calibrated airspeed [16].

The controls are also constrained ∀t ∈ [t0, tf ] as:

Πmin ≤ Π(t) ≤ Πmax, χmin ≤ χ(t) ≤ χmax. (5)

It is noteworthy that, for the succeeding analysis, only the
functionality of wx, wy , Tmax, D, Cs, Mach, and VCAS is of
relevance. Nonetheless, these terms will be elaborated in our
case study (see sec.IV).

A. Compact Form Notation

The optimal control problem considered, can be written in
a compact form notation as:

min
U(t),tf

J = Φ(Xf , tf ),

s.t.,

dX

dt
= F (X,U),

C(U) ≤ 0, S(X) ≤ 0, ∀t ∈ [t0, tf ],

φ0(X0) = 0, φf (Xf ) = 0.

(6)

where XT = [x(t), y(t), v(t),m(t)], FT =
[Fx, Fy, Fv, Fm], φ0(X0) = X0 − X(t0), φ0 ∈ R

4,

φf (Xf ) = Xf − X(tf ), φf ∈ R
3, UT = [χ(t),Π(t)], and

Φ(Xf , tf ) = αtf + (α − 1)m(tf ). The inequality constraints
are:

C(U) =









χ(t)− χmax

χmin − χ(t)
Π(t)−Πmax

Πmin −Π(t)









, (7)

S(X) =









M(t)−Mmax

Mmin −M(t)
vCAS(t)− vCAS,max

vCAS,min − vCAS(t)









. (8)

By directly adjoining the constraints, we can define an
augmented cost as (see e.g. [17]):

J̄ := Φ(Xf , tf ) + 〈ν0, φ0(X0)〉+ 〈νf , φf (Xf )〉+
∫ tf

t0

(

〈λ, F (X,U)−
dX

dt
〉+ 〈µ, C(U)〉+ 〈η,S(X)〉

)

dt.

(9)

In above, the scalar multipliers are denoted by ν0 ∈ R
4,

and νf ∈ R
3, while the inequality multipliers are rep-

resented by µT = [µχ
u(t), µ

χ
l (t), µ

Π
u (t), µ

Π
l (t)], and η :

[t0, tf ] → R
4. Additionally, the co-states are given by λT =

[λx(t), λy(t), λv(t), λm(t)].
For this optimal control problem, the Hamiltonian (H :=

H(X,U, λ, µ, η)) is defined as [17]:

H = 〈λ, F (X,U)〉+ 〈µ, C(U)〉+ 〈η,S(X)〉. (10)

The optimality conditions (∀t ∈ [t0, tf ]) are:

∂H

∂U
= 0, 〈µ, C(U)〉 = 0, 〈η,S(X)〉 = 0. (11)

where µ ≥ 0, η ≥ 0, ∀t ∈ [t0, tf ]. The co-state dynamics
and the transversality conditions read:

dλT

dt
= −

∂H

∂X
,

λ(t0) = −
[ ∂φ0

∂X0

]T
ν0,

λ(tf ) =
∂Φ

∂Xf

+
[ ∂φf

∂Xf

]T
νf ,

H(tf ) = −
∂Φ

∂tf
− νTf

∂φf

∂tf
.

(12)

Let τ be a possible time instant within the state-boundary
arc at which the co-state variables are discontinuous. The jump
conditions at the junction times read [18]:

λT (τ−) = λT (τ+)− νT (τ)
∂S

∂X
|t=τ ,

ν(τ) ≥ 0, 〈ν(τ),S(X(τ))〉 = 0.
(13)

Since the state-inequality constraints (see Eq. (8)) are func-
tions of v(t), it is straightforward to show that the jump
condition (upon existence), applies only to λv(t).
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III. CLASSIFICATION OF THE CONTROLS

The control problem defined through Eq. (1) to Eq. (5) is
regular on the heading angle (χ(t)), and singular on the throttle
setting (Π(t)). In order to classify the controls, we write:

F (X,χ(t),Π(t)) = Q(X,χ(t)) + Π(t)P (X). (14)

In above,

Q(X,χ(t)) =









v(t) cos(χ(t)) + wx(x(t), y(t), h)
v(t) sin(χ(t)) + wy(x(t), y(t), h)

−D(m(t),v(t),h)
m(t)

0









, (15)

and,

P (X) =









0
0

Tmax(h)
m(t)

−Cs(v(t))Tmax(h)









. (16)

A. The Optimal χ(t) (Heading Angle)

The optimal χ(t), associated with the interior arc ( µχ
l (t) =

µχ
u(t) = 0), is obtained as:

∂H

∂χ
= 0 → 〈λ,

∂Q

∂χ
〉 = 0 → tan(χ(t)) =

λy(t)

λx(t)
. (17)

From Eq. (12), the co-state dynamics dλy

dt
, and dλx

dt
can be

written as:

dλx

dt
= −

(

λx(t)
∂wx

∂x
+ λy(t)

∂wy

∂x

)

,

dλy

dt
= −

(

λx(t)
∂wx

∂y
+ λy(t)

∂wy

∂y

)

.

(18)

Importantly, the co-state dynamics mentioned above do not
involve the multipliers η, since the state-inequality constraints
are solely functions of v(t). Differentiating Eq. (17) w.r.t. time,
and with the help of Eq. (18), we obtain:

dχ

dt

(

1 + tan2(χ(t))
)

= −
∂wx

∂y
+

(∂wx

∂x
−

∂wy

∂y

)

tan(χ(t)) +
(∂wy

∂x

)

tan2(χ(t)).

(19)

We observe that this equation is the Zermelo’s navigation
identity [9]; however, now it defines the optimal χ(t) for a
more general control problem even with active state-inequality
constraints.

B. The Optimal Π(t) (Throttle Setting)

Let us assume that the state-inequality constraints are inac-
tive, i.e., η = 0, ∀t ∈ [t0, tf ].

The first-order optimality condition for Π(t) reads:

∂H

∂Π
= 0 → 〈λ, P (X)〉+ µΠ

u (t)− µΠ
l (t) = 0. (20)

We define the switching function as:

S(t) = 〈λ, P (X)〉. (21)

The bang-singular classification for the optimal Π(t) is:

Π(t) =











Πmin S(t) > 0,

Πmax S(t) < 0,

undetermined (singular) S(t) = 0.

(22)

For the singular Π(t), since S(t) = 0, we have: S(k)(t) :=
dk

dtk
S(t) = 0, k = 1, 2, .... It can be checked that the singular

Π(t) appears in S(2)(t); that is to say, order of the singular
arc is one. Since the Hamiltonian is not an explicit function
of time, we have: H = constant (∀t ∈ [t0, tf ]). Therefore,
from Eq. (12), we have: H = −α. Moreover, ∂H

∂χ
= 0 holds

at all times.
On using Eq. (14), the co-state dynamics can be written as:

dλT

dt
= −λT

( ∂Q

∂X
+Π(t)

∂P

∂X

)

. (23)

The first time-derivative of the switching function is com-
puted as:

S(1)(t) = 〈
dλ

dt
, P (X)〉+ 〈λ,

dP

dt
〉 = 0. (24)

Noting that dP
dt

= ∂P
∂X

dX
dt

, it is straightforward to show that
Π(t) drops from S(1)(t). As a result, S(1)(t) can be expressed
as follows:

S(1)(t) = 〈λ,A(X,χ(t))〉. (25)

In Eq. (25), the vector A is as follows:

A(X,χ(t)) =
∂P

∂X
Q(X,χ(t))−

∂Q

∂X
P (X). (26)

It should be noted that the vector A can also be represented
using Lie bracket notations.

We exploit the following set of algebraic equations to
express the co-states in explicit terms:

S(t) = 0 → 〈λ, P (X)〉 = 0,

S(1)(t) = 0 → 〈λ,A(X,χ(t))〉 = 0,

H = −α → 〈λ,Q(X,χ(t))〉 = −α,

∂H

∂χ
= 0 → 〈λ,

∂Q

∂χ
〉 = 0.

(27)

The above algebraic linear system can be simply solved
by any platform supporting symbolic computations such as
MATLAB. To this end, we write the solution to system (27)
as:

det[ ¯̄M]









λx(t)
λy(t)
λv(t)
λm(t)









= adj[ ¯̄M]R. (28)

where,

¯̄M =









0 0 P3 P4

A1 A2 A3 A4

Q1 Q2 Q3 0
tan(χ(t)) −1 0 0









,R =









0
0
−α

0









. (29)

In Eq. (29), subscripts denote the vector elements.
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In order to obtain the optimal singular Π(t), we write:

S(2)(t) = 〈
dλ

dt
,A(X,χ(t)〉+ 〈λ,

dA

dt
〉 = 0. (30)

The time-derivative of the vector A is computed as:

dA

dt
=

∂A

∂X

dX

dt
+

∂A

∂χ

dχ

dt
. (31)

With Eq. (30), Eq. (31), and Eq. (23)), one arrives at:

S(2)(t) = 0 → Π(t) = −
〈λ,B〉+ 〈λ, ∂A

∂χ
〉dχ
dt

〈λ,D〉
. (32)

where,

B =
∂A

∂X
Q(X,χ(t))−

∂Q

∂X
A(X,χ(t)),

D =
∂A

∂X
P (X)−

∂P

∂X
A(X,χ(t)).

(33)

The generalized Legendre-Clebsch (LC) second-order nec-
essary conditions dictate [19]:

− 〈λ,D〉 ≥ 0, ∀t ∈ Ωs. (34)

where Ωs is an interval where the optimal Π(t) is singular.
It is worth noting that, in the current study, all computations

associated with the optimal χ(t) and singular Π(t) were
carried out symbolically in MATLAB. This involved solving
the co-state system defined by Eq. (28) and deriving symbolic
formulas for the vectors A, B, and D.

1) The Special Case α = 0: Since R = ~0 if α = 0, the
solution to Eq. (28) becomes intractable. On this occasion,
from Eq. (28), we have:

det
[ ¯̄M

]

= 0 →
d

dt
det

[ ¯̄M
]

= 0. (35)

Therefore, from Eq. (35), we obtain the singular Π(t) as:

Π(t) = −
∂

∂X
det

[ ¯̄M
]

Q(X(t), χ(t))
∂

∂X
det

[ ¯̄M
]

P (X(t))
. (36)

It is noteworthy that we can also handle the case α = 0
asymptotically, i.e., to compute for α → 0.

IV. CASE STUDY

In accordance with our analysis presented in the previous
sections, we consider inequality constraints only w.r.t. the
throttle setting, i.e., Πmin ≤ Π(t) ≤ Πmax, ∀t ∈ [0, tf ].

We use the BADA3 model for Tmax(h), Cs(v), and
D(m, v, h) [20]. In addition, air density is approximated by
International Standard Atmospheric (ISA) model:

Tmax(h) = CT1

(

1−
h

CT2

+ h2CT3

)

, Cs(v) = Cs1

(

1 +
v

Cs2

)

,

P (h) = P0

(Θ0 − βh

Θ0

)
g

βR , ρ(h) =
P (h)

R(Θ0 − βh)
,

D(m, v, h) =
1

2
ρ(h)sv2

(

CD1
+ CD2

C2
l

)

, Cl =
2mg

ρsv2
.

(37)

In above, s is the aerodynamic lift surface and ρ is the
air density. CTi

, i = 1, 2, 3, s, CDi
, i = 1, 2, Csi , i = 1, 2,

R, β, P0, g, and Θ0 are known constants for a medium-haul
aircraft (see [16] for a quick access to their specific values and
definitions). Since h is a constant (i.e., the cruise altitude), the
maximum thrust force Tmax(h) will be a constant too.

The wind components are simulated by a general second-
order polynomial for each component.

Without loss of generality, we can consider wx = wx(x, y),
and wy = wy(x, y), and drop h. We also note that the vertical
component of wind is assumed to be zero [15], [13]. Therefore,
for the sake of consistency with the fluid flow behavior, the
continuity equation must be satisfied, i.e., ∂wx

∂x
+

∂wy

∂y
= 0.

With this observation, the wind components become:

wx(x, y) = (a0w̄
b
x) + (a1

w̄b
x

xf

)x+ (a2
w̄b

x

x2
f

)x2+

(a3
w̄b

x

yf
)y + (a4

w̄b
x

y2f
)y2 + (a5

w̄b
x

xfyf
)xy,

wy(x, y) = −

∫

∂wx

∂x
dy + f(x),

f(x) = w̄b
y + (b0

w̄b
y

xf

)x+ (b1
w̄b

y

x2
f

)x2.

(38)

In above, ai, i = 0, .., 5, and bi, i = 0, 1 are in general
dimensionless random values between −1 and +1. Moreover,
w̄b

x, and w̄b
y are average dimensional wind constants.

Upon conducting an estimation of real wind data (w.r.t.
various, though small, atmospheric zones) using the above
wind model, we observed a very good level of consistency. In
particular, the total modeling error for the wind components
was found to be below 10 percent in relation to low-resolution
wind data. However, in this study, we adopt a generalized
approach and do not fine-tune the model based on specific
data sets. The tabulated parameters in Table (I) are those we
have fixed in our simulations. Therefore, one can check that
the only free parameter in our simulations is α.

TABLE I
BOUNDARY CONDITIONS, BOUNDS, AND THE SELECTED SNAPSHOT OF

THE WIND PARAMETERS

x0 0(m) xf 1.5×106(m)
y0 0(m) yf 7×105(m)
v0 200(m/s) vf 200(m/s)
m0 59000(kg) h 10000(m)

Πmax 1 Πmin 0
w̄b

x 40(m/s) w̄b
y -20(m/s)

a0 0.77406 a1 -0.86240
a2 -0.63294 a3 0.47414
a4 0.39342 a5 0.55398
b0 0.00380 b1 -0.14900

V. COMPUTATIONAL ALGORITHM

Preliminary analysis (using a single-shooting Euler-based
direct transcription method with high number of grids) implies
that the optimal Π(t) contains at most one (interior) singular
arc between two boundary arcs.

We have employed the switching-point algorithm, taking the
switching times and the initial heading as decision variables
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(see [10] for more information about the switching-point al-
gorithm and the associated mathematical justifications). More
specifically, we extend the state dynamics by Eq. (19), and the
nonlinear programming becomes:

min
χ(0),t1,t2,tf

Ĵ = Φ(Xf , tf ),

s.t.,

dX

dt
= F (X(t), χ(t),Π(t)),

dχ

dt

(

1 + tan(χ(t))2
)

= −
∂wx

∂y
+

(∂wx

∂x
−

∂wy

∂y

)

tan(χ(t)) +
(∂wy

∂x

)

tan(χ(t))2,

φ0(X0) = 0, φf (Xf ) = 0,

0 ≤ t1 ≤ t2 ≤ tf ,

Π(t) =











Πmax t ∈ [0, t1),

Eq.(32) ∨ Eq.(36) t ∈ [t1, t2],

Πmin t ∈ (t2, tf ].

(39)

We have adopted the interior-point/barrier algorithm of the
nonlinear programming solver fmincon from MATLAB®
Optimization Toolbox as the optimization module.

We use the results due to the above nonlinear program-
ming to compute the co-state variables (and accordingly, the
switching function) over the boundary arcs. This is doable by
backward and forward integration of the co-state dynamics
from t1, and t2 respectively.

A. Special Case with a Constant Wind Field

Assuming a constant wind field, it is demonstrated that the
optimization problem formulated in Eq. (39) can exclude χ(0)
as a decision variable.

Suppose that wx = constant =: Wx, and wy =
constant =: Wy .

From the system dynamics Eq. (1), we can write:

dx

dt
= v(t) cos(χ(t)) +Wx,

dy

dt
= v(t) sin(χ(t)) +Wy.

(40)

Since Wx, and Wy are constants, from Eq. (19) we have:
χ(t) = χ(0) = constant. Therefore, by integrating Eq. (40)
from 0 to tf , and after some manipulations, we get:

tan(χ(0)) =
yf −Wytf − y0

xf −Wxtf − x0
. (41)

Therefore, in case of having a constant wind field, the
initial heading angle χ(0) is a function of the constant wind
components, boundary conditions, and the final time tf .

VI. NUMERICAL RESULTS

We have obtained optimal results for various values of α.
From the definition of the cost function, α determines the
trade-off between fuel-optimal and time-optimal problems. For
each studied α, we have checked the second-order optimality
condition (Eq. (34)) for the singular arc and the first-order
optimality condition for the boundary arcs. In addition, for

each stage of α, we have compared our results with the
results due to a single-shooting Euler-based direct transcription
method with high number of grids (see e.g., Fig. 1-a). The
results of our study reveal a noteworthy similarity between the
optimal costs obtained from the direct method and the current
indirect method. However, it is important to note that the
direct transcription method, in contrast to the indirect method,
exhibits a chattering solution for the singular arc.

Moreover, we note that the switching-point algorithm does
not directly account for λ(tf ). From the transversality condi-
tions, we can check that λm(tf ) = α − 1. By computing the
co-state variables over the boundary arcs (after nonlinear pro-
gramming), we have checked that |λm(tf )− (α−1)| < 10−4.
This also stands as an additional confirmation of the obtained
optimal results (see Fig. 2-d).

The optimal controls Π(t), χ(t), and the optimal states
(m(t) as a function of v(t)) are shown in Fig. 1-b, Fig. 1-c,
and Fig. 1-d respectively. Based on Fig. 1-b and Fig. 1-d, it is
clear that an increase in α leads to a corresponding increase
in the optimal speed by adjusting the throttle setting.

From Fig. 1-b, it can be observed that as α increases, the
first ”bang” segment of the optimal throttle Π(t) expands. This
implies that there is a specific value of α at which the optimal
Π(t) switches to a ”bang-bang” control.

The optimal co-state variables in different values of α are
graphed in Fig. 2-a to Fig. 2-d.

As depicted in Fig. 2-d, λm(t) displays only marginal
changes with respect to time. Consequently, it might be
deemed logical to treat it as a constant during the examina-
tion of the optimality conditions, particularly in engineering
applications where rough approximations of optimality are
sufficient.

Fig. 3 illustrates the impact of α on the optimal x − y

trajectories. Upon examination of the figure, it is apparent that
the parameter α exhibits negligible influence on the evolution
of the x− y trajectories. More precisely, the x− y trajectories
are more contingent on the wind configuration.

VII. CONCLUSION AND FUTURE WORKS

Pontryagin’s maximum principle was applied to solve a
general (realistic) version of the optimization problems re-
lated to commercial aircraft trajectory in cruise phase. The
analysis focused on the control functions, from which opti-
mality formulas were derived. To handle the singular control,
the switching-point algorithm was utilized as an alternative
approach to the conventional shooting methods. Regarding
computational time, our simulations reveal that the presented
indirect approach outperforms direct transcription methods
significantly, especially when the solution structure is already
known. Remarkably, an identified solution structure remains
consistent across a broad range of modeling parameters. Based
on the numerical findings, an open line of research for further
investigation is to examine the condition (w.r.t. α) under which
the singular Π(t) vanishes. Additionally, it is worth noting that
our case study did not incorporate state-inequality constraints,
which presents another potential area for future research.
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(a) (b)

(c) (d)

Fig. 1. (a): The optimal Π(t) (black), and S(t) (red) where α = 0.4,
compared to single-shooting Euler-based direct transcription method with
400 nodes (blue dots); The optimal cost by the direct method:-30109.35,
The optimal cost by the indirect method:-30109.38. (b): The optimal Π(t)
in different α. (c): The optimal χ(t) in different α. (d): The optimal m(t)
as a function of v(t) in different α.

(a) (b)

(c) (d)

Fig. 2. (a): The optimal λx(t) in different α. (b): The optimal λy(t) in
different α. (c): The optimal λv(t) in different α. (d): The optimal λm(t) in
different α

Fig. 3. The optimal x− y trajectories (lateral path) in different α: blue and
red lines show the lateral paths for α = 0.5, and α = 0.1 respectively.

REFERENCES

[1] Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Sigrun
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[15] Daniel González-Arribas, Manuel Soler, and Manuel Sanjurjo-Rivo.
Robust aircraft trajectory planning under wind uncertainty using optimal
control. Journal of Guidance, Control, and Dynamics, 41(3):673–688,
2018.

[16] Olivier Cots, Joseph Gergaud, and Damien Goubinat. Direct and indirect
methods in optimal control with state constraints and the climbing
trajectory of an aircraft. Optimal Control Applications and Methods,
39, 11 2017.

[17] D.H Jacobson, M.M Lele, and J.L Speyer. New necessary conditions of
optimality for control problems with state-variable inequality constraints.
Journal of Mathematical Analysis and Applications, 35(2):255–284,
1971.

[18] Richard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson. A survey
of the maximum principles for optimal control problems with state
constraints. SIAM Review, 37(2):181–218, 1995.

[19] R. Gabasov and F. M. Kirillova. High order necessary conditions for
optimality. SIAM Journal on Control, 10(1):127–168, 1972.

[20] D. Poles. Base of aircraft data (bada) aircraft performance modelling
report. EEC Technical/Scientific Report, Eurocontrol, 2009.

8731


