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Abstract— In this paper, we extend the existing double
linear policy by incorporating time-varying weights instead
of constant weights and study a certain robustness property,
called robust positive expectation (RPE), in a discrete-time
setting. We prove that the RPE property holds by employing
a novel elementary symmetric polynomials characterization
approach and derive an explicit expression for both the expected
cumulative gain-loss function and its variance. To validate our
theory, we perform extensive Monte Carlo simulations using
various weighting functions. Furthermore, we demonstrate
how this policy can be effectively incorporated with standard
technical analysis techniques, using the moving average as a
trading signal.

I. INTRODUCTION

The Robust Positive Expectation (RPE) is a property
that ensures a trading policy has a positive expected profit
robustly, and it is closely related to the stochastic positivity
of a dynamical system in the control area. Some early work
related to robustness issues in financial systems can be found
in [1]. Later, a strategy called Simultaneous Long-Short
(SLS) was proposed; see [2], [3], and shown to guarantee
the RPE in markets with asset prices governed by geometric
Brownian motion (GBM).

Later, several extensions were proposed in the literature,
including generalization for Merton’s diffusion model in [4],
GBM model with time-varying parameters in [5], and any
linear stochastic differential equation (SDE) in [6]. Addi-
tionally, the SLS strategy was extended to the proportional-
integral (PI) controller in [7], to the latency trading in [8], and
coupled SLS strategy on pair trading for two correlated assets
was studied in [9], [10]. In [11], a robust design strategy for
stock trading via feedback control is proposed. [12] proposed
a generalized SLS with different weight settings on long and
short positions. Recently, [13] considered a long-only affine
feedback control with a stop-loss order.

In [14], a modified SLS strategy, called double linear
policy, was proposed to solve an optimal weight selection
problem using the mean-variance approach in a discrete-
time setting while preserving the RPE property. Following
this work, [15] established a sufficient condition of RPE
when the transaction costs are present. However, previous
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work including [14], [15] and many SLS literature assumed
constant weight, investing the same proportion of account
value in each stage. This paper extends the weight of double
linear policy from constant to a broad class of time-varying
functions in a discrete-time setting and proves that the RPE
property still holds for this extension.

A. Contributions of the Paper

Proving an RPE property for a policy with time-varying
weights is known to be challenging.1 This paper addresses
this challenge by using a novel elementary symmetric poly-
nomials characterization approach. We extend the existing
results by showing that the RPE property holds for the
double linear policy with time-varying weights. Closed-form
expressions for the expected cumulative gain-loss function
and its variance are provided. Additionally, we illustrate
how the proposed policy can be incorporated with the
common technical analysis technique. The results presented
in this paper contribute to the literature on robustness in
financial systems.

II. PROBLEM FORMULATION

For stage k = 0, 1, 2, . . . , let S(k) > 0 be the under-
lying risky asset price at stage k. Then the associated per-
period return is given by X(k) := S(k+1)−S(k)

S(k) . Assume
that X(k) ∈ [Xmin, Xmax] for all k with probability one,
and known bounds −1 < Xmin < 0 < Xmax < ∞.
Additionally, assume that Xmin and Xmax are in the support
of X(k). Furthermore, assume that X(k) are independent
with a common mean E[X(k)] = µ ∈ R and common
variance var(X(k)) = σ2 > 0 for all k.2 In the sequel,
we assume that the trades incur zero transaction costs and
that the underlying asset has perfect liquidity. This setting
serves as a good starting point for building the model and
is closely related to the frictionless market in finance; e.g.,
see [16], [17].

A. Double Linear Policy with Time-Varying Weights

In [14] and many SLS literature, the trading policy is
proposed with constant weights. This paper extends the

1The conventional method for proving RPE of a trading policy with
constant weight often relies on a key identity that (1+x)k+(1−x)k > 2
for all k > 1 and x ̸= 0. However, this approach may not apply when x
varies over time, as in the case of the policies with time-varying weights.

2This setting does not assume an underlying stochastic process governing
the prices of the risky asset and is less restrictive than the typical independent
and identically distributed returns assumption.
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constant weights to a time-varying weighting function. With
initial account value V (0) := V0 > 0, we spilt it into two
parts: Taking a fraction α ∈ [0, 1], define VL(0) := αV0

as the initial account value for long position and VS(0) :=
(1−α)V0 for short position. If α = 1, we are in a long-only
position while α = 0 corresponds to a pure short position.

The trading policy π(·) is given by π(k) := πL(k)+πS(k),
where πL and πS are of double linear forms:{

πL(k) = w(k)VL(k);

πS(k) = −w(k)VS(k).
(1)

The weighting function w(k) ∈ W := [0, wmax] for all k
with wmax := min{1, 1/Xmax} and is assumed to be causal;
i.e., it may depend only on the information up to stage k−1.
Any w(k) ∈ W is called admissible weight. This condition
is closely related to the survival trades; see Section II-B.
Hence, the account values under the double linear policy πL

and πS , denoted by VL(k) and VS(k), can be described as the
following linear time-varying stochastic difference equation:{
VL(k + 1) = VL(k) +X(k)πL(k) + (VL(k)− πL(k))rf ;

VS(k + 1) = VS(k) +X(k)πS(k),

where rf ≥ 0 is a riskless rate for a bank account or a trea-
sury bond.3 Note that when rf > 0, account profit increases.
Hence, as seen later in sections to follow, when studying the
robustness of the double linear policy, we assume without
loss of generality rf := 0. Then the account value for
long position reduce to VL(k + 1) = VL(k) + X(k)πL(k).
Therefore, the overall account value for both long and short
positions at stage k is given by

V (k) = VL(k) + VS(k)

= V0 (αR+(k) + (1− α)R−(k)) ,

where R+(k) :=
∏k−1

j=0 (1 + w(j)X(j)) and R−(k) :=∏k−1
j=0 (1− w(j)X(j)).

B. Survivability Considerations

Fix V0 > 0 and α ∈ (0, 1), we ensure that the trades
are survivable for all k; i.e., the w-value that can potentially
lead to V (k) < 0 is disallowed. To see this, for stage k =
0, 1, . . . , fix w(k) ∈ W . We observe that for the long
position, we have VL(k) ≥ V0α(1 + wmaxXmin)

k > 0
since wmax ≤ 1 and Xmin > −1. On the other hand, for
the short position, we also have VS(k) ≥ V0(1 − α)(1 −
wmaxXmax)

k ≥ 0 since wmax ≤ 1/Xmax. Therefore, the
overall account value satisfies V (k) = VL(k) + VS(k) > 0
for all k with probability one.

3In practice, when shorting an asset, the corresponding proceeds are
typically held as collateral by the broker to cover any potential losses from
the short position. These proceeds are generally not available for immediate
reinvestment into a riskless asset, such as a bank account or treasury bond.

C. Robust Positive Expectation Problem

The primary objective of this paper is to study the follow-
ing RPE problem.

Definition 2.1 (Robust Positive Expectation). For stage k =
0, 1, . . . , let V0 > 0 be the initial account value, and V (k) be
the account value at stage k. Define the expected cumulative
gain-loss function up to stage k as G(k) := E[V (k)] − V0.
A trading policy is said to have a robust positive expecta-
tion (RPE) property if it ensures that G(k) > 0 for all k > 1
and under all market conditions.

III. GAIN-LOSS ANALYSIS

For k > 0, let X := {X(j)}k−1
j=0 and w := {w(j)}k−1

j=0 .
With V0 > 0, consider the double linear policy with α ∈
(0, 1) and weight w(k) ∈ W for all k. The cumulative
trading gain-loss function up to stage k is given by

G(α,w, k,X) := V (k)− V0

= V0(αR+(k) + (1− α)R−(k)− 1),

and the expectation is G(α,w, k, µ) := E[G(α,w, k,X)]. If
the weights are constant; i.e., w(k) := w for all k, then
the RPE property is readily established when α = 1/2,
see [15]. However, difficulties arise when the weighting
function is time-varying. To address this, a set of elementary
symmetric polynomials4 in k variables, {w(0), . . . , w(k−1)},
are considered and defined as {e1(k), e2(k), . . . , ek(k)} with

ej(k) :=
∑

0≤i1<i2<···<ij≤k−1

w(i1)w(i2) · · ·w(ij)

for ij ∈ N. Note that ej(k) ≥ 0 for all j and k, which is the
sum of the jth multiplication term of admissible weights. The
following example illustrates the calculation of elementary
symmetric polynomials.

Example 3.1 (Elementary Symmetric Polynomials). This ex-
ample illustrates the calculation of the elementary symmetric
polynomials ej(k). Specifically, for k = 1, the polynomials
to be calculate is {e1(1)} which is given by e1(1) = w(0).
For stage k = 2, the elementary symmetric polynomi-
als {e1(2), e2(2)} are given by

e1(2) =
∑

0≤i1≤1

w(i1) = w(0) + w(1);

e2(2) =
∑

0≤i1<i2≤1

w(i1)w(i2) = w(0)w(1).

Similarly, for k = 3, the elementary symmetric polynomi-

4We say that e(·) is a symmetric polynomial if for any permutation σ of
the subscripts 1, 2, · · · , n, it follows that e(xσ(1), xσ(2), · · · , xσ(n)) =
e(x1, x2, · · · , xn).
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als {e1(3), e2(3), e3(3)} become

e1(3) =
∑

0≤i1≤2

w(i1) = w(0) + w(1) + w(2);

e2(3) =
∑

0≤i1<i2≤2

w(i1)w(i2)

= w(0)w(1) + w(0)w(2) + w(1)w(2);

e3(3) =
∑

0≤i1<i2<i3≤2

w(i1)w(i2)w(i3) = w(0)w(1)w(2).

As seen later in this section, the representation of elemen-
tary symmetric polynomials is useful for proving the RPE
property; see Lemmas 3.2 and 3.3 to follow. Define shorthand
notations R+(k) := E[R+(k)] and R−(k) := E[R−(k)].
With the aid of the independence of X(k), it follows that
R+(k) =

∏k−1
j=0 (1+w(j)µ) and R−(k) =

∏k−1
j=0 (1−w(j)µ).

Lemma 3.2. Let α ∈ (0, 1) and w(k) ∈ W for all k, R+(k)
and R−(k) for stage k satisfy

R+(k) = 1 +

k∑
j=1

ej(k)µ
j ;

R−(k) = 1−
k∑

j=1

(−1)jej(k)µ
j .

Proof. We use a shorthand notation wj for w(j) in the proof.
For stage k, R+(k) is given by

R+(k) =

k−1∏
j=0

(1 + wjµ)

= (1 + w0µ)(1 + w1µ) · · · (1 + wk−1µ)

= 1 + e1(k)µ+ · · ·+ ek(k)µ
k

= 1 +

k∑
j=1

ej(k)µ
j .

Likewise, R−(k) can be written as

R−(k) =

k−1∏
j=0

(1− wjµ)

= 1 + e1(k)(−µ) + · · ·+ ek(k)(−µ)k

= 1 +

k∑
j=1

(−1)jej(k)µ
j ,

and the proof is complete.

Lemma 3.3. For k > 1, e2(k) > 0 provided that at least
two weights w(i), w(j) > 0 for some i, j ∈ {0, 1, . . . , k−1}
and i ̸= j.

Proof. Fix k > 1. Assuming that at least two weights are
strictly positive for some specific i, j ∈ {0, 1, . . . , k − 1}
with i ̸= j; i.e., w(i), w(j) > 0. Then we have

e2(k) =
∑

0≤i1<i2≤k−1

w(i1)w(i2) ≥ w(i)w(j) > 0,

which completes the proof.

Theorem 3.4 (RPE with Time-Varying Weights). Let V0 >
0. Consider a double linear policy with α ∈ (0, 1) and
weights w(k) ∈ W for all k. Then, the expected cumulative
gain-loss function is given by

G(α,w, k, µ) = V0

(
αR+(k) + (1− α)R−(k)− 1

)
.

Moreover, when α = 1/2 and w(k) ∈ W with at least
two weights being strictly positive, the RPE property holds;
i.e., G(α,w, k, µ) > 0 for k > 1 and all µ ̸= 0.

Proof. To calculate the expected cumulative gain-loss func-
tion, we use the fact that per-period returns X(k) are
independent with common mean E[X(k)] = µ for all k.
Thus, it is readily verified that

G(α,w, k, µ) = E [V0 (αR+(k) + (1− α)R−(k)− 1)]

= V0 (αE[R+(k)] + (1− α)E[R−(k)]− 1)

= V0

(
αR+(k) + (1− α)R−(k)− 1

)
,

which is identical to the desired equality in the statement of
the theorem. To complete the proof, we now show that the
RPE property holds. Fix k > 1. Using Lemma 3.2, we have

G(α,w, k, µ)

= V0

(
α

(
1 +

k∑
j=1

ej(k)µ
j

)

+ (1− α)

(
1 +

k∑
j=1

(−1)jej(k)µ
j

)
− 1

)

= V0

(
α

k∑
j=1

ej(k)µ
j + (1− α)

k∑
j=1

(−1)jej(k)µ
j

)

= V0

k∑
j=1

(
α+ (1− α)(−1)j

)
ej(k)µ

j .

In addition, for α = 1/2, the expected cumulative gain-loss
function becomes

G(α,w, k, µ) = V0

k∑
j=1

1

2

(
1 + (−1)j

)
ej(k)µ

j

= V0

(
e2(k)µ

2 +

k∑
j=3

1

2

(
1 + (−1)j

)
ej(k)µ

j

)
.

Since V0 > 0, µ ̸= 0, w(k) ∈ W and at least two weights
are strictly positive w(i), w(j) > 0 for some i, j with i ̸= j.
Lemma 3.3 indicates that e2(k) > 0, and the fact that

(1 + (−1)j)µj ≥ 0

for all j. It follows that G(α,w, k, µ) > 0.

Remark 3.5. (i). Theorem 3.4 can be viewed as an extension
of the existing RPE result using double linear policy with
constant weights stated in [14]. That is, by taking w(k) := w
for all k, one readily obtains

G(α,w, k, µ) = V0

(
α(1 + wµ)k + (1− α)(1− wµ)k − 1

)
.
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If α = 1/2 and w ∈ W \ {0}, the desired strict positivity
holds; i.e., G(α,w, k, µ) > 0 for µ ̸= 0 and all k. (ii). Ac-
cording to Theorem 3.4, it is readily verified that the expected
cumulative gain-loss function satisfies G(α,w, k, µ) > 0 for
all k if sgn((2α− 1)µ) > 0.

Lemma 3.6 (Variance of the Gain-Loss Function). Let V0 >
0. Consider a double linear policy with α ∈ (0, 1) and
weights w(k) ∈ W for all k then the variance of the
cumulative gain-loss function is given by

var(G(α,w, k,X))

= V 2
0

(
α2

k−1∏
j=0

(
w(j)2σ2 + (1 + w(j)µ)2

)
+ (1− α)2

k−1∏
j=0

(
w(j)2σ2 + (1− w(j)µ)2

)
+ 2α(1− α)

k−1∏
j=0

(
1− w(j)2(σ2 + µ2)

)
− 2α(1− α)

k−1∏
j=0

(1− w(j)2µ2)

− α2
k−1∏
j=0

(1 + w(j)µ)2 − (1− α)2
k−1∏
j=0

(1− w(j)µ)2

)
.

Proof. The proof is based on straightforward calculation on
var(G(α,w, k,X)) = E[G2(α,w, k,X)] − G2

(α,w, k, µ).
We first calculate the second moment of the gain-loss func-
tion: With the aid of the independence of X(k), a lengthy
but straightforward calculation leads to

E[G2(α,w, k,X)]

= V 2
0

(
α2

k−1∏
j=0

(
w(j)2σ2 + (1 + w(j)µ)2

)

+ (1− α)2
k−1∏
j=0

(
w(j)2σ2 + (1− w(j)µ)2

)
+ 1

+ 2α(1− α)

k−1∏
j=0

(
1− w(j)2(σ2 + µ2)

)

− 2α

k−1∏
j=0

(1 + w(j)µ)− 2(1− α)

k−1∏
j=0

(1− w(j)µ)

)
. (2)

Then we calculate the square of the expected cumulative
gain-loss function. That is,

G2
(α,w, k, µ)

= V 2
0

(
αR+(k) + (1− α)R−(k)− 1

)2

= V 2
0

(
α2

k−1∏
j=0

(1 + w(j)µ)2 + (1− α)2
k−1∏
j=0

(1− w(j)µ)2

+ 1 + 2α(1− α)

k−1∏
j=0

(1− w(j)2µ2)

− 2α

k−1∏
j=0

(1 + w(j)µ)− 2(1− α)

k−1∏
j=0

(1− w(j)µ)

)
. (3)

In combination with Equations (2) and (3), a lengthy but
straightforward calculation again leads to the desired expres-
sion for the variance of the gain-loss function.

Remark 3.7. If w(k) := w for all k, Lemma 3.6 reduces to
the variance expression obtained in [14, Lemma 3.1].

IV. ILLUSTRATIVE EXAMPLES

This section illustrates the robustness of the double linear
policy with time-varying weights using various examples.

Example 4.1 (GBM with Jumps). We now collect historical
daily prices for Apple Inc. (Ticker: AAPL) over a one-
year period from January 2022 to December 2022.5 Having
estimated the volatility σ∗, we simulate the associated GBM
prices with jumps, see [18], using Monte Carlo simulations.
That is, for t ∈ [0, T ], we generate the price governed by the
following stochastic differential equation:

St = S0 exp

((
µ∗ − 1

2
σ∗2
)
t+ σ∗Wt

)
(1− δ)Nt , (4)

where Wt := {W (t) : t ≥ 0} is a standard Wiener process,
µ∗ is the drift constant, σ∗ is the volatility constant, Nt =
{N(t) : t ≥ 0} is a Poisson process with

P (Nt = k) =
(λt)k

k!
e−λt

that is independent with Wt, λ is the average rate of the jump
that occurs for the process, and δ ∈ [0, 1) is the magnitude
of the random jump.6

To simulate the price, we discretize the process (4) by tak-
ing a time period length of ∆t := 1/252 and T = 1 for one
year with an annualized drift rate µ∗ ∈ (−1, 1), annualized
volatility computed from historical data σAAPL ≈ 35.63%,
jump intensity λ = 0.2 with a jump size δ = 0.1. With initial
account value V0 = 1, we consider four admissible weighting
functions defined by wi : {0, 1, . . . , N = 252} → W ⊆ R
for i ∈ {0, 1, 2, 3} with

w0(k) := 0.8;

w1(k) := log

(
1 +

k

N
(e− 1)

)
;

w2(k) :=
1

2

(
sin

(
1

0.02
N k − 0.01

)
+ 1

)
;

w3(k) := f(k) sin

(
1

f(k)

)
1{f(k) sin( 1

f(k) )≥0}(k),

where f(k) := ( 4
N k− 2) and 1A(x) is an indicator function

satisfying 1A(x) = 1 for x ∈ A and zero otherwise.
The four weighting functions above represent different

investment philosophies. For example, w0(k) represents a

5Note that this one-year period provides a good test case since 2022 is
often described as a bearish market.

6For 252 daily data, the drift rate and volatility constants can be
approximated by using µ∗ ≈ 252µ and σ∗ ≈

√
252σ. When δ = 0,

Equation (4) reduces to GBM. While it is not shown in this paper, the
double linear policy (1) assures RPE for the GBM case as well.
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constant buy-and-hold strategy, w1(k) represents an in-
creasing investing strategy over the specified period, w2(k)
corresponds to a more active trading approach, and w3(k)
represents investing more at the beginning and end of the
period, with little or no investment in the middle. Con-
sistent with the simulations conducted in [14], we gener-
ate 10, 000 GBM sample paths for each µ∗ and various α ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Then we calculate the average cu-
mulative gain-loss; see Figure 1. For α = 0.5, the positive
expectation gain is seen for all four weighting functions.
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Fig. 1. Weighting Functions (Left) and Expected Gain-Loss for µ∗ ∈
(−1, 1).

Example 4.2 (Minute-by-Minute Case). In this example,
we study the performance of the double linear policy using
relatively high-frequency minute-by-minute price data for
Twitter Inc. (Ticker: TWTR) between May 4, 2022, and
May 19, 2022.7 The price trajectory for the specific period
is shown in Figure 2. The figure also includes a subplot
with a magnified view for the interval k ∈ [50, 100] minutes,
featuring various moving average lines, which will be used
in the next example.

We now examine the trading performance of the double
linear policy using the same four weighting function wi(k)
for i ∈ {0, 1, 2, 3} described in Example 4.1. Specifically,
with α = 1/2 and initial account value V0 = 1, the corre-
sponding trading gain-loss trajectories are shown in Figure 3.

7During this period, CEO Elon Musk announced that the Twitter deal was
temporarily put on hold on May 13, causing a 9.7% decreases in shares at
market close. The data is retrieved using the Bloomberg Terminal.
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Fig. 2. Twitter Minutely Prices from May 4, 2022 to May 19, 2022.

In contrast to the negative returns obtained by the buy-and-
hold (B&H) long-only strategy with constant weight w0,
we note that all the proposed weighting functions of the
double linear policy assured positive trading gains for the
Twitter data. Table I also summarizes another performance
metric, such as variances and Sharpe ratio. It is also worth
mentioning that similar findings hold for flipped TWTR price
data, indicating the robustness of double linear policy and an
ability to capture underlying market dynamics in both bull
and bearish markets.
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Fig. 3. Cumulative Gain-Loss Using Twitter Minute-by-Minute Data.

TABLE I
PERFORMANCE OF DOUBLE LINEAR POLICY WITH VARIOUS WEIGHTS

B&H w0 w1 w2 w3

Gain-Loss -0.2003 0.0150 0.0142 0.0138 0.0070
Variance 0.0066 2.9e-05 2.3e-05 2.6e-05 6.2e-06

Sharpe Ratio -1.6878 1.2106 1.2308 1.4722 0.9497

Example 4.3 (Blending Moving Average Indicator). In this
example, we blend the use of the moving average indicator,
a common method in technical analysis, as a criterion for
designing the weighting function into the double linear
policy. This approach enables dynamic adjustment of the
investment based on the indicator. The weighting function
used in the double linear policy (1) is defined as

wMAd
(k) := w · 1{S(k)>MAd(k)}(k), (5)

where w ∈ W and MAd(k) represent the last d-period
average stock price for d ≥ 1. For example, in the case
of minutely data, MA5(k), MA10(k), MA20(k), MA30(k)
represent the last 5-minute, 10-minute, 20-minute, and 30-
minute average stock price, respectively. The investment
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philosophy is to invest only when the stock price is higher
than the moving average, which signals a buying opportunity.

With α = 1/2, V0 = 1, and w = 0.8, we summarize the
cumulative gain-loss, variance, and Sharpe ratio in Table II,
and the trading trajectories are shown in Figure 4. From
the table, we see that wMA20

leads to the best performance
in terms of the Sharpe ratio. In all cases, we see positive
returns using the weighting functions incorporated with the
moving average indicator. Also, while not demonstrated in
this paper, the MA indicator in Equation (5) can be readily
replaced by another technical analysis indicator, such as
weighted moving average, moving median, moving average
convergence and divergence (MACD) and so on.

TABLE II
PERFORMANCE OF DOUBLE LINEAR POLICY WITH MA INDICATOR

wMA5
wMA10

wMA20
wMA30

Gain-Loss 0.0061 0.0076 0.0117 0.0042
Variance 9.7e-06 1.1e-05 1.4e-05 2.2e-06

Sharpe Ratio 0.7097 0.8806 1.6343 0.8651
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Fig. 4. Cumulative Gain-Loss Using Various MA Indicators.

V. CONCLUDING REMARKS

This paper extends the double linear policy by incorpo-
rating time-varying weights in a discrete-time setting. Using
a set of elementary symmetric polynomials, we prove that
the RPE property is preserved in the extended policy. In
addition, we derive an explicit expression for the expected
cumulative gain-loss function and its variance. We conducted
extensive Monte Carlo simulations using various weighting
functions to validate our theory. Our results also show
that the extended double linear policy with time-varying
weights can be integrated with the standard technical analysis
technique such as moving average.

In future research, it would be interesting to expand our
analysis to a multi-asset case, where the weights can be
optimized for a portfolio of assets; see [14], [19], [20] for an
initial approach. Additionally, one valuable direction would
be to investigate the impact of serial-correlated returns on the
performance of the double linear policy with time-varying
weights. For example, an Auto-Regressive (AR) return model
might be worth pursuing. Finally, the impact of transaction
costs could be considered to assess the practicality of the
proposed policy in real-world applications; see [15].
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