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Abstract— The effectiveness of non-parametric, kernel-based
methods for function estimation comes at the price of high
computational complexity, which hinders their applicability in
adaptive, model-based control. Motivated by approximation
techniques based on sparse spectrum Gaussian processes, we
focus on models given by regularized trigonometric linear
regression. This paper provides an analysis of the performance
of such an estimation set-up within the statistical learning
framework. In particular, we derive a novel bound for the
sample error in finite-dimensional spaces, accounting for noise
with potentially unbounded support. Next, we study the ap-
proximation error and discuss the bias-variance trade-off as a
function of the regularization parameter by combining the two
bounds.

I. INTRODUCTION

Non-parametric approaches for regularized function es-
timation are a key tool in machine learning, and have
been successfully applied to, e.g., system identification
[1] and learning-based control [2], [3]. Nevertheless, their
applicability in real-time scenarios is hindered by their high
computational complexity, which scales as O(N3), with N
being the data-set cardinality. The strategies proposed to
enable fast adaptation of kernel-based methods can be grouped
into two main categories: input location selection, and low-
rank approximations of the kernel [4]. In this second class of
approaches, a vast success was achieved by sparse spectrum
Gaussian processes [5], [6], where operations on the (shift-
invariant) kernel yield a parametric approximation by means
of linear combinations of Fourier features.
In this paper, we draw inspiration from the latter method and
consider regularized regression within a finite-dimensional
hypothesis space H defined by a span of E � N predefined
trigonometric functions. Such a set-up yields an estimator
whose computation scales asO(E2N), relaxes the assumption
of having shift-invariant kernels in the derivation of random
Fourier features, and benefits from the use of regularization
without resorting to purely non-parametric approaches. The
focus of this work is to provide an error analysis for this
parametric regularized estimator. The results derive non-
asymptotic, non-conservative bounds in view of obtaining
reliable guarantees for data-driven, model-based control
schemes that leverage such a model (see, e.g., [7], [8],
[9]). Such an analysis has been performed for standard,
projection-based estimators (for an overview see, e.g., [10]
and references therein); however, the available results do
not account for regularization, which acts against potential
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basis function misspecification in a more robust way com-
pared with discrete model-order selection rules [11]. On the
other hand, the available error bounds for non-parametric
estimators (which do rely on regularization to ensure well-
posedness) hold for infinite-dimensional hypothesis spaces
and result therefore conservative in our set-up. Note also
that trigonometric functions appear as a spline basis in non-
parametric estimation when considering the Sobolev space
W 2

1 = {f : f is absolutely continuous, and f (1) ∈ L 2} if
the inputs are equally spaced in the domain [12].
We frame our error analysis in the statistical learning set-up
[13], [14]. The function to be estimated (i.e., the regression
function fρ) is defined as the minimizer of the expected
risk over a (partially) unknown probability distribution,
jointly defined over the input-output spaces, and from which
i.i.d. samples are drawn. Consequently, this formulation can
also handle fully nonlinear measurement models. Furthermore,
fρ is generally assumed to belong to the space of square-
integrable functions L 2, and the hypothesis space is typically
taken as an infinite-dimensional Reproducing Kernel Hilbert
Space (RKHS), which is related to L 2 by interpolation spaces
arguments ([15, Theorem 2]). Differently from classic non-
parametric set-ups, the regression function is not assumed
to belong to the hypothesis space. Thus, two objects can
be therein defined: the actual data-based estimate fz and its
data-free limit fH . The goal of error analysis consists in
quantifying the approximation error, or bias, ‖fρ−fH ‖L 2

ρX
,

and the sample error, or variance, ‖fH − fz‖L 2
ρX

[13]. As
regards the latter, results abound in the statistical learning
literature. Most of them deal with probability measures on the
outputs that have bounded support, and thus obtain bounds
leveraging concentration inequalities such as Hoeffding’s or
Bennett’s [16], [14, Chapter 3.1]. Works in this direction are,
e.g., [17], [14], [18], [19], [20]. Contributions considering
unbounded sampling include [21], [22], [23]. The bounds
therein derived leverage the so-called moment hypothesis,
which relaxes the boundedness assumption, and holds also for
(sub-)Gaussian noises. Such results rely on the computation of
covering numbers quantifying the capacity of the hypothesis
space [24] and showcase optimal rates of convergence;
nevertheless, they tend to be of limited practical relevance
in the non-asymptotic case due to the large values of
the multiplicative coefficients, which are often furthermore
difficult to compute. Other non-conservative bounds obtained
without using concentration inequalities are given, e.g., in
[25]; however, their practical use is limited by the involved
constants, which are generally hard to compute.
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In this work, we perform error analysis for finite-dimensional
hypothesis spaces given by trigonometric functions. Our
first contribution is a sample error bound, which is less
conservative than those available in the literature even if
it accounts also for noises with unbounded supports. Our
second contribution consists in studying the bias-variance
trade-off of the regularized trigonometric regression set-up.
To this end, we obtain two bounds on the approximation
error, combine them with the sample complexity result and
analyze the conditions ensuring the existence of a unique
value of the regularization parameter γ returning the optimal
trade-off. The differences between the two approaches are
investigated in a Monte Carlo study, which shows that one of
the two criteria returns a value of γ that captures the oracle
behavior (i.e., minimizing the overall error), thus leading to
fast estimation schemes that do not need preliminary hyper-
parameter selection.

II. PROBLEM SET-UP

Let the metric space of inputs X be a compact subset of
R: without loss of generality, we take X = [−X/2, X/2]
for some X ∈ R+ (the scalar case is presented just for ease
of visualization: the multi-dimensional is a straightforward
extension). The output space is assumed to be Y = R. There
is a probability measure ρ defined over Z

.
= X × Y that

decomposes into ρX (x) and ρ(y|x) according to Fubini’s
Theorem. In the considered set-up, the probability measure
defined on X is the standard uniform: denoting with µ
the Lebesgue measure, we have that ρX (A) = µ(A ∩
X )/µ(X ) = µ(A∩X )/X for any set A in the σ−algebra
of interest. In this way, ρX is a Borel non-degenerate,
σ−finite measure. As regards ρ(y|·), we assume it is unknown
and defined over R.
Having N independent samples drawn from ρ collected in
the data-set D .

= {(xt, yt)}Nt=1, the goal is to estimate the
regression function

fρ(x)
.
=

∫
Y

ydρ(y|x). (1)

We make use of the following Assumption.

Assumption 1. The regression function fρ belongs to the
space of square-integrable functions on X , denoted by
L 2
ρX

, and is such that ‖fρ‖L 2
ρX

=
√∫

X f2(x)dρX (x) =√∫
X f2(x)dµ(x)/X ≤ Bf . Moreover, we also have that

σ2
ρ
.
=
∫

X σ2
ρ(x)dρX (x) =

∫
Z (y − fρ(x))2dρ ≤ B2

σ .

In other words, we assume to have access to bounds on
the energy of the unknown function to be estimated, and on
the variance of the additive noises.
The space L 2

ρX
is a separable Hilbert space whose complete

orthonormal basis by means of trigonometric functions [26]
is given by{

√
2 sin

(2πq

X
x
)
,
√

2 cos
(2πq

X
x
)}

q∈N

(2)

.
= {ϕ̄sq(x), ϕ̄cq(x)}q∈N with x ∈X . (3)

Accordingly, any function f ∈ L 2
ρX

can be expressed as
f(·) =

∑
q∈N(αsqϕ̄

s
q(·) + αcqϕ̄

c
q(·)), which will be also com-

pactly written as f(·) =
∑
q∈N αqϕ̄q(·), with

∑
q∈N α

2
q <∞.

Within this representation, we denote the target function as
fρ(·) =

∑
q∈N(ᾱsqϕ̄

s
q(·) + ᾱcqϕ̄

c
q(·)) =

∑
q∈N ᾱqϕ̄q(·).

Function estimation in L 2
ρX

cannot be performed, because
pointwise evaluation is not well defined. Therefore, we
perform such a task within a hypothesis space having the
structure of an RKHS. Specifically, we consider the RKHS
obtained from a subset of functions in (3) with cardinality E,
where E is chosen according to the computational capacity.
Denote by Q the set of selected frequencies, i.e., Q =

{qj}E/2j=1 ⊂ N, and consider the following functions extracted
from (3) using Q defined, for j = 1, ..., E/2, as

ϕi(x)
.
=

{
ϕ̄sqj (x), i = j

ϕ̄cqj (x), i = j + E
2 .

(4)

Then, the RKHS of interest is the one induced by the
following kernel:

K (xa, xb) = φ>(xa)Σαφ(xb), (5)

where Σα
.
= diag(λ1, ..., λE) is a positive definite

matrix, and the vector φ(·) ∈ RE is such that
φ>(x) = [ϕ1(x) . . . ϕE(x)]. Clearly, (5) is a Mercer
kernel ([27, (6), p.346]; it satisfies Mercer’s condition∫

X

∫
X K (x, x′)2dρX (x)dρX (x′) =

∑E
i=1 λ

2
i , and it is

non-stationary if and only if λi 6= λi+E/2 for all i =
1, . . . , E/2. Furthermore, using the argument in [28, Chapter
4.3]), it holds that

CK
.
= sup
xa,xb∈X

√
K (xa, xb)

≤

√√√√E/2∑
i=1

max{λi, , λi+E/2} < +∞. (6)

Being a Mercer kernel, we have from Moore-Aronszajn
Theorem [27] that K is in one-to-one correspondence with
the Hilbert space of functions (H , 〈·, ·〉H ), which is

H = {f ∈ L 2
ρX

: f(·) = φ>(·)α, α ∈ RE} (7)

with inner product given, for f (\)(·) = φ>(·)α(\) and \ =
a, b:

〈f (a), f (b)〉H = 〈Σ−1/2
α α(a),Σ−1/2

α α(b)〉2. (8)

Within the hypothesis space, we can compute the estimate
from the data set D as follows. Consider the sampling operator
SX : H → RN such that SX (f) = [f(x1) . . . f(xN )]>,
together with its adjoint S>X : RN → H yielding S>X c =∑N
t=1 ctK (xt, ·). Thus, considering Y = [y1, ..., yN ]> and

regularization parameter γ > 0, we have

fz
.
= arg min

f∈H

1

N

N∑
t=1

(yt − f(xt))
2 + γ‖f‖2H (9)

=
( 1

N
S>X SX + γI

)−1 1

N
S>X Y. (10)
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The aim of error analysis is to quantify the discrepancy
between fz and fρ. To this end, we additionally consider the
data-free limit of (9) as

fH
.
= arg min

f∈H

∫
X

(f(x)− fρ(x))2dρX (x) + γ‖f‖2H
(11)

= (LK + γI)−1LK fρ, (12)

where LK (f)(x̄)
.
=
∫

X K (x̄, x)f(x)dρX (x) is an integral
operator which, thanks to the properties of K , is (a) is self-
adjoint and strictly positive, (b) continuous and compact,
(c) satisfies the Spectral Theorem [14, Theorem 4.3] with
eigenpairs {(ϕi(·), λi)}Ei=1. Thanks to these properties, given
an arbitrary L 2

ρX
function f(x) =

∑
q∈N αqϕ̄q(x), using

linearity and orthonormality of the basis, we have

LK (f)(x̄) =

E∑
i=1

λiα
π
i ϕi(x̄), (13)

where we define the i−th component of the vector απ for
i = 1, ..., E, along the lines of (4), as follows:

For j = 1, ...,
E

2
, απi

.
=

{
αsqj , i = j

αcqj , i = j + E/2.
(14)

Moreover, thanks to property (a), we can also define the
r-th power of the integral operator1 as [13]:

LrK (f)(x̄) =

E∑
i=1

λriα
π
i ϕi(x̄). (15)

In the following, we study the sample error ‖fz−fH ‖L 2
ρX

introduced by the finiteness of the data-set D, and the
approximation error ‖fH −fρ‖L 2

ρX
determined by the choice

of the hypothesis space. The two bound the overall error
as ‖fz − fρ‖L 2

ρX
≤ ‖fz − fH ‖L 2

ρX
+ ‖fH − fρ‖L 2

ρX
,

which is to be minimized as a function of the regularization
parameter γ.

III. SAMPLE ERROR
In this Section, we provide the novel result concerning the

error between fz and fH introduced in (10) and (12).

Theorem 1. Let Assumption 1 hold. Consider CK as
introduced in (6), and define λ̆

.
= mini=1,...,E λi. Then,

with confidence at least 1− δ, it holds that

‖fz − fH ‖L 2
ρX
≤ C3

K

γ

√
B2
f +B2

σ

λ̆Nδ
. (16)

Proof. Defining ξt : Z → H such that ξt(·)
.
= (yt −

fH (xt))K (xt, ·), it holds that EZ [ξt](·) = LK (fρ −

1Note that the case r = −1/2 plays a crucial role in connecting the
norms in L 2

ρX
and H for functions in the hypothesis space. Indeed,

considering f(·) =
∑E
i=1 αiϕi(·), one has by definition of H that

‖f‖2H = ‖Σ−1/2
α α‖22 =

∑E
i=1 α

2
i /λi. On the other hand, we have that

L
−1/2
K (f)(·) =

∑E
i=1 αi/

√
λiϕi(·), and its L 2

ρX
-norm is equal, by Par-

seval’s Theorem, to
∑E
i=1 α

2
i /λi. Therefore, ‖f‖2H = ‖L−1/2

K f‖2
L 2
ρX

.

fH )(·) = γfH (·). From this, and recalling the definition of
sampling operator, it follows that fz(x)− fH (x) equals [15]( 1

N
S>X SX + γI

)−1
[

1

N

N∑
t=1

ξt(x)− EZ [ξ](x)

]
.

We can now study the L 2
ρX
− norm of the expression above.

Since X is compact and the measure ρX on it defined is
a probability measure, ‖f‖L 2

ρX
≤ ‖f‖∞ for any function

f ∈ L 2
ρX

: therefore, ‖fz − fH ‖L 2
ρX

is upper bounded by∥∥∥( 1

N
S>X SX + γI

)−1∥∥∥
∞

∥∥∥ 1

N

n∑
t=1

ξt − EZ [ξ]
∥∥∥
∞
.

Since the operator norm can be bounded by CK

γ
√
λ̆

(the proof

is reported at the end of this subsection), we can now study
an upper bound for ρN (‖fz − fH ‖L 2

ρX
> ε) which, for an

arbitrary ε > 0, is

ρN

(∥∥∥ 1

N

n∑
t=1

ξt − EZ [ξ]
∥∥∥
∞
>
εγ
√
λ̆

CK

)
. (17)

At an arbitrary input location x ∈X and a given ε̄ ∈ (0, 1),
Chebychev’s inequality yields

ρN

(∣∣∣ 1

N

N∑
t=1

ξt(x)− EZ [ξ](x)
∣∣∣ > ε̄

)
≤ var(ξ)(x)

Nε̄2
,

noting that {ξt}Nt=1 are independent and identically distributed.
Using this result, we can further bound (17) as

ρN (‖fz − fH ‖L 2
ρX

> ε) ≤ C2
K

γ2λ̆

‖var(ξ)‖∞
Nε2

. (18)

The variance term can be bounded as

sup
x̄∈X

var(ξ)(x̄) ≤ sup
x̄∈X

∫
Z

K (x̄, x)2(y − fH (x))2dρ

≤ C4
K

∫
Z

(y − fH (x))2dρ ≤ B2
f +B2

σ,

where the last inequality follows from the fact that
∫

Z (f(x)−
y)2dρ−

∫
Z (fρ(x)−y)2dρ = ‖f−fρ‖2L 2

ρX

for any f : X →
Y [15], and that ‖fH − fρ‖2L 2

ρX

+ γ‖fH ‖2H = J (fH ) ≤
J (0) = ‖fρ‖2L 2

ρX

≤ B2
f . Coming back to (18), we have that

ρN

(
‖fz − fH ‖L 2

ρX
> ε
)
≤ C6

K

γ2λ̆

(B2
f +B2

σ)

Nε2
= δ. (19)

The proof is concluded by retrieving the expression for ε
from δ in the equality (19).

Proof for operator norm bound: By definition,
we look for a constant C∞ is such that, for any
u ∈ H , ‖(S>X SX /N + γI)−1u‖∞ ≤ C∞‖u‖∞. By

the reproducing property,
∥∥∥( 1

N S
>
X SX + γI

)−1

u
∥∥∥
∞

=

supx̄∈X

∣∣∣〈( 1
N S
>
X SX + γI

)−1

u(·),K (x̄, ·)
〉

H

∣∣∣, which

is further upper bounded by CK

∥∥∥( 1
N S
>
X SX +

γI
)−1∥∥∥

H
‖u‖H by Cauchy-Schwartz inequality and
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(6). Now, by the bound on the operator norm in H provided

in [15, Equation 3.5], we have
∥∥∥( 1

N S
>
X SX +γI

)−1

u
∥∥∥
∞
≤

CK

γ ‖L
−1/2
K ‖L 2

ρX
‖u‖L 2

ρX
≤ CK

γ ‖L
−1/2
K ‖L 2

ρX
‖u‖∞. The

proof is concluded by deriving the operator norm for
‖L−1/2

K ‖L 2
ρX

, which is ‖L−1/2
K ‖L 2

ρX
≤ 1/

√
λ̆ because, for

an arbitrary f ∈ L 2
ρX

, ‖L−1/2
K f‖L 2

ρX
=
√∑E

i=1
α2
i

λi
≤√

1
λ̆

∑E
i=1 α

2
i ≤ 1√

λ̆
‖f‖L 2

ρX
.

Remark 1. We did not study bounds for EZ [ρN (‖fz −
fH ‖L 2

ρX
], because they typically return conservative values.

A result for unbounded sampling is given, e.g., in [29,
Proposition 20]. Note also that our probabilistic guarantees
fall in the category of “honest" bounds rather than “exact"
bounds [30]: this means that, for a user-chosen confidence
level δ, the result holds with confidence "at least 1− δ" and
not with "exact probability 1− δ".

IV. APPROXIMATION ERROR
We now study the error due to the choice of the hypothesis

space H , i.e., the L 2
ρX

-distance between the solution fH

introduced in (12) and the regression function fρ defined
in (1). We first provide an expression for fH : letting the
regression function be expressed through the basis functions of
L 2
ρX

as fρ(·) =
∑
q∈N ᾱqϕ̄q(·), and recalling the definition

of the RKHS basis functions ϕi(·) in (4) and of the
coefficients απi in (14), we have

fH (·) =

E∑
i=1

λi
λi + γ

ᾱπi ϕi(·). (20)

Thanks to this result, we derive two bounds on the approx-
imation error depending on different norms of the vector
ᾱπ defined in (14). The discussion of their performance
is deferred to Section VI-C. We present the result in the
following Proposition.

Proposition 1. In the trigonometric linear regression frame-
work presented in Section II, the approximation error ‖fH −
fρ‖L 2

ρX
admits the following upper bounds:

(a)
γ

λ̆+ γ
‖ᾱπ‖2 +

√ ∑
q∈N\Q

ᾱ2
q (21)

(b) ‖ᾱπ‖∞γ
E∑
i=1

1

λi
+

√ ∑
q∈N\Q

ᾱ2
q . (22)

Proof. Expressing the regression function as fρ =∑
q∈N ᾱqϕ̄q and fH as in (20), we apply the triangle

inequality and Parseval’s Theorem on ‖fH − fρ‖L 2
ρX

and
obtain

‖fH − fρ‖L 2
ρX

=
∥∥∥ E∑
i=1

λi
λi + γ

ᾱπi ϕi −
∑
q∈N

ᾱqϕ̄q

∥∥∥
L 2
ρX

≤

√√√√ E∑
i=1

(
γ

λi + γ

)2

(ᾱπi )2 +

√ ∑
q∈N\Q

ᾱ2
q .

Let us now focus on the first term on the right-hand side.
The first bound (21) is obtained by considering (λi+γ)−1 ≤
(λ̆+ γ)−1. As for the second, we take ᾱπi ≤ ‖ᾱπ‖∞, bound
the square root of the sum as the sum of the square roots,
and take (λi + γ)−1 ≤ (λi)

−1.

V. BIAS-VARIANCE TRADE-OFF
In this section, we combine the bounds on the sample and

approximation errors derived in Theorem 1 and Proposition
1, respectively, and study the estimated overall error ‖fz −
fρ‖L 2

ρX
as a function of γ and fixing H . The main result

is presented in the following Proposition.

Proposition 2. (a) Consider the approximation error bound
as in (21). Then, if the number of data N and the
confidence parameter δ are such that

√
Nδ >

C3
K

λ̆3/2

√
B2
f +B2

σ∑E
i=1(ᾱπi )2

, (23)

there exists a unique γ = γ̂(a) minimizing the estimated
error ‖fz − fρ‖L 2

ρX
.

(b) Take now the approximation error bound as in (22).
Then, there always exist a unique γ = γ̂(b) minimizing
the estimated error ‖fz − fρ‖L 2

ρX
.

Proof. For both cases (a) and (b), we derive sufficient
conditions ensuring that the bound admits a unique minimum
by studying the first and second derivatives with respect to
γ.
(a) Consider the sample and approximation errors as obtained
in (16) and (21), respectively. Introducing the following
notation:

A = C3
K

√
B2
f +B2

σ

Nδλ̆
, b = λ̆,

B =

√√√√ E∑
i=1

(ᾱπi )2, C =

√ ∑
q∈N\Q

ᾱ2
q ,

(24a)

(24b)

we have that the overall error can be bounded as follows:

‖fz − fρ‖L 2
ρX
≤ A

γ
+

Bγ

b+ γ
+ C = F (γ). (25)

The function F (γ) is always positive for γ > 0. Studying
the first derivative, we obtain that the condition ensuring a
unique root on the positive real axis is Bb−A > 0, which
is (23). Such a condition implies also the existence of a
unique flexus on γ > 0. The optimal γ has the expression
γ̂(a) = b(A+

√
ABb)/(Bb−A).

(b) We proceed along the lines of the preceding argument
but consider the approximation error bound as in (22).
Considering the following coefficients:

A as in (24a), D =

E∑
i=1

‖ᾱπ‖∞
λi

, (26)

the claim follows by proving that the function F (γ) = A
γ +

Dγ has a unique minimum for γ > 0. The resulting optimal
γ always exists and takes the value γ̂(b) =

√
A/D.
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VI. DISCUSSION

We first study the performance of the sample error bound
provided in Section III by comparing it with other bounds
given in [15] and [29]. Next, we discuss the result of
Proposition 2, especially showcasing the capability of γ(b) to
capture the behavior of the oracle γ minimizing the overall
error.

A. Comparison with sample error bound in [15, Theorem 5]

In the numerical set-up, we assume that a uniformly
distributed random noise with a Signal-to-Noise Ratio (SNR)
of 150 affects the measurements of the regression function
fρ(x) =

∑
q∈N ϕ̄q(x)ᾱq with x ∈ [−1250, 1250]. Such a

function is assumed to be characterized by 20 sine/cosine
couples {ϕ̄q}, where q is randomly drawn without repeti-
tions from the set {1, ..., 30}. The hypothesis space H is
characterized by a subset of E/2 = 10 sine/cosine couples
randomly selected among those that define the regression
function.
We perform a Monte Carlo study of 500 runs, where at
each step we draw a new set of basis functions defining the
regression function and the hypothesis space. Coefficients ᾱq
of the regression function are drawn from a Gaussian
distribution N (0, λ), where λ is sampled from a uniform
distribution on (0, 5), and also enters the definition of the
hypothesis space as in (8) as λi = λ for all i = 1, ..., E. At
each run, the number of data-points N is randomly sampled
from the set {100, 101, ..., 1000}. We consider a confidence
level of δ = 0.1. Then, we evaluate the sample error bounds
corresponding to the minimum value of γ satisfying the bound
in [15, Theorem 5], and evaluate their relative difference
with respect to the true sample error attained with such a γ.
The results are displayed in Figure 1. Both bounds decay as
1/
√
N , but (16) evidences a more favorable behavior in terms

of the confidence level, at least for values of δ smaller than
the solution of 1/

√
δ = log(4/δ) in (0, 1], that is ≈ 0.0539.

Conservatism in the bound in [15, Theorem 5] is mostly due
to the linear dependence on the output values bound, M .
The explicit condition on M ensuring bound (16) to be more
conservative is the following:

M ≤ C2
K

12

√
B2
f +B2

σ

λ̆γ

1√
δ log(4/δ)

. (27)

Such a value tends to be very small: e.g., in the Monte Carlo
test, the bound (27) returned a mean value of 3.50 ± 2.02,
while the true value M emerging from the (quite favorable)
SNR attained a mean value of 39.02± 14.66.

B. Comparison with sample error bound in [29, Proposition
20]

We consider the same numerical set-up as the previous
section, and we translate the bound of [29, Proposition 20]
into a statement of the same type as Theorem 1 by using
Markov’s inequality. To further adapt to the context given in
Section II, we set p = 2 and N (γ) =

∑E
i=1 λi/(λi+γ). The

bound of [29, Proposition 20] shows a slower behavior in the

number of data N with respect to (16); moreover, it depends
on the approximation error, which is generally not known. We
performed the Monte Carlo study by setting ‖fH − fρ‖L 2

ρX

to its true value, and the results are very conservative, as
displayed in Figure 1.

Theorem 1 [Smale, et al. 2007][Lin, et al. 2017]

5

10

15

Logarithm of sample error relative difference

Fig. 1: Behaviour of the sample error bounds in the Monte Carlo
trials in Sections VI-A and VI-B. The adopted score is the difference
between the bound and true sample error, normalized by the true
sample error. For Theorem 1, such an error attains a mean value
of 21.44± 4.093, while for the bound in [15] it is 440.03± 99.33,
and 3.40× 106 ± 3.32× 106 for the one in [29]. We display the
values on a logarithmic scale to facilitate visualization.

C. On the choice of γ in view of the bias-variance trade-off

We now perform a Monte Carlo study to discuss the results
given in Proposition 2. Consider X = [−5× 105, 5× 105]
as input domain. The regression function is characterized
by 30 sine/cosine pairs {ϕ̄}30

q=1, where each q is randomly
selected without repetitions from the set {1, ..., 100}, and each
component of the vector of coefficients ᾱ is drawn from a
Gaussian random variable with zero mean and variance λ = 1.
The latter hyper-parameter also enters the definition of the
RKHS H . The set of frequencies Q is selected as a random
subset with cardinality 10 from the set of those characterizing
the regression function. Fixing an SNR equal to 50, we draw
50 random regression functions and select the basis functions
for the hypothesis space. The number of input/output pairs
for each run is N = 2500, and we consider a confidence
parameter δ = 0.5. For each run, we compute γ(a) and γ(b)

as in Proposition 2, compute the sample- and approximation
error bounds as in Theorem 1 and Proposition 1, and compare
their values to the true errors yielded by γ(a) and γ(b). We
observe that the bounds computed with γ(a) are closer to the
true values. We display the values in Table I.

γ(a) True value Bound
‖fz − fH ‖L 2

ρX
0.036± 0.007 0.419± 0.033

‖fH − fρ‖L 2
ρX

(a) 9.313± 0.077 10.05± 0.992

γ(b) True value Bound
‖fz − fH ‖L 2

ρX
0.387± 0.076 14.04± 1.942

‖fH − fρ‖L 2
ρX

(b) 7.351± 0.575 20.41± 2.193

TABLE I: Overall values (mean ± standard deviation) of sample
and approximation error bounds compared to the true errors.

The test above described was performed by fixing the
regularization parameter and focused on the single errors.
If we instead consider the overall error ‖fz − fρ‖L 2

ρX
and

compare values of γ(a) and γ(b) with the oracle value γ∗

(obtained via grid search) minimizing it, we observe that γ(b)
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is the one that performs best. The poor performance of γ(a) is
due to the fact that the condition in (23) needs a large number
of data to be satisfied, and this leads to an overestimation
of the regularization parameter. In this specific test, γ∗ was
located at the minimum value of the grid, i.e. γ∗ = 0.1; the
mean values for γ(a) and γ(b) were 7.7703 ± 0.2115 and
0.2308± 0.0230, respectively.

VII. CONCLUSIONS

In this paper, we analyzed the estimation errors occurring
in regularized trigonometric regression within the statistical
learning set-up. To the best of the Authors’ knowledge, such
a study was missing in the literature, that mostly focused
on non-parametric methods or non-regularized trigonometric
regression. We derived a novel bound on the sample error
that does not require the support of the output distribution to
be finite; numerical tests showed it to be less conservative
than classical bounds, at least in the non-asymptotic regime.
Next, we computed two bounds for the approximation error
and combined them with the sample error bound to retrieve a
practical selection criterion for the regularization parameter γ,
optimizing the trade-off between estimated bias and variance.
In particular, we showed that one of the two criteria yields a
value of the regularization parameter that is close to the oracle,
and thus can in principle be used to speed up hyper-parameter
selection. We stress that such an analysis can be extended to
any other orthogonal basis of L 2

ρX
. Moreover, we foresee

that the generality of such a set-up can have an impact on
an abstract treatment of bias learning, which is a planned
extension of the present work. Forthcoming research will also
focus on complementing the presented error analysis with
hyper-parameter estimation for the choice of H (i.e., of Q
and {λi}Ei=1), possibly leveraging the Bayesian interpretation
of the problem as done, e.g., in [8]; moreover, we plan to
consider different risk functions (e.g., with the conditional
value-at-risk [31]), and study the asymptotic behavior in terms
of number of data N and of the basis functions E.

Note: An extended version of the paper can be found on https://

doi.org/10.48550/arXiv.2303.09206.
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