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Abstract— In recent control theory, safety analysis and safety-
critical control based on a (control) barrier function have been
actively pursued. The barrier function is closely related to
a Lyapunov function, which is an important property that
guarantees asymptotic stability of the system, i.e., the settling to
the target state, which is a fundamental control performance.
Therefore, control strategies that simultaneously guarantee
safety and stability are important in the recent control scene.
In this paper, we propose a method for quantitative evaluation
of safety probability for stochastic systems based on barrier
functions generated from Lyapunov functions, and then develop
control design methods to increase the safety probability. In
particular, safety analysis and safety-critical control of linear
stochastic systems having additive noises are performed based
on linear algebra. We also discuss design methods for safety and
safety-critical control for input-affine stochastic systems. The
effectiveness of the proposed method is demonstrated based on
a simple example.

I. INTRODUCTION

In recent years, the advancement of human-machine in-
teraction and automation technologies has been actively
promoted, and the establishment of system safety has be-
come an urgent issue in control engineering. Therefore, on
the theoretical side, safety control based on control barrier
functions has been vigorously studied in the past few years
[1], [2], [3], [4]. In safe control theory based on control
barrier functions, system safety is achieved by some kind of
state restriction. That is, the control goal is to make a certain
subset of the state space invariance (in forward time), and
the (forward) invariance set is called the safety set. Various
applications are expected in this policy, for example, the
straightforward realization of seemingly complex commands
in barrier functions in practice [1], [2] and human-assisted
control [3], [4] are being promoted.

Then, the demand to maintain invariance of a safe set
no matter how violently and irregularly disturbances are
applied has led to various reports on barrier functions for
stochastic systems [5], [6], [7], [8], [9], [10], [11], [12];
Clark [5] discusses conditions for safety with probability one,
Tamba et al. [6] consider a strict type of stochatic barrier
function for safety with probability one, and Wang et al.
[7] provide a detailed discussion of Markov time until a
trajectory leaves a safe set. Prajna et al. [8] discuss in detail
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the probability of staying in a certain set, and Santoyo et al.
[9] develop this into a safe control problem based on control
barrier functions. Wisniewski and Bujorianu [10] provide
a detailed discussion of stochastic safety named p-safety.
Stochastic safety-critical control of stochastic discrete-time
systems has been studied in detail by Jagtap et al. [11] and
further developed into a data-driven framework by Salamati
and Zamani [12]. These methods are extremely powerful for
complex systems such as hybrid systems and systems with
linear temporal logic.

On the other hand, in many problem settings of stochas-
tic systems, safety is not guaranteed with probability one,
therefore, a quantitative evaluation of the degree of safety
is essential. In the setting of quantitative analysis of a safe
set, Prajna et al. [8] and Wisniewski and Bujorianu [10]
provide excellent analysis methods, and recently Nishimura
and Hoshino [13] have proposed a simple analysis method
with sufficient conditions that directly includes diffusion
coefficients.

Safety-critical control based on control barrier functions
is generally in the nature of a compensator that is added
to improve some control performance. Thus, the most basic
application of safety-critical control is to add a compensator
to a system in which asymptotic stabilization has already
been achieved. Applying this policy to a stochastic system,
we can conceive of the possibility of analyzing how much
safety probability a level set of a Lyapunov function can
retain under the influence of white noises. Based on this
analysis, the safety probability can be improved by adding
safety-critical control as a compensator. In particular, when
white noise is introduced into a linear time-invariant system,
a new analysis is to be explored using a quadratic Lyapunov
candidate function. This analysis should aim to quantify
safety probabilities and develop design methods to enhance
safety probabilities using techniques from linear systems
theory.

In this paper, we propose a simple and concrete analytical
method based on the method in [13] to quantify the safety
probability that the trajectory of an asymptotically stable
system remains inside the safety set under stochastic distur-
bances, and show that the safety probability can be improved
by designing compensators and with concrete numerical
targets. First, since the goal of this paper is closely related
to the invariance of a level set of a Lyapunov function in
Lyapunov stability theory, we consider the situation where an
asymptotically stable linear system is influenced by additive
noises. We define a safe set, an initial value set, and a
barrier function associated with the level set of the Lyapunov
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function, and propose a method to compute the safety
probability of the safe set in linear algebra. We also give a
control design guideline to improve the safety probability of
the safety set. Next, an analysis method of safety probability
for more general stochastic input-affine systems and a control
design for improving the safety probability are derived. The
effectiveness of the proposed method is verified by a simple
numerical example.

This paper is organized as follows. In Section II, we
describe mathematical notations and target systems. In Sec-
tion III, we preliminary discuss safety for stochastic systems.
In Section IV, we present the main results on the analysis and
design of safety probabilities for linera systems with additive
noises. In Section V, we extend the results of the previous
section to nonlinear systems. In Section VI, we demonstrate
a numerical example. Section VII concludes this paper. The
main results are shown in Sections IV and V.

II. PRELIMINARY

A. Notations

Let Rn be an n-dimensional Euclidean space and es-
pecially R := R1. A Lie derivative of a smooth mapping
W : Rn → R in a mapping F = (F1, . . . ,Fq) : Rn → Rn ×Rq

with F1, . . . ,Fq : Rn → Rn is denoted by

LFW (x) =
(

∂W
∂x

F1(x), . . . ,
∂W
∂x

Fq(x)
)
. (1)

For constants a,b > 0, a continuous mapping α : [−b,a]→R
is said to be an extended class K function if it is strictly
increasing and satisfies α(0) = 0. The boundary of a set A
is denoted by ∂A .

Let (Ω,F ,{Ft}t≥0,P) be a filtered probability space,
where Ω is the sample space, F is the σ -algebra that is
a collection of all the events, {Ft}t≥0 is a filtration of F
and P is a probabilistic measure. In the filtered probability
space, P [A|B] denotes the probability of some event A under
some condition B and w = (w1, . . . ,wd)

T is a d-dimensional
standard Wiener process. For a Markov process x(t) ∈ Rn

with an initial state x(0) = x0, we often use the following
notation Px0 [A] = P [A|x(0) = x0]. The differential form of
an Itô integral of σ : Rn → Rd over w is represented by
σ(x)dw. The trace of a square matrix X is denoted by tr[X ].
For a matrix X whose eigenvalues are all real, eigmax[X ] and
eigmin[X ] are the maximum eigenvalue and the minimum
eigenvalue, respectively.

B. Target system, the related functions, and a global solution

In this subsection, we describe a target system, the related
functions frequently used throughout the paper, and the
definition of a solution in global time.

In this paper, we consider a stochastic system

dx = f (x)dt +σ(x)dw (2)

and a stochastic control system

dx = { f (x)+g(x)u}dt +σ(x)dw, (3)

where x ∈ Rn is a state vector with a fixed initial value
x0 = x(0) ∈Rn, u ∈U ⊂Rm is a control input vector, where
U denotes an admissible control set, w is a d-dimensional
standard Wiener process, and mappings f , g and σ : Rn →
Rn×Rd are assumed to be locally Lipschitz and satisfy linear
growth condition for ensuring that the system (3) has a strong
solution for any t ∈ [0,∞); see, for example, [14], [15], [16].

For simplicity, we further define some functions. For a C2

mapping y : M → R with some M ⊂ Rn, let

LI
σ (y(x)) :=

1
2

tr

[
σ(x)σ(x)T

[
∂
∂x

[
∂y
∂x

]T
]
(x)

]
, (4)

Hσ (h(x)) :=
1
2

Lσ h(x)(Lσ h(x))T . (5)

The infinitesimal operator for (2) is defined by L f ,σ as
follows:

L f ,σ (y(x)) := L f y(x)+LI
σ (y(x)); (6)

and the one for (3) is defined by L f ,g,σ as follows:

L f ,g,σ (u,y(x)) := L f y(x)+Lgy(x)u+LI
σ (y(x)). (7)

III. PROBABILITY OF SAFETY

A. Definitions of a safe set and safety for a stochastic system

Let us define a safe set χ ⊂Rn being open, and there exists
a mapping h :Rn →R satisfying all the following conditions:

(Z1) h(x) is C2.
(Z2) h(x) is proper in Rn; that is, for any L ∈ [0,∞), any

superlevel set {x ∈ Rn|h(x)≥ L} is compact.
(Z3) The closure of χ is the 0-superlevel set of h(x);

that is, both of the following two conditions are
satisfied:

χ = {x ∈ Rn|h(x)> 0}, (8)
∂ χ = {x ∈ Rn|h(x) = 0}. (9)

We also notice that the reciprocal function B(x) :=
(h(x))−1 is often used after.

Let p ∈ [0,1] and χ ′ ⊂ χ . System (3) is said to be safe in
(χ ′,χ, p) if, for any x0 ∈ χ ′,

Px0 [x(t) ∈ χ,∀t ∈ [0,∞)]≥ p (10)

is satisfied. The definition of safety is influenced by the
discussion of stochastic stability analysis by Kushner [17].

B. Sufficient Conditions for Stochastic Safety

In this subsection, based on [13], we show a barrier func-
tion for a stochastic system to yield a quantitative evaluation
of how safe the system is from the viewpoint of probability.

We set some sets and stopping times used in this subsec-
tion. For µ > 0, let

χµ := {x ∈ Rn|h(x) ∈ (0,µ]} ⊂ χ, (11)
χh>µ := χ \χµ = {x ∈ Rn|h(x)> µ}, (12)
Rn

h≤µ := χ̃ ∪χµ = {x ∈ Rn|h(x)≤ µ}, (13)

be defined. For a solution to the system (3) with x0 ∈ χµ ,
the first exit time from χµ is denoted by τ0µ , and for the
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solution with x0 ∈ χ , the first exit time from χ is denoted
by τ0.

To analyze the safety of a stochastic system without inputs,
we first define the following:

Definition 1 (Stochastic ZBF): Let (2) be considered with
χ and h(x) satisfying (Z1), (Z2) and (Z3). If, for all x∈Rn

h≤µ ,

L f ,σ (h(x))≥ bHσ (h(x)) (14)

is satisfied with some b > 0, then h(x) is said to be a
stochastic zeroing barrier function (ZBF). □

Lemma 1: If there exists a stochastic ZBF h(x) for the
system (2), then it is safe in (χµ ,χ,1− e−bh(x0)). ♦
The proof follows immediately from the results in [13].

If the initial value satisfies h(x0) > µ , then the above
lemma is improved so that the probability is independent
of the initial value.

Theorem 1: If there exists a stochastic ZBF for the system
(2), then it is safe in (χh>µ ,χ,1− e−bµ). ♦
The proof follows immediately from the results in [13].

Remark 1: The characteristic feature of the stochastic
ZBF is the explicit inclusion of the diffusion coefficient
in the given inequality (14). The feature has the advantage
of simplifying the calculation of the safety probability and
of allowing the safety probability to be recalculated in
conjunction with changes in the diffusion coefficient. ♢

C. Safety-critical Control

In this subsection, we summarize the extension of the
previous results to a stochastic system with control inputs
(3).

Definition 2 (Stochastic ZCBF): Let (3) be considered
with χ and h(x) satisfying (Z1), (Z2) and (Z3). If there exists
a continuous mapping ϕ : Rn → Rm such that h(x) becomes
a stochastic ZBF; that is, for all x ∈ Rn

h≤µ ,

L f ,g,σ (ϕ(x),h(x))≥ bHσ (h(x)) (15)

is satisfied with some b > 0, then h(x) is said to be a
stochastic zeroing control barrier function (ZCBF). □

Using the notion of a stochastic ZCBF, the results of the
previous subsection are described as follows:

Theorem 2: Let the system (3) be considered. If there
exists a stochastic ZCBF h(x), then the system becomes safe
in both (χµ ,χ,1− e−bh(x0)) and (χh>µ ,χ,1− e−bµ) by de-
signing u = ϕ(x) satisfying all the conditions in Definition 2.

♦
The proof of the theorem follows immediately from the

results in [13].

IV. SAFETY PROBABILITY ANALYSIS FOR
STOCHASTIC LINEAR SYSTEMS

A. Safety for Closed-loop Systems

In this section, we propose an analysis using stochastic
ZCBFs to quantitatively evaluate the behavior of trajectories
in stochastic linear systems.

Here we consider a deterministic system whose origin is
asymptotically stable and its Lyapunov function V (x), and

suppose that the system loses asymptotic stability due to the
application of white noises. In this case, V (x) is no longer
a stochastic Lyapunov function, but can be used as a tool to
evaluate the behavior of the trajectory as a “former Lyapunov
function.” Specifically, we can define a sublevel set of V (x)
as a safe set and calculate the probability that the trajectory
stays within the safe set. In the following, we describe the
analytical method for linear systems.

Let us consider a stochastic linear system

dx = Axdt +Gdw, (16)

where x ∈Rn is a state vector with a fixed initial value x0 =
x(0) ∈ Rn, w is a d-dimensional standard Wiener process,
and A ∈ Rn×n and G ∈ Rn×d are constant matrices.

Theorem 3: Assume that there exist positive definite and
symmetric matrices P,Q ∈Rn×n satisfying a Lyapunov equa-
tion

PA+AT P =−Q. (17)

Let us also consider a candidate for a stochastic ZBF

h(x) =−xT Px+M, M > 0, (18)

a safe set χ and the related sets χµ , χh>µ and Rn
h≤µ with

µ ∈ (0,M). If

L := eigmin[Q]− eigmax[P]
tr[GT PG]

M−µ
> 0 (19)

is satisfied, then the system (16) is safe in (χh>µ ,χ,1 −
e−bµ), where

b ≤ L
2eigmax[PGGT P]

. (20)

♦
The proof is shown in Appendix.

The above theorem can be explained based on the
Lyapunov function V (x) = xT Px as follows. By (18), the
safe set is the open set of the M-level set of V (x) minus
the boundary; that is, χ = {x ∈Rn|V (x)< M}. Also, the set
of initial states χh>µ is the open set of the µ-level set of V (x)
minus the boundary; that is, χh>µ = {x ∈Rn|V (x)< µ}. For
a deterministic system, any level set of a Lyapunov function
is an invariance set, therefore it is surely safe. However,
for a stochastic system, a level set of a Lyapunov function
is generally not an invariance set, therefore safety is not
guaranteed with probability one. Using the above theorem,
we can quantify the degree to which a particular level set of
a Lyapunov function guarantees safety.

B. Safety-Probability Compensators

In this subsection, we propose two control designs for
improving the quantity of safety of a safe set.

Let us consider a stochastic linear system

dx = (Ax+Bu)dt +Gdw, (21)

where x ∈ Rn is a state vector with a fixed initial value
x0 = x(0) ∈Rn, u ∈U ⊂Rm is a control input vector, where
U denotes an acceptable control set, w is a d-dimensional
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standard Wiener process, and A ∈ Rn×n, B ∈ Rn×m and
G ∈ Rn×d are constant matrices.

Corollary 1: Assume that the conditions in Theorem 3 are
all satisfied. If there exists KT ∈Rm such that the minimum
eigenvalue for

Q̄ := Q+PBK +KT BT P (22)

is larger than the minimum eigenvalue for Q, there exists
b̄ > b such that the system (21) with u = −Kx is safe in
(χh>µ ,χ,1− e−b̄µ). ♦
The proof is shown in Appendix.

Corollary 2: Assume that the conditions in Theorem 3 are
all satisfied. If there exist a positive definite and symmetric
matrix R ∈ Rm×m and b+ > 0 such that

BR−1BT = b+GGT , (23)

then, the system (21) with u = ϕpo(x), where

ϕpo(x) :=−R−1BT Px, (24)

is safe in (χh>µ ,χ,1− e−(b+b+)µ). ♦
The proof is shown in Appendix.

We can use either of the two theorems above to improve
the safety probability of a safe set χ . In the procedure, we
can design the feedback gain (K in Corollary 1 or R−1BT P in
Corollary 2) by specifying the value of the safety probability
as, for example, 90%. This will be illustrated in a numerical
example in Section VI.

V. SAFETY-CRITICAL CONTROL FOR STOCHASTIC
NONLINEAR SYSTEMS

In this section, we consider a quantitative analysis of
the safety of a nonlinear stochastic system (2) and a way
to improve the safety probability of a nonlinear controlled
system (3). Note that in the previous section we used
the “former Lyapunov function,” while in this section we
analyze the safety probability based on the positive definite
and proper function, which is not necessarily a Lyapunov
function.

Lemma 2: Let (2) be considered. Let also V : Rn →R be
a proper, C2 and positive definite mapping. For M > 0, if
there exist µ ∈ (0,M] and b > 0 such that

L f ,σ (V (x))≤−bHσ (V (x)) (25)

for all x satisfying V (x)≥ M−µ , then

h(x) =−V (x)+M (26)

is a stochastic ZBF. ♦
The proof is shown in Appendix.

Theorem 4: Let us assume that h(x) in (26) is a stochastic
ZBF for (3) with u = 0. Let us also design u = ϕN(x) with

ϕN(x) :=

{
− (LσV )T R−1(LσV )

2LgV ·(LgV )T (LgV )T , LgV ̸= 0,
0, LgV = 0,

(27)

where R ∈Rd×d is a positive definite and symmetric matrix.
If there exists b′ > 0 satisfies

L f ,g,σ (0,V (x))≤−b′Hσ (V (x)) (28)

for all x satisfying both V (x)≥ M−µ and LgV = 0, (3) with
u = ϕN(x) is safe in (χh>µ ,χ,1− e−(b+b+)µ), where

b+ = min(b′,eigmin[R−1]). (29)

♦
The proof is shown in Appendix.

VI. NUMERICAL EXAMPLE

Let us consider (21) with

A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, G =

[
0

1/2

]
. (30)

Because the following pair of Q and P satisfies the Lyapunov
equation (17), it ensures the origin of the system is asymp-
totically stable if there is no diffusion term:

Q =

[
1 0
0 1

]
, P =

[
3/2 1/2
1/2 1/2

]
. (31)

Therefore, L in (19) and b in (20) are

L = 1− 2+
√

2
4

1
M−µ

, (32)

b ≤ 4L =: b̄, (33)

respectively. Therefore, if M = 1 and µ = 1/10, the system
with u = 0 is safe in (χh>µ ,χ, p1) with

p1 = 1− exp(−b̄µ) = 1− exp(−2L/5)≈ 0.263. (34)

In other words, using the related Lyapunov function V1(x) =
xT Px, if an initial state satisfies x0 ∈ χh>µ = {x ∈R2|V1(x)<
1/10, a sample path x(t) stays x ∈ χ = {x ∈ R2|V1(x) < 1}
for all t ≥ 0 with probability at least 26.3%.

Next, let us consider improving the safety probability by
adding a state feedback law u = −Kx. Because the target
system has a single input, we can easily apply Corollary 2
to design the input. Specifically, we obtain u = ϕpo(x) with
(24) and R = 4/b+; that is,

u =−b+

4
BT Px. (35)

The parameter b+ is determined according to the control
objective. Here, aiming to achieve a safety probability of
90% or greater for the safety set, the parameter should satisfy

1− exp(−(b̄+b+)µ)>
9

10
; (36)

therefore,

b+ >−b̄− log(1/10)/µ. (37)

Substituting M = 1 and µ = 1/10 to the above inequality, we
obtain b+ > 19.97. Therefore, setting b+ = 20, we obtain

u =−40x1 −40x2. (38)

Using the above parameters, we confirm the validity of the
proposed analysis and control by numerical simulation. We
use Euler-Maruyama scheme [18], which is a popular method
for computer simulation of stochastic differential equations.
The initial value is set to x0 =(0,0)T and the number of trials
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Fig. 1. Time responses of a ZBF h(x) =−xT Px+M with u = 0.
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Fig. 2. Time responses of a ZCBF h(x) =−xT Px+M with u =−40x1 −
40x2.
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Fig. 3. Time responses of a controller u =−40x1 −40x2.

is 10. Fig. 1 shows sample paths of h(x) =−V1(x)+M when
u = 0 and Figs. 2 and 3 show sample paths of h(x) and u
when u=−40x1−40x2, respectively. For each figure, the red
line describes the average of 10 trials, and for Fig. 1, the blue
line denotes the boundary of the safe set χ . Fig. 1 implies that
the value of h(x) is sometimes negative, which is considered
to reflect a low safety probability (26.3%) when u = 0. On
the other hand, Fig. 2 implies that the value of h(x) is always
positive (at least the results of numerical simulation), which
is considered to reflect that the control law u=−40x1−40x2
improves the safety probability (90%).

VII. CONCLUSIONS

In this paper, we proposed a concrete method for calcu-
lating the safety probability of a level set of a Lyapunov
function and a method for designing compensators for the
safety probability. Application to more complex and concrete

nonlinear systems is an important issue to demonstrate the
practicality of this research.

APPENDIX
In the proofs, we use the notations as follows: E [y] means

the expectation of some random variable y and the minimum
of a,b ∈ R is described by a∧b := min(a,b).

A. Proof of Theorem 3

This theorem is proven by showing that h(x) is a stochastic
ZBF. In the proof, we often use the relationship

eigmin[Y ]xT x ≤ xTY x ≤ eigmax[Y ]xT x (39)

for a symmetric matrix Y ∈ Rn×n. If x ∈ Rn
h≤µ ; that is, if

−xT Px+M ≤ µ, (40)

we obtain

xT x ≥ M−µ
eigmax[P]

. (41)

On the other hand, the given assumptions (19) and (20) yield

eigmin[Q]−2b · eigmax[PGGT P]≥ eigmax[P]
tr[GT PG]

M−µ
;

(42)

thus,

M−µ
eigmax[P]

≥ tr[GT PG]

eigmin[Q]−2b · eigmax[PGGT P]
(43)

is satisfied. Therefore, If (41) holds, (43) results in

xT x ≥ tr[GT PG]

eigmin[Q]−2b · eigmax[PGGT P]
. (44)

Applying (39) to the above inequality, we obtain

xT Qx− tr[GT PG]≥ 2bxT PGGT Px, (45)

which is the same as

LAx,G(h(x))≥ bHG(h(x)). (46)

This is a sufficient condition that h(x) is a stochastic
ZBF. Consequently, by Theorem 1, the system is safe in
(χh>µ ,χ,1− e−bµ).

B. Proof of Corollary 1

Because Q = −PA−AT P is positive definite, Q̄ is also
positive definite and P is a positive solution for the related
Lyapunov equation

P(A−BK)+(A−BK)T P =−Q̄. (47)

Therefore, (19) and (20) in Theorem 3 are replaced by

L̄ := eigmin[Q̄]− eigmax[P]
tr[GT PG]

M−µ
> 0 (48)

and

b̄ ≤ L′

2eigmax[PGGT P]
, (49)

respectively. Because the given additional assumption is
eigmin[Q̄]> eigmin[Q], there exists b̄ such that b̄ > b.
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C. Proof of Corollary 2

Considering u = ϕpo(x) with (24) and h(x) with (18), we
obtain

LAx,B,G(ϕpo(x),h(x)) = xT Qx− tr
[
GT PG

]
+2xT PBR−1BT Px; (50)

thus, applying (46), we obtain

LAx,B,G(ϕpo(x),h(x))≥ 2bxT PGGT Px+2xT PBR−1BT Px.
(51)

Moreover, we also consider the additional assumption (23),
the above inequality results in

LAx,B,G(ϕpo(x),h(x))≥ 2(b+b+)xT PGGT Px, (52)

which implies (15), provided that b is replaced by b+ b+.
This completes the proof.

D. Proof of Lemma 2

First, considering (26), V (x) ≥ M − µ is equivalent to
h(x)≥ µ . Second, (26) implies

∂h
∂x

=−∂V
∂x

; (53)

thus, we obtain

L f ,σ (h(x)) =−L f ,σ (V (x)). (54)

Using the above relationship, (14) results in (25). Therefore,
h(x) is a stochastic ZBF.

E. Proof of Theorem 4

For LgV ̸= 0, (3) with u = ϕN(x) implies

L f ,g,σ (ϕN(x),V (x)) =L fV (x)+LI
σ (V (x))

− 1
2
(LσV (x))T R−1LσV (x). (55)

Therefore, if V (x)≥ M−µ , we obtain

L f ,g,σ (ϕN(x),V (x))≤− (b+ eigmin[R−1])Hσ (V (x)). (56)

On the other hand, if LgV = 0 and V (x) ≥ M − µ , (3) with
u = 0 implies

L f ,g,σ (ϕN(x),V (x))≤−b′Hσ (V (x)), (57)

where b′ ≥ b > 0 because h(x) is a stochastic ZBF for (3)
with u = 0. Comparing (56) with (57), we obtain

L f ,g,σ (ϕN(x),V (x))≤−b+Hσ (V (x)) (58)

for all x satisfying V (x)≥ M−µ . This completes the proof.
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