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Abstract— This paper focuses on the optimal allocation of
multi-stage attacks with the uncertainty in attacker’s intention.
We model the attack planning problem using a Markov decision
process and characterize the uncertainty in the attacker’s
intention using a finite set of reward functions—each reward
represents a type of attacker. Based on this modeling, we employ
the paradigm of the worst-case absolute regret minimization
from robust game theory and develop mixed-integer linear
program (MILP) formulations for solving the worst-case regret
minimizing sensor allocation strategies for two classes of attack-
defend interactions: one where the defender and attacker
engage in a zero-sum game and another where they engage
in a non-zero-sum game. We demonstrate the effectiveness of
our algorithm using a stochastic gridworld example.

I. INTRODUCTION

With the increasing severity of cyber- and physical- at-
tacks, developing effective proactive defense aims to enable
early detection of attacks by strategically allocating sen-
sors/intrusion detectors. However, this task is complicated
by the fact that attackers often have varying objectives and
intentions.

This paper studies the design of a robust proactive sensor
allocation, given the uncertainty in the objective or the
intention of the attacker. Our approach is motivated by
real-world cyber security incidents, where defenders have
limited monitoring resources and must deal with attackers
with different objectives, ranging from using a botnet to
interrupt services with a DDoS attack, distributing malware
to steal sensitive data, or privilege escalation attacks (see
[18], a report on recent cyber security incidents).

We formulate the attack planning problem as a Markov
decision process (MDP) and enable the defender to allocate
intrusion detectors, called sensors in this context, to detect
the presence of an attack. The sensor allocation modifies the
transition function of the attack MDP. Specifically, when a
state is allocated with a sensor, it becomes a sink/absorbing
state, as the attack terminates once a sensor state is reached.
Therefore, the goal of designing an optimal sensor allocation
is to modify the transition function of the attack MDP such
that the attacker’s value can be minimized given the best
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response attack strategy. The sensor allocation problem in
attack graphs [4] is closely related to Stochastic Stackelberg
Game (SSG) [16]. In an SSG, the defender/leader commits
to a strategy first to protect a set of targets with limited
resources, while the attacker/follower selects the best re-
sponse attack strategy to the defender’s strategy. Related to
SSG for sensor allocation, Li et al. [6] developed a mixed-
integer linear program (MILP) formulation for solving joint
allocation of detectors and stealthy sensors that minimizes
the attacker’s probability of success. Sengupta et al. [14]
modeled the attacker-defender interaction using a normal-
form game and proposed a mixed strategy for the defender
to randomize intrusion detectors. Besides the security game,
other resource allocation problems have been extensively
studied. These include distributing preventive resources to
contain the spreading process [9] in a network; allocating
sensors for maximizing coverage [7]. The main difference
is that in game-theoretic resource allocation, the decision
maker’s objective function is a function of the allocated
resource and the best response of the attacker, which can
be influenced by how the sensors are allocated.

Traditional Stackelberg security games assume that the
defender knows the attacker’s payoff function, which is often
not the case. To address this, researchers have studied robust
defense design from the perspective of robust optimization
[1]. In [10], the authors considered robust Stackelberg equi-
libria in normal form games where the uncertainty comes
from multiple ϵ-optimal best responses from the follower. In
[17], the authors used an MDP to model the attack plan-
ning problem and employed robust optimization to design
a moving target defense (MTD) policy that is robust to a
finite uncertainty set of attack strategies. In [5], the authors
introduced a robust Stackelberg equilibrium that maximizes
the leader’s payoff given the worst-case realization of the
follower’s payoff in a deterministic sequential game in which
each player selects a distribution over action sequences. The
uncertainty is assumed to lie within a bounded interval on
the follower’s payoff.

Similar to [5], we also investigate the problem of robust
defense when the defender has incomplete knowledge about
the attacker’s payoffs, modeled as a finite set of attacker’s
types. Each type is associated with a unique reward function
that describes the attack objective. We consider robust sensor
allocation with the solution of the worst-case absolute regret
minimization [11].

The proposed Worst-Case Absolute Regret Minimization
for Sensor Allocation (WCARM-SA) solution informs a
regret-averse defender to choose a strategy that leads to a
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small regret once he realizes what would have been the
best decision if he knew the attacker’s type. As shown in
operations research, the WCARM-SA solutions are often
less conservative solutions compared to those by robust
optimization [11], [13].

Our contribution can be summarized as:
• We develop WCARM-SA methods to solve robust sen-

sor allocation problems in zero-sum and non-zero-sum
attack-defend interactions with uncertainty in the attack
intention, described by a finite set of possible attacker’s
reward functions. We demonstrate that the WCARM-SA
can be formulated as MILP problems for both cases.

• We leverage the zero-sum property to develop efficient
solution for the WCARM-SA for the zero-sum case.

• We validate the effectiveness of our proposed approach
through experiments with attack motion planning prob-
lems in stochastic gridworld environments.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations Let R denote the set of real numbers and Rn the
set of real n-vectors. The vector of all ones is represented as
1. The notation zi refers to the i-th component of a vector
z ∈ Rn or to the i-th element of a sequence z1, z2, . . .,
which will be clarified by the context. The set of probability
distributions over a finite set Z is denoted as Dist(Z).

We begin by presenting an attack MDP that captures an
attacker’s planning problem.
Attack Planning Problem The attack planning problem is
modeled as an attack MDP M = (S,A, P, ν, γ,R), where
S is a set of states (nodes in the attack graph) including a
special absorbing/sink state ssink, A is a set of attack actions,
P : S × A → Dist(S) is a probabilistic transition function
such that P (s′|s, a) is the probability of reaching state s′

given action a being taken at state s, ν ∈ Dist(S) is the initial
state distribution, γ ∈ (0, 1] is a discount factor, and R : S×
A → R is the attacker’s reward function such that R(s, a) is
the reward received by the attacker for taking action a in state
s. The attacker’s objective is to maximize the total discounted
rewards in the attack MDP. For concrete examples of attack
graphs generated from network vulnerabilities, readers are
directed to [4] and [6].

We consider Markovian policies because it suffices to
search in Markovian policies for an optimal policy in the at-
tack MDP [12]. Given a Markovian policy π : S → Dist(A),
the attacker’s value function V π

2 : S → R is defined as

V π
2 (s) = Eπ[

∞∑
k=0

γkR(sk, π(sk))|s0 = s],

where Eπ is the expectation and sk is the k-th state in the
Markov chain induced from the MDP M under the policy
π, starting from state s. The attacker’s value given the initial
distribution µ is V π

2 (µ) =
∑

s∈S µ(s)V π
2 (s).

Defender’s incomplete information The defender knows
the dynamics in the attack MDP. However, the defender
does not know the exact reward function of the attacker;
rather, the defender is only aware that the attacker can fall

into one attack type at any given time. Different attacker
types only differ in their reward function in the attack
MDP and share the same states, actions, transition function,
initial distribution, and discount factor. Specifically, let T =
{1, . . . , N} be the attacker’s type space. Let Ri : S×A → R
be the reward function for attacker type i.
Defender’s countermeasures To detect an ongoing attack,
the defender is capable of allocating sensors to a subset U ⊂
S of states in the MDP M . The attack will be terminated
immediately once the attacker reaches a state monitored by
the sensor (assuming the sensor’s false negative rate is 0)
1. However, the defender’s sensor allocation is constrained.
Specifically, we consider a sensor allocation as a Boolean
vector x⃗ ∈ {0, 1}|S|. If x⃗(s) = 1, then the state s ∈ U is
allocated with a sensor. A valid allocation x⃗ needs to satisfy
x⃗(s) = 0 for any s ∈ S \U because only states in U can be
monitored. In addition, the number of sensors cannot exceed
a given integer k, i.e., 1Tx⃗ ≤ k.

We state the problem informally as follows.

Problem 1. In the attack planning modeled as the MDP
M with uncertainty in the attacker’s type, how to robustly
allocate limited sensors with respect to the defense objective?

III. MAIN RESULTS

First, it is observed that a sensor allocation changes the
transition function of the attack MDP as follows.

Definition 1 (Attack MDP equipped with sensors). Given
a sensor allocation x⃗ and the original attack MDP M =
(S,A, P, ν, γ,R), the attack MDP under x⃗ is the MDP

M(x⃗) = (S,A, P x⃗, ν, γ, R),

where S,A, ν, γ,R are identical to those in M , and P x⃗ is
defined as

P x⃗(s′|s, a) =


1, x⃗(s) = 1, s′ = ssink,

0, x⃗(s) = 1, s′ ̸= ssink,

P (s′|s, a), x⃗(s) = 0.

To allocate sensors with uncertainty in the attacker’s type,
we employ a solution of robust game [11], [15], called
worst-case absolute regret minimization, which optimizes the
performance of a decision variable, x⃗ in our context, with
respect to the “worst-case regret” that might be experienced
when comparing x⃗ to the best decision that should have been
made given the attacker’s type i is known. Next, we discuss
two approaches to solve worst-case regret minimizing sensor
allocations given i) Zero-sum attack-defend game: For each
attack type i, the defender’s value in M(x⃗) is the negation of
the attacker i’s value. ii) Non-zero-sum attack-defend game:
Regardless of the attacker’s type, the defender’s value in
M(x⃗) is defined by evaluating the attacker’s strategy with
respect to a defender’s cost function C : S × A → R.
The defender’s goal is to minimize the total discounted costs
respecting C incurred by the attacker’s strategy.

1Please see the long version (https://arxiv.org/abs/2304.05962) for how to
deal with sensors with nonzero false negative rates.
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A. Worst-case regret minimization in zero-sum game

In the zero-sum case, it is first noted that the optimal
sensor allocation x⃗i for attacker’s type i can be obtained
by solving the following optimization problem:

x⃗i = argmin
x⃗∈X

max
π

V π
2,i(ν; x⃗).

where V π
2,i(ν; x⃗) is attacker i’s value given attack strategy

π in the MDP M(x⃗) and the attacker i’s reward Ri. The
optimal sensor allocation problem can be formulated as an
MILP (see [6]). As a result, the WCARM-SA problem is
formulated as:

(WCARM-SA)minimizex⃗∈X max
i∈T

(V2,i(x⃗)− V2,i(x⃗i))

where V2,i(z⃗) = maxπ V
π
2,i(ν, z⃗) for z = x⃗, x⃗i. That is, the

attacker always chooses the optimal strategy in MDP M(x⃗).
The difference V2,i(x⃗)− V2,i(x⃗i) measures the regret of the
defender for choosing x⃗ instead of x⃗i when the attacker
is type i. The regret is always non-negative for any sensor
allocation decision x⃗ ∈ X because x⃗i = argminx⃗ V2,i(x⃗).

Because x⃗i is pre-computed for each attacker type, the
quantity V2,i(x⃗i) is a constant, denoted by vi for clarity. The
optimization problem is then written as:

minimizex⃗∈X max
i∈T

(V2,i(x⃗)− vi) ,

which is a robust optimization problem. The following
lemma shows how the robust optimization problem can be
reformulated as an MILP.

Lemma 1. The worst-case absolute regret minimization
problem for robust sensor allocation in a zero-sum game
is equivalent to the following optimization problem:

min.
y,x⃗∈X

y (1)

s.t. y ≥ V2,i(x⃗)− vi,∀i ∈ T , (2)

V2,i(x⃗) =
∑
s∈S

ν(s)V2,i(s; x⃗),∀i ∈ T , (3)

V2,i(s; x⃗) ≥ Ri(s, a) + γ
∑
s′

P x⃗(s′|s, a)V2,i(s
′; x⃗),

∀s ∈ S,∀a ∈ A,∀i ∈ T , (4)

1Tx⃗ ≤ k. (5)

Proof. For attacker type i and a sensor design x⃗, the optimal
attacker’s value vector, denoted V ∗

2,i(x⃗) ∈ R|S| satisfies the
Bellman optimality condition: For all s ∈ S,

V ∗
2,i(s, x⃗) = max

a∈A

(
Ri(s, a) + γ

∑
s′∈S

P x⃗(s′|s, a)V ∗
2,i(s

′; x⃗)

)
.

Based on the linear program formulation of dynamic
programming [2], any vector V2,i(x⃗) satisfying the set of
constraints in (4) is an upper bound on the V ∗

2,i(x⃗), for
all s ∈ S element-wise. Therefore,

∑
s∈S ν(s)V2,i(s; x⃗) ≥∑

s∈S ν(s)V ∗
2,i(s; x⃗). Constraints (2), (3), and (4) to-

gether enforce y ≥ maxi∈T (
∑

s∈S ν(s)V2,i(s; x⃗) − vi) ≥
maxi∈T (V

∗
2,i(ν; x⃗)− vi).

For an arbitrary x⃗, let r(x⃗) = argmaxi∈T (V
∗
2,i(ν; x⃗)−vi),

that is, the r(x⃗) is the attacker type for which the defender’s
regret of using x⃗ is the largest among the regret for all at-
tacker’s types. Then we have y ≥ maxi∈T (V

∗
2,i(ν; x⃗)−vi) =

V ∗
r(x⃗)(ν; x⃗)− vr(x⃗). Because vr(x⃗) is a constant once r(x⃗) is

determined, minimizing y is equivalent to minimizing the
upper bound of Vr(x⃗)(ν; x⃗) and thus y = V ∗

r(x⃗)(ν; x⃗)−vr(x⃗).
The optimization problem is then minx⃗(V

∗
r(x⃗)(ν; x⃗)−vr(x⃗)),

which is equivalent to the WCARM-SA formulation.

It is noted that the optimization problem in (1) is nonlinear
because the transition function P x⃗ depends on the decision
variable x⃗ and the constraints in (4) include product terms
between the transition probabilities with the other variable
V2,i(s, x⃗). We show how to transform the nonlinear program
into an MILP next.

By the definition of P x⃗ in (2), the term∑
s′ P

x⃗(s′|s, a)V2,i(s
′; x⃗) in (5) satisfies∑

s′

P x⃗(s′|s, a)V2,i(s
′; x⃗)

=

{
V2,i(ssink; x⃗), x⃗(s) = 1,∑

s′ P (s′|s, a)V2,i(s
′; x⃗), x⃗(s) = 0

=
∑
s′

P (s′|s, a)V2,i(s
′; x⃗)(1− x⃗(s)) + V2(ssink; x⃗)x⃗(s)

=
∑
s′

P (s′|s, a)V2,i(s
′; x⃗)(1− x⃗(s)),

where the last equality is implied by V2(ssink; x⃗) = 0. Define

W2,i(s, s
′) = V2,i(s

′; x⃗)(1− x⃗(s)) =

{
V2,i(s

′; x⃗), x⃗(s) = 0,

0, x⃗(s) = 1.
(6)

Using the big-M method [3], Eq. (6) can be expressed
equivalently as affine inequalities (in x⃗, V2,i, and W2,i)

W2,i(s, s
′) ≤ M(1− x⃗(s)), (7)

W2,i(s, s
′) ≥ m(1− x⃗(s)), (8)

W2,i(s, s
′)− V2,i(s

′; x⃗) ≤ Mx⃗(s), (9)
W2,i(s, s

′)− V2,i(s
′; x⃗) ≥ mx⃗(s). (10)

with proper choices of constants M > 0 and m < 0. For
example, let M be the upper bound on the total rewards and
m be the negation of the upper bound on the total rewards.

B. Worst-case regret minimization in non-zero-sum game

Next, we consider the scenario where the defender aims to
minimize her cost function C : S × A → R, which maps a
state and an attack action to a cost penalty that measures the
loss incurred by the attacker’s action. Because the penalty is
not necessarily the negation of the attack reward, the attack-
defend game is non-zero-sum. For a single type of attacker,
we formulate the problem as a Stackelberg game as follows.

Definition 2. For a single type of attacker whose attack MDP
is M = (S,A, P, µ, γ,R), and the defender’s capability of
allocating sensors, an SSG is formulated as a tuple G =
(S,A1, A2,P, ν, γ, R1, R2), where

• S, ν, γ are the same components in the attack MDP M
for states, initial distribution, and discount factor.
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• A1 = {0, 1} is the defender/leader’s action set. Action
0 for not allocating a sensor, 1 for allocating a sensor.

• A2 = A is the attacker/follower’s actions.
• P(s′|s, a1, a2) is the probability of reaching state s′

given action a1, a2 being taken by the defender and the
attacker at state s. For a state s ∈ S, a defender’s action
a1 ∈ A1 and an attacker’s action a2 ∈ A2, let

P(s′|s, a1, a2) =


1, a1 = 1, s′ = ssink,

0, a1 = 1, s′ ̸= ssink,

P (s′|s, a2), a1 = 0.

• R1 : S×A1×A2 → R (resp. R2 : S×A1×A2 → R)
is the leader(resp. follower)’s reward function, defined
with the defender’s cost C (resp. the attacker’s reward
R):

R1(s, a1, a2) =

{
0, a1 = 1,

−C(s, a2), a1 = 0,

R2(s, a1, a2) =

{
0, a1 = 1,

R(s, a2), a1 = 0.

In this SSG, the defender/leader decides the sensor allo-
cation, which determines the transition function P . The at-
tacker/follower decides on the best response to maximize his
reward. The reward function is understood as follows: When
the defender allocates a sensor to state s (i.e., a1 = 1), the
attack terminates in that state, and no further costs/rewards
will be incurred for either player. Otherwise (i.e., a1 = 0),
the attacker continues to reach the next state with action
a2, and both the defender and the attacker receive a reward
of −C(s, a2) and R(s, a2), respectively. In this formulated
SSG, both the defender and the attacker aim to maximize
their respective total discounted rewards.

Since sensors cannot be moved once allocated, we restrict
the defender’s strategy to be deterministic and memoryless.
Given a fixed sensor allocation, the best response attack
strategy can also be deterministic. For a strategy profile
(π1, π2)–a tuple of the defender’s strategy π1 : S → A1 and
π2 : S → A2, the defender’s value function V1 is defined as

V1(s;π1, π2) = E(π1,π2)[
∞∑
k=0

γkR1(sk, π1(sk), π2(sk))|s0 = s],

where the expectation is taken in the Markov chain induced
from G given the strategy profile (π1, π2).

For the non-zero-sum case, the WCARM-SA problem
takes the following form:

(WCARM-SA)minimizeπ1 max
i∈T

(
V1,i(ν, π

i
1)− V1,i(ν, π1)

)
,

where V1,i(ν, π
i
1) is the defender’s value given both the

defender and the attacker committing to the Stackelberg equi-
librium in the SSG G (Def. 2) where the attacker’s reward R2

is defined based on the reward function of attack type i. The
Stackelberg equilibrium can be solved with methods in [19],
with a modification that constrains the defender’s strategy to
be deterministic. The regret V1,i(ν, π

i
1)−V1,i(ν, π1) measures

the defender’s regret in using strategy π1 against attacker

i to the defender’s best strategy πi
1 that should have been

employed when playing against attacker i.
To find π∗

1 that minimizes the worst-case regret, we
introduce a decision variable y and rewrite the optimization
problem as follows:

min.
π1

y (11)

s.t. y ≥ V1,i(ν, π
i
1)− V1,i(ν, π1),∀i ∈ T , (12)

where V1,i(ν, π
i
1) is a constant and is denoted by v̄1,i.

We extend the MILP formulation in [19] and get the
following mixed-integer nonlinear program (MINLP) formu-
lation to solve the WCARM-SA problem:

min
π1,{V1,i,πi

2,V2,i|i∈T }
y (13a)

subject to:

y ≥ v̄1,i −
∑
s∈S

ν(s)V1,i(s), ∀i ∈ T , (13b)

π1(a1 | s) ∈ {0, 1}, ∀s ∈ S, a1 ∈ {0, 1}, (13c)∑
a1∈{0,1}

π1(a1 | s) = 1 ∀s ∈ S, (13d)

πi
2(a2 | s) ∈ {0, 1}, ∀i ∈ T , s ∈ S, a2 ∈ A, (13e)∑

a2∈A

πi
2(a2 | s) = 1, ∀i ∈ T , s ∈ S, (13f)∑

s∈S

π1(1|s) ≤ k, (13g)

The following constraints hold ∀ i ∈ T , s ∈ S, a2 ∈ A2:

(πi
2(a2 | s)− 1)Z ≤ V1,i(s)− R̃i

1(s, π1, a2)

≤ (1− πi
2(a2 | s))Z, (13h)

0 ≤ V2,i(s)− R̃i
2(s, π1, a2) ≤ (1− πi

2(a2 | s))Z, (13i)

where R̃i
1(s, π1, a2) =

∑
a1∈{0,1}

π1(a1|s)(R1(s, a1, a2) +

γ
∑

s′ P(s′|s, a1, a2)V1,i(s
′)) represents the defender’s ex-

pected value from state s given the sensor allocation π1

and attacker’s action a2 from state s, and the function
R̃i

2(s, π1, a2) is defined for the attacker analogously by
substituting the defender’s reward and value of the next state
with the attacker’s. Z is a large constant number, which can
be the upper bound on the absolute value of total rewards.

The constraints in (13) are explained as follows: Con-
straint (13b) enforces y to be the worst-case regret. Con-
straint (13c) and (13d) enforce the defender takes a determin-
istic strategy, constraint (13e), (13f) enforce attacker takes a
deterministic strategy. Constraint (13g) enforces the defender
can not allocate more than k sensors. Constraint (13h) en-
forces that when the attacker i takes action a2, the defender’s
value at that state V1,i(s) should equal the expected value
R̃i

1(s, π1, a2) of defender against attacker i who takes action
a2 at state s. When the attacker does not take action a2,
the constraint is non-binding. This set of constraints obtain
V1,i(s) by evaluating strategy π1 at the state s against the
attacker’s best response for π1. Constraint (13i) enforces that
when the attacker i takes action a2, his value V2,i(s) should
be the same as his expected value R̃i

2(s, π1, a2) given that ac-
tion a2. When a2 is not taken at s, the attacker’s value V2,i(s)
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should be greater than the expected value R̃i
2(s, π1, a2) due

to the fact that V2,i(s) = maxa2 R̃
i
2(s, π1, a2). By enforcing

this constraint, we can ensure V2,i is the attacker’s value
given the defender’s strategy π1 and the attacker’s best
response to π1.

Lemma 2. The worst-case absolute regret minimization
solution for robust sensor allocation in the non-zero-sum
attack-defender game is equivalent to the solution of (13).

The proof is similar to that of Lemma 1 and can
be found in the long version2. The key insight is that
constraints (13b), (13i) and(13h) together enforce y ≥
maxi∈T (v̄1,i −

∑
s∈S ν(s)V1,i(s)) where V1,i(·) is the de-

fender’s value given the best response of attacker type i
(enforced by (13h)).

The above formulation is nonlinear due to the interaction
between the integer variable π1 and the continuous variable
V1,i in R̃i

1 (R̃i
2 analogously). But since the integer variable is

binary, we can use McCormick Relaxation [8] to reformulate
MINLP into MILP. To do so, let’s introduce new variables
for the defender: for i ∈ T , s ∈ S, a1 ∈ {0, 1}, a2 ∈
A2, define wa1,a2

s,i = π1(a1|s)
∑

s′ P(s′|s, a1, a2)V1,i(s
′).

Analogously let za1,a2

s,i be defined for the attacker.
We then replace R̃i

1(s, π1, a2) in (13h) with∑
a1∈{0,1}(π1(a1|s)R1(s, a1, a2) + γwa1,a2

s,i ) and add the
following constraints: ∀i ∈ T , s ∈ S, a1 ∈ {0, 1}, a2 ∈ A:
wa1,a2

s,i ≥
∑
s′∈S

P(s′|s, a1, a2)V1,i(s
′)− Z(1− π1(a1|s)),

wa1,a2

s,i ≤
∑
s′∈S

P(s′|s, a1, a2)V1,i(s
′) + Z(1− π1(a1|s)),

−Z · π1(a1|s) ≤ wa1,a2

s,i ≤ Z · π1(a1|s).

We replace R̃i
2(s, π1, a2) in (13i) and add constraints for

za1,a2

s,i analogously. For both zero-sum and non-zero-sum
cases, the formulated MILP can be solved using the Gurobi
Solver.

Remark 1. If different attackers have different transition
functions Pi, then their corresponding transition functions are
used in Constraints (4) for the zero-sum case and in defining
R̃i

1(s, π1, a2) and R̃i
2(s, π1, a2) for the non-zero-sum case.

Complexity analysis: Solving an MILP is NP-complete and
its runtime complexity depends on the number of constraints
and integer variables. In the non-zero-sum case, the number
of integer variables required for the WCARM-SA is O(|S|×
|A2| × |T |). The number of constraints is O(|S| × |A1| ×
|A2| × |T |). For the zero-sum case, the number of integer
variables and constraints is O(|S|) and O(|S| × |A2| × |T |)
respectively. While the WCARM-SA solution for the non-
zero-sum case can be applied to the zero-sum case, the zero-
sum case formulation in Sec. III-A is more efficient.

IV. EXPERIMENTS

We used an 8 × 8 gridworld environment, depicted in
Figure 1, to demonstrate our solutions. A state is denoted

2https://arxiv.org/abs/2304.05962.

Fig. 1: The 8 × 8 Gridworld Example.
Reward/Cost Cash (0, 6) Gold (3, 7) Diamond (7, 7)
Attacker 1 15 12 12
Attacker 2 12 15 15
Defender 15 10 10

TABLE I: Reward functions of two attackers and the cost function
of the defender (for the non-zero-sum case).

by (row, col). There are two types of attackers with the
same initial state distribution. Both attackers have a 70%
probability of starting from state (2, 0) and a 30% probability
of starting from state (6, 0). Each attacker can move in one
of four compass directions. When given the action “N”, the
attacker enters the intended cell with a 1 − 2α probability,
and enters the neighboring cells, which are the west and east
cells, with probability α. In our experiment, we set α = 0.1.
If the attacker moves into the buildings or the boundary, he
remains in the previous cell. The environment contains three
final states, each with a different value for the attackers. The
attackers only receive a reward when they reach these final
states. Table I lists the rewards for the attackers.

First, we consider the worst-case regret minimization in
the zero-sum case. We change the number of sensors the
defender can allocate to evaluate how sensor numbers affect
the defender’s value. As shown in Figure 2, the attacker’s
expected value decreases when the sensor number increases.

In the case where only two sensors can be allocated, we
compare the robust sensor allocation x⃗∗ with the optimal
allocation strategies x⃗1 and x⃗2 against attacker types 1 and
2, respectively. When the defender knows the attacker’s type,
x⃗1 yields a value of 5.96 for attacker 1 and x⃗2 yields a value
of 6.56 for attacker 2. However, when the defender does
not know the attacker’s type and implements x⃗∗, the values
become 6.12 and 7.04 for attackers 1 and 2, respectively.
In this case, the defender’s worst-case absolute regret is
max(6.12− 5.96, 7.04− 6.56) = 0.48.

Using x⃗1 against attacker 2 results in a regret of 0.89,
while using x⃗2 against attacker 1 results in a regret of 1.49.
In both cases, the worst-case regret is higher than that of
x⃗∗, indicating the advantage of the WCARM-SA method.
The WCARM-SA sensor allocations for different numbers
of sensors are listed in Table II as well as the defender’s
worst-case regret under the robust policy. When 4 sensors
are allocated, x⃗1 = x⃗2 = x⃗∗ = (1, 5), (2, 5), (5, 5), (7, 5)
and the defender’s worst-case regret y = 0. An attacker is
prevented from reaching any final state with probability 1.

Moving on to the non-zero-sum case, the defender now
receives a penalty when the attacker reaches the goal state,
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k Policy x⃗1 Policy x⃗2 Robust policy x⃗∗ y
1 (1, 5) (2, 2) (2, 3) 0.22
2 (1, 5), (2, 4) (2, 2), (6, 2) (1, 5)(6, 2) 0.48
3 (1, 5), (2, 4), (6, 2) (2, 3)(5, 2)(6, 2) (1, 5), (2, 2)(6, 2) 0.77

TABLE II: Sensor allocation in the zero-sum case. x⃗i is the optimal
defender policy against attacker type i ∈ {1, 2}.

Fig. 2: The attacker’s expected value for zero-sum case.

and the cost function for the defender is listed in Table I.
The sensor allocation strategies for the non-zero-sum cases,
as well as the defender’s worst-case regret under the robust
policy, can be found in Table III. Noted that the worst-
case regret is not indicative of the effectiveness of sensor
allocations, that is, a small regret does not necessarily mean
a large value for the defender. Thus, Figure 3 demonstrates
that the defender’s expected value increases as the number
of sensors increases. From Fig. 3, it is observed that when
two sensors are deployed, the worst-case regret is the largest
for both attackers.

Similar to the zero-sum case, when 4 sensors can be
allocated, x⃗1 = x⃗2 = x⃗∗ = (1, 5), (2, 5), (5, 5), (7, 5) and
the defender’s worst-case regret y = 0.

k Policy π1 Policy π2 Robust Policy π∗ y
1 (1, 5) (2, 2) (2, 3) 0.26
2 (1, 5), (2, 4) (2, 3), (6, 2) (1, 5), (7, 5) 1.19
3 (1, 4), (2, 5), (6, 2) (2, 3), (5, 2), (6, 2) (1, 5), (2, 2), (6, 2) 0.20

TABLE III: Sensor allocation in the non-zero-sum case. x⃗i is the
optimal defender policy against attacker type i ∈ {1, 2}.

Fig. 3: The defender’s expected value.
The experiments are conducted on a Windows 10 machine

with Intel(R) i7-11700k CPU and 32 GB RAM. The compu-
tation time for robust sensor allocations in the zero-sum cases
is less than 1 second. For non-zero-sum cases, it takes from
77 sec to 3 hours to solve given increasing sensor numbers.

V. CONCLUSION

We develop robust sensor allocation methods in probabilis-
tic attack planning problems using worst-case absolute regret
minimization from robust game theory. We demonstrated that
both robust zero-sum and non-zero-sum sensor allocation

problems can be formulated as MILPs. Our approach is
suitable for a wide range of safety-critical scenarios that
involve constructing probabilistic attack graphs from known
network vulnerabilities. Future work could focus on devel-
oping more efficient and approximate solutions for robust
sensor allocations in non-zero-sum games. Additionally, the
solution concept for robust games can be extended to design
moving target defenses that randomize network topologies
and the integrated design of sensor allocation and moving
target defense.
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