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Abstract— Modern data-driven techniques have rapidly
progressed beyond modelling and systems identification, with a
growing interest in learning high-level dynamical properties of
a system, such as safe-set invariance, reachability, input-to-state
stability etc. In this paper, we propose a novel supervised Deep
Learning technique for constructing Lyapunov certificates, by
leveraging Koopman Operator theory-based numerical tools
(Extended Dynamic Mode Decomposition and Generalized
Laplace Analysis) to robustly and efficiently generate explicit
ground truth data for training. This is in stark contrast to
existing Deep Learning methods where the loss functions plainly
penalize Lyapunov condition violation in the absence of labelled
data for direct regression. Furthermore, our approach leads
to a linear parameterization of Lyapunov candidate functions
in terms of stable eigenfunctions of the Koopman operator,
making them more interpretable compared to standard DNN-
based architecture. We demonstrate and validate our approach
numerically using 2-dimensional and 10-dimensional examples.

I. INTRODUCTION

Developing formal guarantees for safety and performance
of dynamical systems is an essential step in the design
and control of cyber-physical systems. Lyapunov functions
primarily provide stability and robustness guarantees for
a large class of dynamical systems [1][2]. More recently,
data-driven certification of such critical behaviours and
properties within cyber-physical systems has become an area
of growing interest to the controls and machine learning
communities alike. In the absence of a well-known dynamical
model, leveraging trajectory data for control and analysis
is particularly well-suited. Even for the cases where we
have a model, it often takes expert intuition and knowledge
to handcraft Lyapunov functions. Therefore, learning-based
approaches show promise in constructing certificates from
data. For example, Deep Learning techniques were utilized
for synthesizing Lyapunov functions in [3][4][5].

In this paper, we are interested in leveraging tools
from Koopman Operator theory towards learning Lyapunov
functions by efficient utilization of data, in an interpretable
manner. These infinite dimensional linear operators provide
powerful and practical techniques that allow well-developed
control and analysis principles from linear systems to be
applied to nonlinear dynamical systems. Koopman theory has
been successfully utilized for a wide range of applications,
including modelling and identification in robotics, nonlinear
optimal control and MPC via global bi-/linearization, as
well as dynamical systems analysis (please see [6] and the
references therein). The eigenfunctions of Koopman operators
encode useful information about the underlying dynamics,
such as invariant sets and stable/unstable manifolds, and are
central to our work. In this paper, we are primarily interested
in finding Lyapunov functions, for which we utilize Koopman
eigenfunctions. We propose a data-driven technique to learn
Lyapunov functions parameterized via Deep Neural Networks

Fig. 1. Flowchart summarizing the use of local and global trajectory data
in conjugation with EDMD and GLA approaches to learn eigenfunction
parameterized Lyapunov functions. The bottom-most block is optional, in
case system dynamics 𝑓 is unknown.

(DNN), that are interpretable through the lens of Koopman
operator theory: We construct Lyapunov basis functions
using Koopman eigenfunctions, which then provide a linear
space of Lyapunov candidates. The linearity of this space is
instrumental in further refining it and formally verifying the
learnt Lyapunov functions [7].

Towards that end, we present a novel learning-
based framework that efficiently integrates together and
complements the strengths of different techniques, namely
Extended Dynamic Mode Decomposition (EDMD) [8][9],
Generalized Laplace Analysis (GLA) [10][11], and Deep
Learning [12]. Thus, the main contributions of our paper
are as follows: (i) We leverage dense “local trajectories”
(that are initialized inside a local neighborhood 𝜀 of
the equilibrium) and sparse “global trajectories” (that are
initialized anywhere inside the domain of attraction  ⊃𝜀)
by combining EDMD with GLA, to create explicit ground
truth data for Koopman eigenfunctions in absence of a
dynamic model. Ground truth data means that corresponding
to any point 𝑥′ ∈ , we can obtain the actual value
of an unknown eigenfunction 𝜓 evaluated at 𝑥′. Figure 1
outlines our proposed approach. (ii) Exploiting the ground
truth labels

(

𝑥′, 𝜓(𝑥′)
)

renders our learning problem into a
simplified regression problem, allowing the use of vanilla
neural network architectures. This distinguishes our work from
related literature [7][13][14][15], that design their training
loss criterion primarily on the eigenfunction PDE equation
and/or prediction error, and commonly require additional
regularization, like autoencoders within their architecture.
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Similarly, [3][4][5] train indirectly using so-called “Lyapunov
risk” which penalizes violation of Lyapunov condition. (iii)
Finally, we provide technical results to complement our
proposed computation technique, leading to numerically well-
behaved implementation1, as often times, Laplace averages
suffer from convergence issues due to exponential terms
within the integral [11].

II. BACKGROUND

Notations: 𝑅𝑒(⋅) denotes the real part of its argument, which
can be a scalar or a complex-valued function. 𝑓𝑔 represents
the Lie-derivative of a function 𝑔(𝑥) with respect to vector
field 𝑓 (𝑥). The space of continuously differentiable functions
on 𝑋 is denoted by 𝐶1(𝑋). The notation spec(𝑀) denotes
the spectrum of a matrix 𝑀 ∈ ℂ𝑛×𝑛. Positive definiteness
of a matrix 𝑃 is denoted using 𝑃 ≻ 0. 𝜆𝑚𝑖𝑛(⋅) and 𝜆𝑚𝑎𝑥(⋅)
are eigenvalues with smallest and largest magnitudes,
respectively. ℝ denotes set of reals and ℂ is the complex set.
The notation ‖ ⋅ ‖ is used for 2-norm of a complex vector.

We now consider the nonlinear dynamical system

𝑑𝑥
𝑑𝑡

= 𝑓 (𝑥) (1)

where function 𝑓 ∶ 𝑋 → ℝ𝑛 is continuously differentiable
and states 𝑥(𝑡) evolve in the compact set 𝑋 ⊂ ℝ𝑛 for all
𝑡 ≥ 0. Let 𝜙𝑡 ∶ 𝑋 → 𝑋 denote the flow-map of this system,
that is, 𝜙𝑡(𝑥) = 𝑥 + ∫ 𝑡0 𝑓 (𝑥(𝑠))𝑑𝑠, for all 𝑡 ≥ 0 and 𝑥 ∈ 𝑋.

Definition 1. The Koopman semigroup2 of operators is
defined as the linear operators 𝑡 acting on a (Banach) space
 of functions 𝑔 ∶ 𝑋 → ℂ such that

[

𝑡𝑔
]

(𝑥) = 𝑔(𝜙𝑡(𝑥)), for
every 𝑔 ∈  . Elements of  are referred to as ‘observables’.

In the rest of this paper, we shall take our observable
space  to be the Banach space 𝐶1(𝑋) due to mathematical
convenience. Corresponding to this infinite dimensional linear
operator, one can define Koopman eigenfunctions as functions
𝜓(𝑥) ∈  that satisfy

[

𝑡𝜓
]

(𝑥) = 𝑒𝜆𝑡𝜓(𝑥) for some constant
𝜆 ∈ ℂ (in other words, 𝑑

𝑑𝑡𝜓(𝑥(𝑡)) = 𝜆𝜓(𝑥(𝑡))). Scalar 𝜆 is
the eigenvalue associated with eigenfunction 𝜓 .

Assume system (1) has an asymptotically stable equilibrium
at 𝑥𝑒. We call a Koopman eigenfunction 𝜓 as a principle
eigenfunction if 𝜓(𝑥𝑒) = 0 and ∇𝑥𝜓(𝑥𝑒) ≠ 0, such that its
corresponding eigenvalue belongs to spec(∇𝑥𝑓 (𝑥𝑒)). Given
the semigroup of eigenpairs 𝐸 (which is the set comprising of
(𝜆, 𝜓) pairs), the set of principle eigenpairs are the minimal
generator 𝐺 of the set 𝐸. That is,

𝐸 =

{( 𝑚
∑

𝑖=1
𝑛𝑖𝜆𝑖,

𝑚
∏

𝑖=1
𝜓𝑛𝑖𝑖

)

|

|

|

|

(𝜆𝑖, 𝜓𝑖) ⊂ 𝐺, 𝑚 ∈ ℕ, 𝑛𝑖 ∈ ℕ

}

.

For systems with a hyperbolic equilibrium 𝑥𝑒, the uniqueness
and existence of principle eigenpairs can be characterized by
spec(∇𝑥𝑓 (𝑥𝑒)) under conditions of nonresonance [16].

1Code for this letter can be accessed via
https://github.com/dekovski/GLA_Neural_Lyapunov.

2Informally, a semigroup is a set that is closed under an associative binary
operation. Particularly, note that 𝑡1 ⋅𝑡2 = 𝑡2 ⋅𝑡1 = 𝑡1+𝑡2 .

Definition 2. Let 𝜆 ∈ ℂ be a scalar and 𝑔 ∶ 𝑋 → ℂ be an
observable. Then the Laplace average of 𝑔 is defined as

𝑔∗𝜆(𝑥) ≐ lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡. (2)

If the above limit converges for the observable 𝑔, this
Laplace average 𝑔∗ can be verified to be a Koopman
eigenfunction corresponding to eigenvalue 𝜆, since

[𝜏𝑔∗𝜆](𝑥) = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡[𝑡+𝜏𝑔](𝑥)𝑑𝑡

= 𝑒𝜆𝜏 lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒−𝜆(𝑡+𝜏)[𝑡+𝜏𝑔](𝑥)𝑑𝑡

𝑠=𝑡+𝜏
= 𝑒𝜆𝜏 lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑠[𝑠𝑔](𝑥)𝑑𝑠 = 𝑒𝜆𝜏𝑔∗𝜆(𝑥).

Note that stable Koopman eigenfunctions can be used to
describe invariant sets [17]. Given Koopman eigenfunctions
𝜓𝑖(𝑥) ∶  ⊆ 𝑋 → ℂ for 𝑖 = 1,… , 𝑁 (with corresponding
eigenvalues 𝜆𝑖 ∈ ℂ with negative real parts), we can define
functions 𝑉𝑖(𝑥) ≐ 1

2‖𝜓𝑖(𝑥)‖
2 ≥ 0, which means �̇�𝑖(𝑥) =

𝑅𝑒(𝜆𝑖)‖𝜓𝑖(𝑥)‖2 ≤ 0. This implies every 𝛾−sublevel set of 𝑉𝑖
denoted by 𝑀𝛾

𝑖 ≐
{

𝑥 | 𝑉𝑖(𝑥) ≤ 𝛾
}

is forward-invariant. In
particular, it follows that all trajectories starting inside 
converge to the set 𝑀0

𝑖 , due to LaSalle’s Invariance Principle,
i.e., 𝜙𝑡(𝑥) →

⋂

𝑖𝑀
0
𝑖 , ∀𝑥 ∈ . We use these 𝑉𝑖’s in our final

step for constructing Lyapunov functions from data.

III. MAIN RESULTS

In this section and the rest of the paper, we shall focus our
attention on nonlinear systems that have an asymptotically
stable equilibrium point (taken to be origin without loss of
generality). We first present convergence results for Laplace
averages based on easy to verify conditions. Next, we show
how one may use trajectory data to exactly compute Koopman
eigenfunctions using the combination of EDMD and GLA.
In the final part of this section, we present how the learned
eigenfunctions are used for linearly parameterizing a space
of candidate Lyapunov functions.

A. Convergence results for Laplace averages
GLA has been discussed widely in [10][11] as an

analysis tool for obtaining Koopman mode decomposition of
observables onto the space spanned by eigenfunctions. It is
important to note that the computation of Laplace averages
in general is not numerically amenable, due to convergence
issues posed by the exponentially growing term within the
integral. Thus, we first present some convergence results that
ultimately aid us in their numerical computations.

Lemma 1. Consider the system (1) with asymptotically stable
equilibrium 𝑥𝑒 = 0. If an observable 𝑔 with an isolated root
at 𝑥𝑒 locally satisfies 𝑓𝑔 = 𝜆𝑔 (for a stable 𝜆 with 𝑅𝑒(𝜆)<0)
in some 𝜀-neighborhood 𝜀 of the equilibrium 𝑥𝑒, then 𝑔∗𝜆(𝑥)
is well-defined for all 𝑥 in the domain of attraction  ⊇𝜀.

Proof. Without loss of generality, we can consider 𝜀 to be
forward-invariant due to the following. Since 𝑥𝑒 is an isolated
root of 𝑔, by definition, there is a positive 𝑟 such that ‖𝑔(𝑥)‖ >
0 if 0 < ‖𝑥−𝑥𝑒‖ ≤ 𝑟. Thus, for any 𝛼 < min

‖𝑥−𝑥𝑒‖=𝑟 ‖𝑔(𝑥)‖,
the 𝛼-sublevel set of ‖𝑔‖ has a connected component 𝐶𝛼

3373



strictly contained inside the ball ‖𝑥 − 𝑥𝑒‖ ≤ 𝑟. This ball can
itself be contained inside 𝜀 by choosing a small enough
𝑟, so that 𝐶𝛼 ⊆ 𝜀. Since 𝑑

𝑑𝑡‖𝑔‖
2 = 2𝑅𝑒(𝜆)‖𝑔‖ < 0 inside

𝜀, the set 𝐶𝛼 is forward-invariant.
Next, for any point 𝑥 ∈ , let us define 𝑇 ∗(𝑥) as

𝑇 ∗(𝑥) = inf
𝑡≥0

{

𝑡 | 𝜙𝑡(𝑥) ∈ 𝜀
}

(3)

which is the time it takes for a trajectory starting at point
𝑥 to reach the set 𝜀, and is always finite for all 𝑥 in the
region of attraction . Thus, the Laplace average is 𝑔∗𝜆(𝑥) =
lim𝑇→∞

1
𝑇

[

∫ 𝑇
∗

0 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡 + ∫ 𝑇𝑇 ∗ 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡
]

. The
first term in the right-hand side of the above equation is
equal to zero since the integral is finite. In the second term,
𝑡 ≥ 𝑇 ∗(𝑥), which by definition (3) along with the forward-
invariance of 𝜀 means that 𝜙𝑡(𝑥) ∈ 𝜀. Furthermore, inside
this set, 𝑓𝑔 = 𝜆𝑔. Thus, 𝑔(𝜙𝑡(𝑥)) = 𝑒𝜆(𝑡−𝑇 ∗)𝑔(𝜙𝑇 ∗ (𝑥)) for
all 𝑡 > 𝑇 ∗, giving us

𝑔∗𝜆(𝑥) = lim
𝑇→∞

1
𝑇 ∫

𝑇

𝑇 ∗
𝑒−𝜆𝑡𝑒𝜆(𝑡−𝑇 ∗)𝑔(𝜙𝑇 ∗ (𝑥))𝑑𝑡 = 𝑒−𝜆𝑇 ∗𝑔(𝜙𝑇 ∗ (𝑥)) (4)

which is finite for all 𝑥 ∈  since 𝑔 is continuous.

Hartman-Grobman theorem applies to the asymptotically
stable system of Lemma 1 (and any system with a hyperbolic
equilibrium in general), guaranteeing the existence of a
local neighborhood of the equilibrium where the flow of the
nonlinear system is homeomorphic to that of its linearization.
One may note that (3)-(4) provide a more numerically robust
way of computing the Laplace average compared to equation
(2), since the approximation errors in the function 𝑔(𝑥) may
accumulate and grow exponentially under the integral. We
show in the following theorem how the Laplace average
computations of any function may be robust to approximation
errors up to a certain order.

Theorem 1. Let us again consider the function 𝑔(𝑥) as
described in Lemma 1 and its approximation �̂�(𝑥) such that
‖𝑔(𝑥) − �̂�(𝑥)‖ ≐ 𝜉(𝑥) = 𝑜(‖𝑥‖2). For any matrices 𝑃 ,𝑄 ≻ 0
and 𝐴 = ∇𝑥𝑓 (0) satisfying the Lyapunov equation 𝑃𝐴 +
𝐴⊤𝑃 = −𝑄, if the matrix

−𝐴 −
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝐼 (5)

is Hurwitz, then �̂�∗𝜆(𝑥) = 𝑔∗𝜆(𝑥) ∀𝜆 ∈ spec(𝐴) and ∀𝑥 ∈ .

Proof. Let us pick any 𝜆 from the set spec(𝐴). Since 𝑔
satisfies conditions of Lemma 1, its Laplace average 𝑔∗𝜆 is
well-defined on the entire set . Now, using the triangular
inequality for integrals in equation (2), we get

�̂�∗𝜆(𝑥) − 𝑔
∗
𝜆(𝑥) = lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡 [�̂� − 𝑔] (𝜙𝑡(𝑥))𝑑𝑡

⇒ ‖�̂�∗𝜆 − 𝑔
∗
𝜆‖ ≤ lim

𝑇→∞
1
𝑇 ∫

𝑇

0
𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))𝑑𝑡.

We then need to show that the integrand in the above
inequality converges to zero under the stated conditions.

Let us rewrite the right-hand side of dynamics (1) as
𝑓 (𝑥) = 𝐴𝑥+ℎ(𝑥), where 𝐴 = ∇𝑥𝑓 (0) (assuming 𝑓 is analytic
and the equilibrium is hyperbolic allows to do this). One can
show that since ℎ(0) = 0 and ∇𝑥ℎ(0) = 0, ‖ℎ(𝑥)‖ ≤ 𝑐𝜀‖𝑥‖2

for a positive constant 𝑐𝜀 in some compact set ‖𝑥‖ ≤ 𝜀 using
the Mean Value Theorem for function in several variables
[18]. We can then estimate the convergence rate of ‖𝑥‖2 in
this compact set. Let the matrix 𝑃 ≻ 0 be the solution to
the Lyapunov equation 𝑃𝐴 + 𝐴⊤𝑃 = −𝑄 for a given matrix
𝑄 ≻ 0. This means 𝑑

𝑑𝑡𝑥
⊤𝑃𝑥 = −𝑥⊤𝑄𝑥 + 2𝑥⊤𝑃ℎ(𝑥).

Now, in the region ‖𝑥‖ ≤ 𝜀,
𝑑
𝑑𝑡
𝑥⊤𝑃𝑥 ≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2 + 2𝑐𝜀‖𝑃‖ ⋅ ‖𝑥‖3

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2
(

1 −
2𝜀𝑐𝜀‖𝑃‖
𝜆𝑚𝑖𝑛(𝑄)

)

≤ −
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝜅𝜀𝑥
⊤𝑃𝑥,

where 𝜅𝜀 ≐ 1 − 2𝜀𝑐𝜀‖𝑃‖
𝜆𝑚𝑖𝑛(𝑄)

increases monotonically as 𝜀 gets
smaller (and 𝜀 is henceforth taken to be small enough so
that 𝜅𝜀 > 0). Therefore, it follows that ‖𝑥‖2 exponentially
decays with rate 𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃 )
𝜅𝜀. Since the matrix expression in

equation (5) is Hurwitz, every eigenvalue 𝜆 of 𝐴 satisfies
𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

+𝑅𝑒(𝜆) > 0. We can pick 𝜀 small enough such that
𝜅𝜀 is arbitrarily close to 1, thus leading to

𝜆𝑚𝑖𝑛(𝑄)
𝜆𝑚𝑎𝑥(𝑃 )

𝜅𝜀 + 𝑅𝑒(𝜆) ≐ Δ𝜆 > 0

by continuity. Finally, whenever ‖𝑥‖ ≤ 𝜀, we get

𝜉(𝜙𝑡(𝑥))
‖𝜙𝑡(𝑥)‖2

≥
𝜉(𝜙𝑡(𝑥))
𝑒𝑅𝑒(𝜆)𝑡‖𝑥‖2

≥
‖𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))‖

𝜀2
.

Since 𝜉(𝑥) = 𝑜(‖𝑥‖2), taking the limit 𝑡 → ∞ on both sides,
we obtain lim𝑡→∞ ‖𝑒−𝜆𝑡𝜉(𝜙𝑡(𝑥))‖ = 0.

All trajectories starting anywhere in  will eventually enter
the region ‖𝑥‖ ≤ 𝜀, and so this limit holds true for all 𝑥 in
. This completes the proof.

Remark. Equation (5) imposes a condition on the distribution
of the eigenfunctions of 𝐴, such that they are not spread too
far apart. Intuitively, if 𝑅𝑒(𝜆𝑎) << 𝑅𝑒(𝜆𝑏) < 0 , then the
Laplace average of an observable 𝑔 corresponding to 𝜆𝑎 (i.e.
𝑔∗𝜆𝑎 ) may not converge, since the exponential term 𝑒−𝜆𝑎𝑡 inside
integral (2) will grow very fast, whereas 𝑔(𝜙𝑡(𝑥)) will decay
relatively slower due to the “slow” eigenvalues in spec(𝐴).
Numerical Example 1. Consider a system with
asymptotically stable equilibrium at the origin as follows:

�̇�1 =
(

−7.2𝑥31 + 7.2𝑥1 − 2.4𝑥32 + 2.4𝑥2
)

∕
(

7(3𝑥21 − 1)
)

�̇�2 =
(

−0.8𝑥31 + 0.8𝑥1 − 6.8𝑥32 + 6.8𝑥2
)

∕
(

7(3𝑥22 − 1)
)

.

For this system, we obtain eigenvalues 𝜆1 = −1.2, 𝜆2 = −0.8
corresponding to 𝐴 =

[ −1.03 −0.11
−0.34 −0.97

]

. Taking 𝑄 to be
the identity matrix and solving 𝑃𝐴 + 𝐴⊤𝑃 = −𝑄, we get
𝑃 =

[ 0.52 −0.12
−0.12 0.53

]

. Thus, the matrix in equation (5) is
[ −0.52 0.11

0.34 −0.58

]

which satisfies the Hurwitz condition of
Theorem 1. Additionally, corresponding to the eigenvalue
−0.8, this system has a principle eigenfunction 𝜓(𝑥) = 𝑥31 −
𝑥1 − 2𝑥32 + 2𝑥2, which means that the function 𝑔(𝑥) = 𝜓(𝑥)
satisfies the condition of Lemma (1). Thus, any approximation
of 𝑔(𝑥) within an error of 𝑜(‖𝑥‖2) must result in the same
Laplace average 𝑔∗−0.8(𝑥) according to Theorem 1. We revisit
this later in Example 2.
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B. Numerical computation from trajectory data
We have shown in the previous subsection how any function

𝑔 defined on 𝑋 that locally satisfies 𝑓𝑔 = 𝜆𝑔 in some
neighborhood of the asymptotically stable equilibrium results
in a well-defined Laplace average 𝑔∗𝜆(𝑥) everywhere in the
region of attraction . This function 𝑔∗𝜆 can then be used
further as a Koopman eigenfunction. However, such a function
𝑔 itself needs to be obtained first. In this section, we see how
EDMD can be effectively combined with GLA to compute
Koopman eigenfunctions through dense local trajectory data
near 𝑥𝑒 and sparse global trajectory data throughout the
set . We propose to first utilize just local trajectory data
with EDMD towards obtaining accurate local estimates of
suitable functions 𝑔. With these local estimates, we compute
their Laplace averages 𝑔∗𝜆 defined over the larger domain
. The local estimates via EDMD are expected to have
approximation errors, but thankfully, through Theorem 1, the
GLA computations are shown to be robust to small (𝑜(‖𝑥‖2))
approximation errors in 𝑔. One may use the global trajectory
data to directly perform EDMD and estimate Koopman
eigenfunctions defined over the entire set . However, this
may lead to poor estimates if global trajectory data is
insufficient; thus utilizing dense, local data for local estimates
is a more reasonable alternative.

We now outline the EDMD process, which is a well
studied data-driven algorithm to approximate the Koopman
operator in finite dimensions by lifting the state space into
a higher dimensional embedding wherein the dynamics are
(approximately) linear [8][9]. This approximation is obtained
as a solution to a least squares optimization problem. Consider
the function 𝜃(𝑥) =

[

𝜃1(𝑥), 𝜃2(𝑥),… , 𝜃𝑁 (𝑥)
]⊤ comprised of

basis functions 𝜃𝑖(𝑥) ∈  , 𝑖 = 1, 2, .., 𝑁 . Given that we have
trajectory snapshots at some uniform sampling time 𝜏, in
form of 𝑀 pairs (𝑥𝑖, 𝑦𝑖) ∈ 𝜀 ×𝜀 where 𝑦𝑖 = 𝜙𝜏 (𝑥𝑖) for
𝑖 = 1, 2, ...,𝑀 , the EDMD procedure is used to estimate a
finite dimensional approximation of the Koopman Operator
𝜏 restricted to the space spanned by the basis functions.
This is expressed as the Koopman matrix 𝐾 , by solving the
following least-squares problem:

𝐾 = argmin
𝐴∈ℂ𝑁×𝑁

‖𝜃(𝑌 ) − 𝐴𝜃(𝑋)‖2𝐹 (6)

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm, and
matrices 𝜃(𝑋) = [𝜃(𝑥1), 𝜃(𝑥2),⋯ , 𝜃(𝑥𝑀 )] and
𝜃(𝑌 ) = [𝜃(𝑦1), 𝜃(𝑦2),⋯ , 𝜃(𝑦𝑀 )]. The 𝐾 that minimizes
(6) is obtained in closed-form as 𝐾 = 𝜃𝑋𝑌 𝜃

†
𝑋𝑋 , where

† denotes the pseudo-inverse, 𝜃𝑋𝑌 = 𝜃(𝑌 )𝜃(𝑋)⊤ and
𝜃𝑋𝑋 = 𝜃(𝑋)𝜃(𝑋)⊤. Suppose that (𝑣𝑖, 𝜇𝑖) are the eigenvectors
and eigenvalues of 𝐾⊤ for 𝑖 = 1, 2, .., 𝑁 . Then, in the set
𝜀, letting 𝑔𝑖(𝑥) ≐ 𝑣⊤𝑖 𝜃(𝑥) and 𝜆𝑖 ≐

1
𝜏 log(𝜇𝑖), we get

𝜃(𝜙𝜏 (𝑥)) ≈ 𝐾𝜃(𝑥) ⇒ 𝑔𝑖(𝜙𝜏 (𝑥)) ≈ 𝜇𝑖𝑔𝑖(𝑥) = 𝑒𝜆𝑖𝜏𝑔𝑖(𝑥)
⟺ 𝑓𝑔𝑖(𝑥) ≈ 𝜆𝑖𝑔𝑖(𝑥). (7)

Next, with these functions 𝑔𝑖 obtained by EDMD, we
compute the Laplace averages 𝑔∗𝜆𝑖 (𝑥) for any point 𝑥 ∈ ,
by ‘unrolling’ the trajectory 𝜙𝑡(𝑥) starting at 𝑥 forward for a
sufficiently large time3, followed by numerically integrating

3In practice, this simply means until 1
𝑇 ∫ 𝑇0 𝑒−𝜆𝑡𝑔(𝜙𝑡(𝑥))𝑑𝑡 numerically

converges to a steady state.

(2) using the unrolled trajectory. Note that one can combine
the trajectory unrolling and GLA integration steps into one,
by augmenting the system dynamics (1) using a new scalar
state variable 𝑧 as

[

�̇�(𝑡)
�̇�(𝑡)

]

=
[ 𝑓 (𝑥(𝑡))

1
𝑡+𝛿

(

−𝑧(𝑡) + 𝑒−𝜆𝑡𝑔(𝑥(𝑡))
)

]

, 𝑡 ≥ 0 (8)

for some small constant 𝛿 > 0. If 𝑧(0) = 0, this state 𝑧 can be
shown to evolve as 𝑧(𝑡) = 1

𝑡+𝛿 ∫
𝑡
0 𝑒

−𝜆𝑠𝑔(𝜙𝑠(𝑥))𝑑𝑠 for all 𝑡 ≥ 0.
Thus, when 𝑧(0) = 0 and 𝑥(0) = 𝑥, we get 𝑧(𝑡) → 𝑔∗𝜆(𝑥) as
𝑡 → 0. In other words, unrolling this augmented dynamics
(8) from an initial point (𝑥, 0) gives us the Laplace average
through the augmented state variable 𝑧.

Once we obtain the ground truth values of the
eigenfunctions at randomly sampled points in , we create
a training dataset to learn DNN-based approximations of
the eigenfunctions. Due to space limitations, we kindly refer
readers to our code link for details.

Numerical Example 2. Consider the system described in
Example 1 with an asymptotically stable equilibrium at the
origin. We consider the neighbourhood 𝜀 = [−0.05, 0.05]×
[−0.05, 0.05], and sample 100 trajectories of length 100
seconds each, with a sampling period 𝜏 = 0.01s. Basis
functions 𝜃𝑖 are taken to be monomials of degree up to
3. From EDMD, we obtain

𝑔(𝑥) = 1.014𝑥31 − 𝑥1 − 2.027𝑥32 + 2.00𝑥2
corresponding to the principle eigenvalue 𝜆 = −0.8, which
is a very close estimate of the actual principle eigenfunction
𝑥31 − 𝑥1 − 2𝑥32 + 2𝑥2, with an approximation error 𝜉(𝑥) in the
order of 𝑜(‖𝑥‖2). We compute the Laplace average 𝑔∗−0.8(𝑥)
at randomly sampled points in [−0.4, 0.4] × [−0.4, 0.4] using
this 𝑔(𝑥) obtained from EDMD using trajectory data within
a much smaller domain 𝜀. Figure 2 compares this Laplace
average with the actual eigenfunction 𝑥31 − 𝑥1 − 2𝑥32 + 2𝑥2.

Fig. 2. Actual eigenfunction 𝑥31 − 𝑥1 − 2𝑥32 + 2𝑥2 (translucent surface) vs
computed Laplace average 𝑔∗−0.8(𝑥) evaluated at random points (black dots).

C. Lyapunov certificates from Koopman eigenfunctions
Our main goal for this paper is to develop a data-driven

technique that efficiently leverages trajectory samples of a
dynamical system to construct Lyapunov certificates. We
particularly focus on developing an approach suitable for
high-dimensional systems wherein several learning techniques
may need to be combined together to make the best use of
the available trajectory data.
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One can use functions 𝑉𝑖 =
1
2‖𝜓𝑖(𝑥)‖

2 in a number of
different ways to construct Lyapunov functions, but we are
primarily interested in the linearly parameterized space of
candidate Lyapunov functions given by

𝐿𝑦𝑎𝑝 =

{

∑

𝑖
𝛼𝑖𝑉𝑖(𝑥)

|

|

|

𝛼𝑖 ∈ [0, 1],
∑

𝑖
𝛼𝑖 ≠ 0

}

. (9)

Each 𝑉 ∈ 𝐿𝑦𝑎𝑝 is a Lyapunov function since 𝑉 (𝑥) ≥
0 and �̇� (𝑥) =

∑

𝑖 2𝛼𝑖𝑅𝑒(𝜆𝑖)𝑉𝑖(𝑥) ≤ 0 by construction.
𝐿𝑦𝑎𝑝 is particularly interesting for the case when Koopman
eigenfunction 𝜓𝑖’s are represented as polynomials. In that case,
each element in 𝐿𝑦𝑎𝑝 is a sum-of-squares (SOS) polynomial,
and one can leverage SOS semi-definite programming to
verify Lyapunov conditions (when the system dynamics are
also polynomial)[7].

In our prior work [7], we discuss how inaccuracies
in the computation of Koopman eigenfunction via data-
driven techniques may lead to violations in the Lyapunov
conditions for functions 𝑉𝑖 and consequently, not every
element of the space 𝐿𝑦𝑎𝑝 would be a valid Lyapunov
candidate for establishing asymptotic stability guarantees
for the equilibrium point/manifold. Nevertheless, thanks to
linearity of the space 𝐿𝑦𝑎𝑝, it was shown that under certain
approximation error bounds on the basis 𝑉𝑖, one can still
pick functions 𝑉 (𝑥) ∈ 𝐿𝑦𝑎𝑝 that satisfy �̇� (𝑥) ≤ 𝛽

(

𝛾−𝑉 (𝑥)
)

for some constants 𝛽, 𝛾 > 0, thus providing certificates for
forward-invariance. In this paper however, we develop efficient
computation techniques for Koopman eigenfunctions which
are more accurate in comparison to [7], enabling us to directly
obtain Lyapunov functions via the estimated eigenfunctions
through (9), as evidenced from our numerical experiments.

IV. NUMERICAL RESULTS

In this section, we demonstrate our method towards
construction of Lyapunov certificates for nonlinear consensus
in a 10-dimensional multi-agent system. We demonstrate
how trajectory data from the agents are used in the absence
of agent model and communication graph to represent the
dynamics via Koopman eigenfunctions, which then serve as
a building block for obtaining Lyapunov functions.

Consider a graph 𝒢 , with vertices denoted by the set 𝒱 =
{0,… , 𝑛 − 1} and edge set denoted by ℰ = {1,… , 𝑚}. The
set of neighboring nodes of agent 𝑖 is denoted by 𝑁𝑖 ⊂ 𝒱 . We
are interested in consensus problem for multi-agent systems
corresponding to this network 𝒢 , wherein scalar state 𝑥𝑖 ∈ ℝ
for each agent 𝑖 ∈ 𝒱 is required to converge to a common
value. Let us next consider the following nonlinear distributed
consensus protocol for single-integrator agent dynamics:

�̇�𝑖 = 𝑢𝑖 = −𝜎𝑖(𝑥𝑖)
∑

𝑗∈𝑁𝑖

𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗), 𝑖 ∈ 𝒱 (10)

where 𝜎𝑖(⋅) is continuous and positive for all 𝑖 ∈ 𝒱 , and 𝑎𝑖𝑗(⋅)
is Lipschitz continuous for all (𝑖, 𝑗) ∈ ℰ with 𝑥𝑎𝑖𝑗(𝑥) > 0
when 𝑥 ≠ 0 and 𝑎𝑖𝑗(0) = 0.

It was shown in [19] that if 𝒢 is a connected, undirected
graph and 𝑎𝑖𝑗(⋅) are odd functions for all (𝑖, 𝑗) ∈ ℰ , then
the states 𝑥 converge to a point 𝑥∗ uniquely determined by
∑

𝑖∈𝒱 ∫ 𝑥
∗

0
1

𝜎𝑖(𝑦)
𝑑𝑦 =

∑

𝑖∈𝒱 ∫ 𝑥𝑖(0)0
1

𝜎𝑖(𝑦)
𝑑𝑦. The converse holds

as well. The proof utilizes a Lyapunov function of the form
𝑉 (𝑥) =

∑

𝑖∈𝒱
∑

𝑗∈𝑁𝑖
∫ 𝑥𝑖−𝑥𝑗0 𝑎𝑖𝑗(𝑦)𝑑𝑦.

Note that this Lyapunov function needs knowledge of both
the underlying dynamics of the system as well as the graph
topology. Our goal is to directly learn a Lyapunov function
just from the trajectory data of the agents. As a specific
example, we consider a 𝑛 = 10 agent system, with 𝑎𝑖𝑗(𝑦) =
𝑟𝑖𝑗

[

1.2 tanh(𝑦) + sin(𝑦)
]

, for some random constants 𝑟𝑖𝑗 ∈
(0, 1), 𝜎𝑖(𝑦) =

1
1+exp(−𝑦) , and graph 𝒢 as follows:

Fig. 3. A 10 agent system with fully connected network

We modify this system slightly by adding a linear term
−𝑥𝑖 to the right-hand side of equation (10) to ensure that the
origin is an asymptotically stable isolated equilibrium and that
condition (5) holds. We begin our approach with the EDMD
step, by sampling 𝑁 = 100 trajectories of length 10 seconds
from within a local neighborhood 𝜀 = [−0.05, 0.05]𝑛, with
sampling interval of 0.01s. We pick monomials of degree
up to 3 as our choice of basis functions 𝜃(𝑥) for EDMD.
By allowing the sampling neighbourhood 𝜀 to be small
in our approach, we are able to precisely extract principle
eigenvalues of this system, of which we pick four with the
smallest magnitude, given by 𝜆1 = −0.55, 𝜆2 = −0.59,
𝜆3 = −0.69, and 𝜆4 = −0.76. The local eigenfunction
estimates 𝑔𝑖 (that are valid within 𝜀) corresponding to these
four eigenvalues are used to compute Laplace averages over
a much larger domain [−0.45, 0.45]𝑛. The Laplace average
computations are numerically stable and the integral (2)
converges, in agreement with our technical results.

In the final step, we train the DNN parameterizing principle
eigenfunctions 𝜓𝑖(𝑥) corresponding to those four principle
eigenvalues, over the larger domain [−0.45, 0.45]𝑛 using
supervised learning, as outlined in Figure 1. We use a
multilayer perceptron (MLP) architecture with sine activation
function. For every 𝑖 = 1,… , 4, our MLP 𝜓𝑖 consists of 3
hidden layers with 128 neurons each. The loss is comprised
of a supervised learning term 𝐿1(𝑥) and a physics-informed
term 𝐿2(𝑥):

‖𝜓𝑖(𝑥) − 𝑔∗𝜆𝑖 (𝑥)‖
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≐𝐿1(𝑥)

+ 0.01 ⋅ ‖𝑓𝜓𝑖(𝑥) − 𝜆𝑖𝜓𝑖(𝑥)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≐𝐿2(𝑥)

,

where 𝑔∗𝜆𝑖 is the Laplace average of the function 𝑔𝑖 obtained by
EDMD that locally satisfies (7). For this example, loss 𝐿1 is
computed at 3000 randomly sampled points in [−0.45, 0.45]𝑛
and 𝐿2 is computed at 2000 randomly sampled points in
[−0.45, 0.45]𝑛 during training. For further details, please see
the associated Pytorch code implementation. In Figure 4,
we show the Lyapunov basis functions 𝑉𝑖(𝑥) =

1
2‖𝜓𝑖(𝑥)‖

2

corresponding to 𝑖 = 1,… , 4 along random trajectories, as
well as an example of a Lyapunov function from linear
combination of the basis 𝑉𝑖’s.
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(a)

(b)

Fig. 4. Learned Lyapunov basis functions for (unknown) dynamics (10)
with damping. (a) Each panel shows 𝑉𝑖(𝑥) =

1
2‖𝜓𝑖(𝑥)‖

2 for 𝑖 = 1,… , 4
decreasing strictly monotonically along 500 randomly sampled trajectories in
[−0.45, 0.45]𝑛, as expected from our data-driven construction. (b) Using the
Lyapunov basis 𝑉𝑖’s, we construct our Lyapunov candidate using randomly
chosen 𝛼𝑖’s. The red lines show 𝑉 decreases monotonically along 1000
trajectories randomly initialized on a larger domain [−1.5, 1.5]𝑛 compared
to the domain on which the eigenfunctions 𝜓𝑖 were trained on.

V. CONCLUSION AND DISCUSSION

This work presents a Deep Learning approach for
construction of Lyapunov certificates, parameterized linearly
using Koopman eigenfunctions of the underlying dynamical
system. One of the novelty of our approach lies in the
creation of labelled training dataset for supervised learning
of Lyapunov basis functions via Koopman eigenfunctions,
by combining EDMD and GLA. Trajectory data near the
equilibrium are used to locally estimate eigenfunctions.
Laplace averages of these local estimates computed along
sparse but global trajectories are then used to evaluate
eigenfunctions at sample points throughout the domain of
attraction, generating ground truth function values for the
final deep supervised learning step. The paper additionally
contributes towards addressing numerical challenges involved
with GLA computations, both in terms of analysis and efficient
implementation.

The assumption on the second order estimation error
bounds of eigenfunctions obtained in the EDMD step requires
further investigation, and is a matter of our current focus.
To the best of our knowledge, only constant error bounds
for EDMD are available in present literature. Additionally,
once the ground truth values for the eigenfunctions are
obtained, a key question to be answered is how well can
a particular choice of function approximator (DNNs in our
specific case) fit the synthesized training data. Studying

the sample complexity of our approach as well as formal
verification of the learnt Lyapunov function are therefore
important future directions. Fortunately, despite both these
open questions, our numerical examples successfully illustrate
the practicality of our approach. For the low-dimensional
example where the eigenfunctions are known in closed
analytical form, the second order EDMD error bound is found
to hold true and consequently our computed eigenfunction
estimates exactly match the actual eigenfunctions. The high-
dimensional example illustrates scalability of our proposed
method, thereby alleviating concerns surrounding sample
complexity of the deep learning step, since ground truth
training labels can be generated efficiently for our 10-d system.

REFERENCES

[1] H. K. Khalil and J. W. Grizzle, Nonlinear systems, vol. 3. Prentice
hall Upper Saddle River, NJ, 2002.

[2] M. Vidyasagar, Nonlinear systems analysis. SIAM, 2002.
[3] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,”

Advances in neural information processing systems, vol. 32, 2019.
[4] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis

of Lyapunov Neural Networks,” IEEE Control Systems Letters, vol. 5,
no. 3, pp. 773–778, 2021.

[5] S. M. Richards, F. Berkenkamp, and A. Krause, “The Lyapunov Neural
Network: Adaptive stability certification for safe learning of dynamical
systems,” in Proceedings of The 2nd Conference on Robot Learning,
vol. 87, pp. 466–476, PMLR, 2018.

[6] P. Bevanda, S. Sosnowski, and S. Hirche, “Koopman operator dynamical
models: Learning, analysis and control,” Annual Reviews in Control,
vol. 52, pp. 197–212, 2021.

[7] S. A. Deka, A. M. Valle, and C. J. Tomlin, “Koopman-based Neural
Lyapunov functions for general attractors,” in IEEE 61st Conference
on Decision and Control (CDC), pp. 5123–5128, IEEE, 2022.

[8] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the Koopman Operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–
1346, 2015.

[9] B. Huang and U. Vaidya, “Data-driven approximation of transfer
operators: Naturally structured dynamic mode decomposition,” in
American Control Conference (ACC), pp. 5659–5664, IEEE, 2018.

[10] R. Mohr and I. Mezić, “Construction of eigenfunctions for scalar-
type operators via Laplace averages with connections to the Koopman
operator,” arXiv preprint arXiv:1403.6559, 2014.

[11] I. Mezić, “On numerical approximations of the Koopman operator,”
Mathematics, vol. 10, no. 7, p. 1180, 2022.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[13] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, pp. 1–10, 2018.

[14] S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks
for learning dynamics,” SIAM Journal on Applied Dynamical Systems,
vol. 18, no. 1, pp. 558–593, 2019.

[15] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for Koopman operators of nonlinear dynamical systems,”
in American Control Conference (ACC), pp. 4832–4839, IEEE, 2019.

[16] M. D. Kvalheim and S. Revzen, “Existence and uniqueness of global
Koopman eigenfunctions for stable fixed points and periodic orbits,”
Physica D: Nonlinear Phenomena, vol. 425, p. 132959, 2021.

[17] A. Mauroy and I. Mezić, “Global stability analysis using the
eigenfunctions of the koopman operator,” IEEE Transactions on
Automatic Control, vol. 61, no. 11, pp. 3356–3369, 2016.

[18] W. Fleming, Functions of several variables. Springer Science &
Business Media, Berlin, 2012.

[19] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distributed control of networked dynamical systems: Static feedback,
integral action and consensus,” IEEE Transactions on Automatic
Control, vol. 59, no. 7, pp. 1750–1764, 2014.

3377


