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Abstract— This paper presents a hybrid neural network (NN)
approach for adaptive scenario-based model predictive control
(SMPC) design of nonlinear systems in the linear parameter-
varying (LPV) framework. In particular, a deterministic arti-
ficial neural network (ANN)-based LPV model is learned from
data as the nominal model. Then, a Bayesian NN (BNN) is
used to describe the mismatch between the plant and the
LPV-ANN model. Adaptive scenarios are generated online
based on the BNN model to reduce the conservativeness of
scenario generation. Moreover, a probabilistic safety certificate
is incorporated into the scenario generation by ensuring that
the trajectories of scenarios contain the trajectory of the
system and that all the scenarios satisfy the constraints with
a high probability. Furthermore, conditions for the recursive
feasibility of the SMPC are given. Experiments on the closed-
loop simulations of a two-tank system demonstrate that the
proposed approach can better model the behaviors of nonlinear
systems than sole ANN/BNN models can, and the SMPC based
on the hybrid NN (HyNN) model can improve the control
performance compared to the SMPC with a fixed scenario tree.

I. INTRODUCTION

Linear parameter-varying (LPV) framework has attracted
increasing attention for data-driven modeling and learning-
based control of complex systems by virtue of modeling
nonlinear and/or time-varying dynamics in the linear struc-
ture [1]. While learning-based control approaches have been
developed using data-driven models [2], identification and
controller design are generally separated in the current LPV
literature [3]. In particular, the data-driven models are learned
by minimizing the prediction errors and validated on a testing
set without considering the control performance. Therefore,
the identified models with high prediction accuracy are not
necessarily good for control design. Moreover, the problem
of describing the mismatch between the plant and the learned
models has not been investigated, which hinders robust
control design and safety guarantee establishment.

Data-driven modeling of nonlinear systems in the LPV
framework has been discussed in [3], [4]. Among deter-
ministic approaches, artificial neural networks (ANNs) have
proven advantageous in using large amounts of data to
learn nonlinear parametric models for fast online evaluation,
compared to kernel-based methods with cubic computational
complexity to the data size. Moreover, [4] proposed a
Bayesian neural network (BNN)-based approach to quantify
uncertainties in data-driven models. While several techniques
(e.g., restricting model complexity and transfer learning)
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have been developed to address such problems as the high
computational cost and convergence failure of training BNN,
LPV-BNN models still pose challenges to be employed for
control design due to the increased complexity compared
with deterministic (ANN) models. The authors in [2] reduced
the computational burden of online SMPC optimization by
quantizing the scenarios generated by BNN but may still
need offline evaluations of BNN to further reduce the com-
putational cost. Instead, in this paper, we propose using an
LPV-ANN model learned from data as the nominal model
and then employing BNN to model the mismatch between
the nominal model and the plant to facilitate control design
without compromising control performance.

The plant-model mismatch is a common problem for
model-based control design and is typically assumed to be
bounded. Recently, data-driven approaches have been em-
ployed to obtain accurate state- and/or input-dependent de-
scriptions of the possibly time-varying plant-model mismatch
such that the conservativeness of the mismatch estimation
is reduced and the control performance is improved [5],
[6]. In particular, Gaussian process (GP) regression and
BNN are two widely used probabilistic approaches to model
mismatch. Specifically, BNNs treat the model weights of
deterministic neural networks (NNs) as random variables
with given prior distributions and provide the estimation
of the posterior distributions conditioned on a dataset using
variational inference. Compared with GP regression, BNNs
can model both epistemic and aleatoric uncertainties with
arbitrary distributions, be trained efficiently using Bayes by
Backprop [7], and be fast evaluated without using the dataset.
Therefore, this paper employs BNNs to model the mismatch.

MPC is commonly used for model-based control of a
process while satisfying constraints. For MPC design using
LPV model descriptions of nonlinear systems, one chal-
lenge lies in the uncertainty of the future evolution of the
scheduling variable(s) [8]. One practical solution to address
this challenge is to assume fixed scheduling variables in the
prediction horizons, which may result in large prediction
errors and thus degrade the control performance. Therefore,
the uncertainty of the scheduling variables must be con-
sidered for MPC design. The authors in [2] proposed to
generate scenarios that can represent the joint uncertainty of
models and scheduling variables based on pure BNN model
descriptions for SMPC design. Additionally, using BNNs
to model mismatch for SMPC design has been studied in
[9]. The BNN was used to model state- and input-dependent
uncertainties, and the statistics (including mean and standard
deviation) of the BNN predictions were used to generate
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scenarios. However, [9] assumed a given general nonlinear
nominal model and did not establish the recursive feasibility
for the proposed SMPC scheme due to the high model com-
plexity of BNN. This paper uses hybrid and pure data-driven
models to take advantage of the LPV-MPC approach and
establish recursive feasibility for the proposed LPV-SMPC
scheme based on a reasonably accurate characterization of
the BNN model.

The main contribution of this paper lies in presenting a
hybrid NN (HyNN) approach in the LPV framework for
adaptive SMPC design and providing a set of conditions for
recursive feasibility and probabilistic safety guarantees of the
proposed approach. Remainder of the paper is organized as
follows: Section II describes the problem formulation and the
HyNN approach for data-driven modeling. The SMPC design
using the HyNN model is explained in Section III. Section
IV presents the experimental results, and finally concluding
remarks are provided in Section V.

II. PROBLEM FORMULATION

Consider a constrained, discrete-time nonlinear system

x(k + 1) = f(x(k), u(k)), (1a)
x ∈ X , u ∈ U , (1b)

where x denotes the states, u denotes the control inputs,
and k ∈ N denotes the time instant. X ⊆ Rnx and
U ⊆ Rnu in (1b) are the constraint sets of the states
and inputs, respectively. Additionally, X is assumed to be
convex. Assuming that (1a) is unknown but a sufficient
dataset D = {(x(i), u(i), θ(i)), x(i+1)}ND

i=1 over X ×U×Θ
can be collected from the system, a data-driven model needs
to be learned from D for MPC design. In particular, we
learn a HyNN model composed of a deterministic LPV-ANN
nominal model to take advantage of the LPV framework and
a stochastic BNN-based residual model to take care of the
plant-model mismatch for robust MPC design, as discussed
in Section I. SMPC has proven to be efficient for employing
a BNN-based mismatch model for control design. This paper
aims to design SMPC for the system (1) using the HyNN
model and provide the recursive feasibility and probabilistic
safety guarantees.

The LPV-ANN nominal model is in the form of

x̂(k + 1) = A (θ(k))x(k) +B (θ(k))u(k) ≜ f̂(x(k), u(k)),
(2)

where A : Rnθ 7→ Rnx×nx and B : Rnθ 7→ Rnx×nu

are matrix functions represented by ANNs; θ denote the
scheduling variables which can be (nonlinear) functions of
inputs/states, but are converted into an exogenous signal by
confining the values of θ to some suitable set Θ such that the
associated set of admissible trajectories (i.e., the set of input
and output signals that are compatible with the dynamics)
of (2) is a superset of the set of trajectories of the original
nonlinear system (1) [8].

Then, a BNN will be used to model the mismatch be-
tween the plant and the LPV-ANN model. In particular, we
evaluate the mismatch g(i) := x(i + 1) − x̂(i + 1) where
x̂(i + 1) is computed by (2) on the dataset D, to obtain

the dataset Dg = {(x(i), u(i), θ(i)), g(i)}Ni=1 for training
the BNN-based mismatch model. The training and evaluation
procedures of BNN can be found in [4]. In this paper, we use
a multi-layer, fully-connected BNN to model the unknown
vector-valued function g. The BNN is trained by minimizing

1

NBNN

NBNN∑
i=1

[
log q(w(i); ζ)− log p(w(i))− log p(D|w(i))

]
(3)

over ζ via stochastic gradient descent where w(i) are the i-th
sample generated by Monte Carlo (MC) for approximating
the evidence lower bound (ELBO), and NBNN is the MC
sample size determined such that (3) is convergent. Using the
trained BNN model, the density of ĝ at given (x(k), u(k))
can be evaluated by drawing samples from the posteriors
of weights and calculating the possible ĝ’s with each set
of sampled weights. To provide safety guarantees, we need
reliable estimates of g inside the operating region X × U ,
which is similar to [6] and formally described in the follow-
ing assumption:
Assumption 1. For a confidence level δp ∈ (0, 1], there
exists a scaling factor β such that with a probability greater
than 1− δp,

∀k ∈ N, |gj(k)− µ̂gj(k)| ≤ βj σ̂gj(k) < |Gj |,
j = 1, 2, · · · , nx,

(4)

given (x(k), u(k)) ∈ X ×U , where µ̂gj(k) and σ̂gj(k) denote
the estimated mean and standard deviation of the j-th entry
of g(k), respectively, using the learned BNN model with MC
methods, and |Gj | denotes the maximum value of valid gj .

By Assumption 1, the learned model is sufficiently accu-
rate such that the values of g are contained in the credible
intervals of our probabilistic model. If Assumption 1 does
not hold for the trained model, then the model accuracy
should be improved by adjusting the model architecture and
optimization or collecting more data for training until the
hypotheses of Assumption 1 are satisfied.

Next, we introduce the definition of safety. Using κ : X ×
N −→ U to denote the SMPC law, the closed-loop system can
be described by

x(k + 1) = f̂(x(k), κ(x(k))) + g (x(k), κ(x(k)))

≜ Φκ(x(k)).
(5)

Additionally, we use x(k|x(0)) to denote the solution
{x(i)|i = 1 · · · , k} to (5) given the initial state x(0).

Definition 1. Given x(0) ∈ X , the system (1a) is said to be
safe under a control law κ if for ∀k ∈ N,

Φκ(x(k)) ∈ X , κ(x(k)) ∈ U . (6)

Moreover, the system (1a) is said to be δ-safe under the
control law κ if ∀k ∈ N,

Pr [Φκ(x(k)) ∈ X , κ(x(k)) ∈ U ] ≥ δ, (7)

where Pr[·] denotes the probability of an event.

In general, the hard constraints (6) cannot be enforced
without additional assumptions [10], especially when (1a)
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is unknown. However, δ-safety relaxes the requirements of
safety to safety with a high probability. Furthermore, an input
sequence u is said to be valid for a system with initial state
x(0) if applying the input sequence to the system is safe.
Lemma 1. Given x(0), a valid control input sequence u, a
BNN model that fulfills Assumption 1, and a confidence level
δc ∈ (0, 1], there exists an N̄MC such that for ∀k ∈ N and
j = 1, · · · , nx,
Pr [xj(k|x(0)) ∈ [x̂j,min(k|x(0)), x̂j,max(k|x(0))]] ≥ 1− δc,

(8)

where x̂j,min(k|x(0)) = mini x̂
(i)
j (k|x(0)) and

x̂j,max(k|x(0)) = maxi x̂
(i)
j (k|x(0)) with x̂

(i)
j (k|x(0)) =

f̂(x̂
(l)
j (k− 1|x(0)),u(k− 1))+ ĝ(i)(x̂

(l)
j (k− 1|x(0)),u(k−

1)); ĝ(i) is the prediction of g using the i-th sampled
model from the BNN model, i = 1, · · · , NMC(k),
l = 1, · · · , NMC(k − 1); NMC(k) is the number of
models drawn from the BNN model using MC methods at
the time instant k; N̄MC = maxk NMC(k).

Proof: Let k = 0, x̂(0|x(0)) = x(0). Since
|gj(x(0),u(0)) − µ̂gj(x(0),u(0))| ≤ βj σ̂gj(x(0),u(0)) by As-
sumption 1, there exists an NMC(0) such that

xj(1|x(0)) = f̂j(x(0),u(0)) + gj(x(0),u(0))

∈ [x̂j,min(1|x(0)), x̂j,max(1|x(0))] ,

holds almost surely, i.e., δc → 0. Then, at time instant
k + 1, NMC(1) can be found such that xj(2|x(0)) ∈
[x̂j,min(2|x(0)), x̂j,max(2|x(0))], as

xj(1|x(0)) ∈ [x̂j,min(1|x(0)), x̂j,max(1|x(0))] ,
|gj(x̂(l)

j (1|x(0)),u(1))− µ̂
gj(x̂

(l)
j (1|x(0)),u(1))|

≤βj σ̂gj(x̂
(l)
j (1|x(0)),u(1)), l = 1, · · · , NMC(1),

and the support of the weights as random variables in the
BNN model is unbounded. Through induction, (8) is obtained
using N̄MC = maxk NMC(k).

Lemma 1 guarantees that, with a high probability, the state
trajectory of the system is always contained in the multiple
trajectories simulated by the BNN model, which is used later
to establish safety guarantees.

A. Scenario-based MPC Design
Given the probability distribution of uncertainties, the

objective of stochastic MPC at the time instant k is

minE

{
N−1∑
i=0

ℓ(x(i|k), u(i|k)) + VN (x(N |k))

}
(9)

where E is the expected value operator over the random
vector sequence g = {g(0), · · · , g(N − 1)} with g denoting
the plant-model mismatch. It is noted that the uncertainties
of g are propagated forward through the prediction model
(1a) and thus the closed-form probability density function of
ĝ is hard to derive. Moreover, (9) is not directly solvable
over generic feedback control law u(k) = κ (x(k)).

To evaluate (9), SMPC represents the uncertainty of a sys-
tem using a tree of discrete scenarios. Each particular branch

stemming from a node represents a scenario/realization of
uncertainty [11]. Then, the scenario-based optimal control
problem for an uncertain system at time instant k can be
formulated as

min
xj ,uj

S∑
j=1

pj

[
N−1∑
i=0

ℓ
(
xj(i|k), uj(i|k)

)
+ VN

(
xj(N |k)

)]
(10a)

s.t. xj(i+ 1|k) = f̂
(
xj(i|k), uj(i|k)

)
+ ĝj(i|k), (10b)(

xj(i|k), uj(i|k)
)
∈ X × U , (10c)

xj(0|k) = x(k), (10d)

uj(i|k) = ul(i|k) if xp(j)(i|k) = xp(l)(i|k), (10e)

where the superscript j indicates the particular scenario j ∈
{1, . . . , S}; pj denotes the probability of the j-th scenario;
ℓ
(
xj(i|k), uj(i|k)

)
and VN

(
xj(N |k)

)
are the stage cost

and terminal cost for the trajectory of the j-th scenario,
respectively; N is the prediction horizon; ĝj denotes the
mismatch realization based on the BNN model; and (10e)
enforces a non-anticipativity constraint, which represents the
fact that each control input that branches from the same
parent node must be equal (xp(j)(i) is the parent state of
xj(i + 1)). The non-anticipativity constraint is crucial in
order to accurately model the real-time decision problem
such that the control inputs do not anticipate the future (i.e.,
decisions cannot realize the uncertainty). The solution to this
optimization problem is used to generate the control law,

κ (x(k)) = u⋆(0|k). (11)

A potential challenge to the scenario-based optimal control
problem is the exponential nature of the scenario tree formu-
lation. To combat this, we utilize a method described in [11],
in which a robust horizon Nr < N is defined. The scenario
tree stops branching beyond the robust horizon, and the
uncertainty realizations are assumed to be constant thereafter.
Consequently, considering a fixed number of scenarios s
at each node, the total number of scenarios is S = sNr .
To further save computational cost, we should accurately
approximate (9) with a relatively small number of scenarios.

Given the structure of the scenario tree, it is crucial to
generate appropriate scenarios at each stage of the optimiza-
tion to accurately represent the uncertainty of the system.
As such, several methods of scenario generation have been
proposed in the literature, including Monte Carlo sampling
methods [12], moment matching methods [13], and even
machine learning techniques [14]. Despite those efforts,
the methods are typically only applied to convex problems
and assume full recourse. In this paper, we propose an
efficient online scenario generation approach and incorporate
a probabilistic safety certificate into the scenario generation.
In particular, we generate representative scenarios whose
behaviors contain the system behaviors. Then, the system is
safe under (11) if (10) where all the scenarios are subject
to the constraints is feasible. Moreover, the uncertainties
considered are state- and input-dependent, which provides
the opportunity to adapt the uncertainty estimation and thus
the scenarios at each time instant.
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III. LEARNING-BASED SMPC DESIGN USING BNNS

In this section, we formulate the SMPC using the HyNN
model learned from the data. In particular, the scenario
generation method is presented, and the probabilistic safety
guarantee is provided.

A. Learning-based Scenario Generation

At each time instant k, we draw N̄MC samples from
normal distributions and calculate weights w(i) by applying
the reparameterization trick [7] to the i-th sample. While
Lemma 1 claims that the trajectories of the N̄MC sampled
models contain the system trajectory, N̄MC can be too large
for online optimization of the SMPC problems. Specifically,
N̄MC ≥ 2

δ ((nx − 1) ln(2) − ln(β)) to guarantee confidence
level δ with probability 1−β [15]. To reduce the number of
scenarios, instead, we estimate g(i) using w(i)

µ̂g(k) =
1

N̄MC

N̄MC∑
i=1

ĝ(i), (12)

σ̂g(k) =

√√√√ 1

N̄MC

N̄MC∑
i=1

(ĝ(i) − µ̂g(k))⊤(ĝ(i) − µ̂g(k)), (13)

and use µ̂g(k), µ̂g(k) + mj σ̂g(k), µ̂g(k) − mj σ̂g(k), j =
1, · · · , S−1

2 where mj are the tuning multipliers for S
uncertainty realizations. It is noted that a larger S improves
the representativeness of the scenario tree but also increases
the computational cost of the SMPC. To maintain the original
statistical properties, the probabilities of scenarios are calcu-
lated using the moment matching method [16]. Additionally,
the first four central moments are matched.

Remark 1. It is noted that the computational cost of
the proposed scenario generation approach and moment
matching method is high when N̄MC is large. However,
the computations can be done offline via a uniform-grid
approach. Specifically, we discretize X × U using uniform
grids, evaluate the BNN model at the grid points for N̄MC
times such that Lemma 1 is fulfilled, and solve the moment
matching optimization problem. The grid size is determined
such that the estimation of µ̂g and σ̂g is stable. Thus, the
scenarios and the probability of scenarios at (x, u) can
be retrieved online from the offline computation results by
finding the results at the grid point that is closest to (x, u).

To save computational cost, we only update the uncertainty
estimation every time instant and fix the scenarios over
the prediction horizon. In particular, we use the solution
u∗(1|k − 1) to (10) at k − 1 and the state x(k) to estimate
uncertainty ĝ(k) at k, and ĝ(i|k) = ĝ(k), i = 0, · · · , N − 1
for (10) at k. Using the uncertainties estimated at time instant
k is more tractable than considering time-varying uncer-
tainties and adaptive scenarios in the prediction horizon, as
the uncertainties are input-dependent and the control input
sequence in the prediction horizon are decision variables of
the SMPC problem. When the uncertainties do not change
significantly in the prediction horizon, fixing the uncertainty
estimation over the prediction horizon is reasonable and still
less conservative than using the worst-case error bounds.

Fig. 1: Recursive feasibility.

B. Recursive Feasibility

Next, we establish the recursive feasibility of the proposed
SMPC scheme, which requires a robust controlled invariant
terminal set associated with a terminal controller [17], [8].

Assumption 2. There exists a robust controlled invariant
terminal set Xf for the original nonlinear system (1) under
the terminal controller κf (x) ∈ U such that for ∀x ∈ Xf ,
we have f (x, κf (x)) ∈ Xf .

The terminal set can be under-approximated as the com-
mon terminal region X̂f [18] of the generated scenarios
whose behaviors contain the behaviors of the system, which
has been developed in [2].

Assumption 3. For ∀k ∈ N, ∀i = 0, · · · , N − 1,
∀l = 1, · · · , nx, we have |gl(i|k)| ≤ max{|µ̂gl(k) +
mj σ̂gl(k)|, |µ̂gl(k) −mj σ̂gl(k)|

∣∣j = 1, · · · , S−1
2 }.

Assumption 3 ensures that the uncertainties over the
prediction horizon are bounded by the uncertainty estimates
using the current state and the optimal control input from
the last step. It is noted that Assumption 3 can be fulfilled
by tuning mj . A larger mj can ensure Assumption 3 holds
but increases the conservativeness of the SMPC.

Assumption 4. Given the set Xi|k of the i-th step predictions
of the states at time instant k, applying u(i|k) results in
Xi+1|k. Then, for a subset X ′

i|k ⊆ conv(Xi|k), applying
u(i|k) results in X ′

i+1|k ⊆ conv(Xi+1|k).

Lemma 2. Suppose Assumption 3 & 4 are fulfilled, given
u∗(i|k) ∈ UN , then Xi|k+1 ⊆ conv(Xi+1|k) ⊆ X with
the control input sequence u(i − 1|k + 1) = u∗(i|k), i =
1, · · · , N .

Proof: Lemma 2 states that the sets of the states over the
prediction horizon at k+1 are contained in the convex hull of
the corresponding sets at k. At time instant k, since u∗(i|k)
is the solution to (10), Xi+1|k ∈ X and thus conv(Xi+1|k) ∈
X . Using the scenario generation approach in Section III-A,
x(k+1) ∈ conv(X1|k) after applying u∗(0|k) to the system
at k. Furthermore, for ∀x(1|k) ∈ X1|k, applying u∗(1|k)
results in x(2|k) ∈ X2|k. Hence, X1|k+1 ∈ conv(X2|k) with
u(0|k + 1) = u∗(1|k) by Assumption 4. Similarly, we have
Xi|k+1 ⊆ conv(Xi+1|k) ⊆ X , i = 1, · · · , N − 1.

Theorem 1 (Recursive feasibility). Consider system (1) un-
der the control law (11) by solving (10) fulfills Assumptions
1-4. If optimization problem (10) is feasible for x(0), then it
is feasible for all time instants k ∈ N, i.e., it is recursively
feasible.
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Proof: The proof is done by constructing a can-
didate solution for each k, which is illustrated in Fig.
1. Let {u∗(i|k)}N−1

i=0 be the minimizer to (10) at k.
Applying control input (11) results in the state x(k +
1) ∈ [minj x

j(1|k),maxj x
j(1|k)] ⊆ X . Then, we

consider the candidate solution {u∗(1|k), · · · , u∗(N −
1|k), κf

(
x1(N |k), · · · , xS(N |k)

)
} which satisfies the input

constraints and results in xj(i|k + 1), i = 0, · · · , N, j =
1, · · · , S. Using Lemma 2, we have xj(i|k + 1) ∈ X when
i < N and xj(N |k + 1) ∈ Xf , which proves recursive
feasibility.
C. Probabilistic Safety Guarantee

Using the scenario generation approach in Section III-A,
the safety certificate can be formalized into our main result.

Theorem 2. Let Assumptions 1-4 hold. Then, the system
under the scenario-based MPC law is δ-safe if (10) is
feasible for x(0).

Proof: By Lemma 1, (8) holds using N̄MC samples.
Consequently, at time instant k, there exist mj’s for the
scenario generation using µ̂g(k) and σ̂g(k) estimated from
the N̄MC samples such that the predictions x̂(k + 1) by the
generated scenarios contain the real x(k + 1) of the system
under Assumption 1. Furthermore, (10) is recursively feasible
by Theorem 1, and thus (7) holds for all k, which proves the
system is δ-safe by Definition 1.

IV. CLOSED-LOOP SIMULATIONS AND VALIDATION

In this section, we validate the proposed HyNN-based
control design approach using simulations of a cascaded two-
tank system [19]. The system is described by

ρS1ḣ1 = −ρA1

√
2gh1 + u, (14a)

ρS2ḣ2 = ρA1

√
2gh1 − ρA2

√
2gh2, (14b)

where ρ = 0.001 kg · cm−3 is the liquid density; S1 =
2500 cm2, S2 = 1600 cm2, A1 = 9 cm2, and A2 = 4 cm2

are the cross-sectional areas of the upper tank, the lower tank,
the pipe through which the liquid flows into the lower tank,
and the pipe through which the liquid flows out, respectively;
h1 and h2 denote the liquid levels of the upper and lower
tanks, respectively; u denotes the flow of liquid pumped into
the upper tank. The control objective is to regulate the levels
h1 and h2 at given set points. u is available as a control
input and subject to the constraint U = {u|0 kg.s−1 ≤ u ≤
4 kg.s−1}. The liquid levels satisfy the bounds X = {x =
[h1, h2]

T|1 cm ≤ h1 ≤ 35 cm, 10 cm ≤ h2 ≤ 200 cm}. The
system model (14) is assumed to be unknown for control
design and only used for simulations. In the simulations,
the goal is to reach a reference value h∗

2 = 115 cm of the
lower tank. Moreover, the translated state and input variables
x̃ = x − [22.72, 115]T and ũ = u − 1.90 are introduced to
convert the problem into a stabilization problem.

1) Data-driven Modeling: We apply a random input
signal drawn from uniform distribution U [0, 4] to collect
observations for model identification. The sampling time is
0.9 seconds. Furthermore, 1000 samples are collected and

split into training and testing sets with a ratio of 65%/35%.
Since we assume (14) is unknown, we cannot choose the
scheduling variables and transform (14) into an exact LPV
embedding as [19], and thus we cannot use the approach
in [19] for control design. Instead, we simply use the states
as the scheduling variables to learn the LPV-ANN nominal
model (2), and then treat the scheduling variables as free
variables in the prediction horizon of SMPC. In particular,
we use a five-layer fully-connected ANN to represent A(·).
All the hidden layers of the ANN have 32 hidden units.
Moreover, we use one dense layer with 2 hidden units to
represent B(·), and the dense layer does not use bias terms.
Furthermore, we use a five-layer BNN to model the mismatch
between the plant and the nominal model. All the hidden
layers of the BNN are dense layers with 16 hidden units
while the output layer of the BNN is a DenseVariational layer
[4]. Additionally, all the hidden layers in the experiments
use exponential linear unit (ELU) activation functions while
the output layers do not use any activation function. Adam
optimizer is used with a learning rate set to 0.001 and other
hyper-parameters as default. Fig. 2 shows the validation of
the nominal model, and Fig. 3 shows that the mismatches
are contained in the bounds of the BNN predictions, which
indicates Assumption 1 was fulfilled.

(a) BFRx1 = 92.82%. (b) BFRx2 = 97.77%.

Fig. 2: Validation of the nominal LPV-ANN model.

Fig. 3: Validation of the BNN-based mismatch model.
2) Validation of the Proposed SMPC Scheme: To demon-

strate the efficiency of the proposed approach, we examine
the performance of variants of LPV-MPC. In the first case,
we examine the MPC only using the LPV-ANN nominal
model. In the second case, we examine the performance
of SMPC using an LPV-BNN model [2] of the original
system. The LPV-BNN model was composed of the same
number of hidden layers and units as the LPV-ANN nominal
model and was directly learned from D. In the final case,
we consider the proposed SMPC approach using the HyNN
model. In our comparison, we used the prediction horizon
of N = 4 and the robust horizon of Nr = 1 for the SMPC.
The stage cost was ℓ =

∑N−1
i=1 x(i|k)⊤x(i|k) + 10∆u2(i|k)

where ∆u(i|k) = u(i|k) − u(i − 1|k). The terminal set
and terminal controller were designed using the approach in
[2]. The conservativeness of the LPV-BNN model affects the
volume of the terminal set and thus the SMPC performance.
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For the SMPC using HyNN, we sampled N̄MC = 10
models to estimate the mean µ̂g and standard deviation
σ̂g of the mismatch g. Increasing the number of sampled
models can improve control performance but also increase
the computational cost. Subsequently, at each node of the
scenario tree, we used µ̂g , µ̂g + 0.6σ̂g , and µ̂g − 0.6σ̂g

as three discrete scenarios of the plant-model mismatch.
Furthermore, we set |g1| ≤ 0.8 and |g2| ≤ 3.0 based on
maxi |g(i)j |, j = 1, 2 in the dataset Dg . When the predictions
of the scenarios are out of the bounds of g due to the limited
generalization of the BNN model, we use the bounds instead
of the predictions and uniform distribution as the probability
of scenarios to avoid too conservative uncertainty estimation.
In our simulation, the bounds were only used for 0.4% of
the time instants, which demonstrates the usefulness of the
BNN-based mismatch model. The system remained in the
terminal set under the terminal control law after entering
the terminal set at time instant k = 400, which indicates
Assumption 2 was fulfilled. Moreover, the trajectory of
the plant was bounded by the trajectories of the scenarios
which demonstrates that Assumptions 3 & 4 were fulfilled.
Increasing mj can increase the probability of safety but
reduce the feasible domain of the optimization problem (10)
and thus decrease the control performance. Furthermore, the
SMPC was indeed feasible throughout the simulations. Fig.
4(b) shows the designed MPC can bring the liquid level h2

of the lower tank to the reference value while satisfying
the system constraints. The proposed SMPC approach with
HyNN (green line) achieved better control performance than
the other LPV-MPC approaches. While the performance of
SMPC-BNN is close to that of SMPC-HyNN, SMPC-BNN
used a more complex BNN and was more computationally
intensive than SMPC-HyNN.

(a) Trajectories of the scenarios
and plant.

(b) Performance comparison of
variants of LPV-MPC.

Fig. 4: Validation of the proposed SMPC scheme.

V. CONCLUDING REMARKS

In this paper, a hybrid NN approach was proposed for
adaptive SMPC of nonlinear systems in the LPV framework
with recursive feasibility and probabilistic safety guarantees.
In particular, an LPV-ANN model was first learned from
data as the nominal model, and then a BNN was used
to model the mismatch between the original system and
the nominal model. The BNN-based mismatch model was
later used to generate scenarios online for SMPC. To ensure
safety, the behaviors of the generated scenarios contained the
system behavior with high probability, and the constraints
were enforced for all the scenarios. Moreover, a robust
controlled invariant set was employed to establish recursive
feasibility. The closed-loop simulations on a two-tank model

demonstrated that the proposed approach could improve
model accuracy and control performance compared with
SMPC only using ANNs and BNNs.
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