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Abstract— This letter proposes a novel distributed model
predictive control (MPC) strategy to address the swarm ag-
gregation of a team of quadrotor unmanned aerial vehicles
(UAVs). First, a switched formulation of the quadrotor model
is derived by mapping the UAVs dynamics into a set of finite
motion modes. Then, relying on a suitably selected control
Lyapunov function (CLF), the inter-agent collisions and the
aggregation task are taken into account to design a switching
MPC (SMPC) strategy. A clustering method is also introduced
to define the communication network among the agents, which
is essential to sequentially solve the optimal control problem.
Finally, the efficacy of the proposal, also in comparison with
other methodologies, is satisfactorily shown in simulation.

Index Terms— Switched systems, model predictive control,
quadrotor UAVs, distributed control, consensus.

I. INTRODUCTION

In recent years, thanks to the non-stop advances in commu-
nication, sensing and processing technology, the application
domain of quadrotor unmanned aerial vehicles (UAVs) has
grown in several fields from military purposes [1], to agri-
culture [2], to racing [3], among many others. Their main
attractiveness relies on autonomously performing activities
in scenarios where human integrity might be compromised.
However, and despite the enormous research on single UAV
flight control, the use of multiple UAVs in an organized
swarm has demonstrated to improve the single performance
of the agents as well as the efficiency of the entire group.

In the literature, many works were devoted to address the
design of controllers for UAVs swarms. In [4], for instance,
a multicopter geometrically constrained trajectory planning
is investigated. Among decentralized solutions, a hybrid
control algorithm to achieve swarm formation is proposed
in [5], while in [6] a decentralized model predictive control
(MPC), defined by inter-agent bearings to avoid collisions, is
presented. Among results with distributed topology, instead,
a consensus based control strategy for swarms of UAVs
under a time-varying topology for flight formation, swarm
tracking, and social foraging is presented in [7]. A distributed
trajectory optimization algorithm for safe multi-agent trajec-
tory planning is proposed in [8], while an observer-based
optimal consensus controller for a multi-UAVs system, which
integrates linear quadratic regulator technique and linear
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matrix inequalities, is introduced in [9]. In the stochastic
framework, [10] discusses a chance-constraint formulation to
account for position and velocity uncertainty, while achieving
obstacles avoidance.

Having in mind multi-UAVs aggregation, localization re-
quires continuous sensor information. However, computa-
tional and communication limitations make some simplifi-
cations mandatory to reduce the curse of dimensionality.
Spurred by these motivations, this letter takes inspiration
from [11], [12], where a differential wheeled robot dynamics
is constrained to only two motion modes, and from [13],
which proposes an order-reduction of a remote controlled
car model, recasting it as a hybrid system. Indeed, all
these works address the previously mentioned problems,
which arise together when a swarm of agents with high
order dynamics is studied, e.g., an UAVs swarm, as in
this letter. The main purpose of this article is to overcome
these challenges by proposing a novel optimization-based
strategy, exploiting switched systems, in order to solve a
swarm aggregation problem. Indeed, aggregation processes
are very common, e.g., in biological systems, and they often
are a needed prerequisite for many collective systems for
accomplishing other cooperative tasks.

Specifically, this letter proposes an original swarm aggre-
gation strategy, that combines the advantages of switched
systems with those of distributed MPC. Differently from
[11], [12], where only two switching planar modes are
considered, the proposed aggregation strategy is extended
to the tridimensional case. Moreover, while [12] presents a
control Lyapunov function (CLF) based approach, in this
letter, starting from a suitable CLF, a novel distributed
switching MPC (SMPC) is proposed, capable of dealing
with an arbitrary number of modes capturing the UAVs
motion, and employing a clustering method to define the data
exchange among agents. This allows achieving both optimal
control performance and computational simplifications for
the aggregation algorithm, which has to face the issue that
it needs to scale well with the swarm population, as finally
assessed in simulation on a large-scale case study.

II. MODELLING AND PROBLEM FORMULATION

This section introduces the considered quadrotor UAV
model and the problem formulation.

A. Quadrotor UAV model

Here, we focus on a general aggregation problem in which
the UAVs could collide among each other. Since in practice,
in this case, it is convenient to provide velocity references to
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the internal control loops, the differential kinematic model
of the UAVs is hereafter considered. Moreover, we assume
that a local replanner is used to allow smoothness in velocity
and acceleration (see, e.g., [14]) even in the case of switching
policies, with local controllers capable of perfectly tracking
the desired velocities.

Consider Fig. 1, and let [px py pz ϕ θ ψ]⊤ be the vector
containing the linear and angular position of the quadrotor in
the world frame OW−XWYWZW, and [vu vv vw wp wq wr]

⊤

be the vector containing the linear and angular velocities
in the body frame OB − XBYBZB. In the following, the
dependence of all the variables on time will be omitted when
obvious.

OB

XBYB

ZB

OW XW

YW

ZW

Fig. 1. Schematic rendering of the quadrotor UAV’s frames.

Relying on Euler equations for the spatial motion of a rigid
body, the relation between the body and the world frame is

v = RvvB, (1a)
w = RwwB, (1b)

where v := [ṗx ṗy ṗz]
⊤, w := [ϕ̇ θ̇ ψ̇]⊤, vB := [vu vv vw]

⊤,
wB := [wp wq wr]

⊤, while

Rv :=

 c(θ)c(ψ) s(ϕ)s(θ)c(ψ)− c(θ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(θ)c(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 ,
Rw :=

 1 s(ϕ) tan(θ) c(ϕ) tan(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)c(θ)−1 c(ϕ)c(θ)−1

.
with c(·) := cos(·), and s(·) := sin(·). Now, by posing
the quadrotor pose and orientation in the state vector x :=
[px py pz ϕ θ ψ]

⊤ ∈ R6, and the velocity vector in the input
vector u := [v⊤B w⊤

B ]⊤ ∈ R6, then the differential kinematic
model (1) can be rewritten as

ẋ = f(x, u), x(0) = x0. (2)

B. The switched quadrotor model

Motivated by the need to reduce the curse of dimension-
ality when dealing with multi-quadrotor systems, we model
the quadrotor dynamics (2) as a switched system, switching
among a finite set of operating modes. Let m be the number
of predefined motion modes such that σ ∈ M := {1, . . . ,m}
is the so-called switching signal. The latter defines the
current motion mode so that u(σ) ∈ Usw can be modelled as
a switching input, with Usw containing the following vectors

u(σ) :=


06×1, σ = 1

v̄eσ−1, σ = 2, 3, 4

w̄eσ−1, σ = 5, 6, 7

−v̄eσ−7, σ = 8, 9, 10

−w̄eσ−7, σ = 11, 12, 13

(3)

where v̄ and w̄ are predefined longitudinal and rotational
velocities, and eσ ∈ R6 is the canonical unit vector. Then,
the switched time-invariant system corresponding to (2) is

ẋ = fσ(x, u(σ)), x(0) = x0, (4)

where fσ = [fxσ
, fyσ , fzσ , fϕσ

, fθσ , fψσ
]⊤ belongs to the set

Q := {f1, . . . , fm}.
Remark 2.1 (Modes selection): Note that the modes se-

lection is not trivial. Indeed, the set of vector fields Q
must include at least one non-zero longitudinal velocity
component in at least one of its elements, since pure angular
velocities in all modes do not contribute to any displacement
in the tridimensional space. ▽

For design purposes, the set of vector fields must also
include a zero vector, meaning that the quadrotor is capable
of keeping still. In this paper, without loss of generalization,
we assume m = 13 motion modes, with 6 velocity vectors
having only one positive non-zero component and zero for
the others, 6 velocity vectors defined as the previous ones
but with negative values only, and one fully zero vector.
This modes selection, based on a specific motion policy and
according to Remark 2.1, allows the UAVs to move in any
possible direction of the world frame.

C. Multi-UAVs switched system and problem statement

Having in mind a team of quadrotors, consider now
a system composed of n agents, and let N := {i ∈
[1, . . . , n]} be the set comprising all the agent indexes. In
the following, the apex [i] will be used to indicate the ith
subsystem. The multi-quadrotor system model is obtained by
redefining the vectors x and u as x := [x[1], . . . , x[n]]⊤ and
u := [u[1], . . . , u[n]]⊤, respectively. Analogously, a switching
string Σ := {σ[1], . . . , σ[n]} ∈ S := Mn is introduced such
that

ẋ = fΣ(x, u(Σ)), x(0) = x0, (5)

where u(Σ) ∈ V := Unsw, and fΣ ∈ Qn := {f1, . . . , fmn}.
Therefore, given the switched model (5) constrained to

mn motion modes, the control problem to solve consists
of designing a control strategy capable of aggregating the
quadrotors, while avoiding collisions among them, and taking
into account the switching nature of the system dynamics.

III. CONTROL LYAPUNOV FUNCTION BASELINE

To solve the problem formulated in §II, let us introduce the
design of a CLF for the switched system (5). To streamline
the exposition, we refer to [15], [16] for further details on
CLFs.

Having in mind an aggregation objective for UAVs with
rigid body properties, it is natural to consider for each agent
the pose dynamics (1a) and the reciprocal Euclidean distance
between the ith and jth centroids, i.e.,

dij =

√
(p

[i]
x − p

[j]
x )2 + (p

[i]
y − p

[j]
y )2 + (p

[i]
z − p

[j]
z )2,

∀ i, j ∈ N , i < j. In order to take into account the space
occupancy of UAVs, let d̄ ∈ R be the reference between
two agents, and d ∈ R a distance lower bound. Note that
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d is instrumental to manage the collision avoidance among
agents, and such a parameter is selected relying on d̄, the
maximum longitudinal velocity v̄ and, considering practical
implementation, also on the sampling time T , such that ℓ <
d < d̄− 2v̄T , with ℓ being the length of the UAV’s frame.

Then, posing d̃ij := dij−d̄, and d̃ as the vector containing
all the distance errors, consider the following function

V (d̃) :=
∑
i,j∈N
i<j

γij
d̃2ij
2︸ ︷︷ ︸

Vij

, (6)

with γij being a weight defined as

γij :=

{
1, dij ≥ d̄

(d̄−d)2
(dij−d)2 , dij < d̄

(7)

The weight (7) is a continuous function of dij , which
is aimed at avoiding that the UAVs move away from d̄.
As customary in the theory of switching control [17], the
Lyapunov function induced by the argmin-based switching
control action is continuous but only piecewise differentiable
so that the notion of the Dini derivative should be used.

Remark 3.1 (Switching law): Note that, in the considered
CLF baseline, making the zero mode possible only when the
agents aggregate, the switching law can be designed as the
argmin(D+V ), where D+ is the Dini derivative. In the case
of two or more equal minima, one could select the first one
in order. Typically, this kind of strategy leads to a sliding
trajectory around the discontinuity points of the CLF. In our
case, depending on the selected switching inputs as in (3),
it is possible to show that such a derivative is negative, and
zero only when the agents are aggregated. ▽
By virtue of the decreasing property of the selected CLF, it
can be employed as value function for establishing stability
of a finite horizon optimal control problem in discrete time-
domain.

IV. THE PROPOSED DISTRIBUTED SWITCHING
MODEL PREDICTIVE CONTROL

Motivated by the reasoning of the previous section, we
present now an alternative aggregation approach based on
SMPC. This approach keeps the spirit of the CLF based law,
and, by virtue of the guarantees mentioned above, it exploits
the CLF in (6) as cost function to be minimized subject to
the switched dynamics in (5).

The SMPC is designed to be solved at each time instant
k ∈ N0, so that by introducing the sampling time T > 0,
and discretizing the UAVs dynamics by using forward Euler
method, one has

xk+1 = xk + TfΣk
(xk, uk(Σk)) = fdΣk

(xk, uk(Σk)),
(8)

with fdΣk
belonging to the set of vector fields Qdn :=

{fd1 , . . . , fdmn }. Letting N ≥ 1, the prediction horizon is
instead defined as Tk := {k, . . . , k + N − 1}, while the
variable t is used to span along the prediction horizon, i.e.,

t ∈ Tk. The cost function of the SMPC, relying on the
function designed in (6), is chosen as

Jk :=
∑
t∈Tk

∑
i,j∈N
i<j

γijt
d̃2ijt
2
. (9)

with the weight γijt as in (7). Therefore, letting Σk :=

{σ[1]
k , . . . ,σ

[n]
k } and σ

[i]
k := [σ

[i]
k , . . . , σ

[i]
k+N−1]

⊤, the SMPC
formulation results

min
Σk

Jk

subject to, ∀ t ∈ Tk,
xt+1 = fdΣt

(xt, ut(Σt) ) , xk = x̃k,

xt ∈ X , ut(Σt) ∈ V,

(10)

where x̃k expresses the measured state at each k ∈ N0.
Moreover, in (10), the set of the state constraint is

X := {x ∈ R6n | dijt > d, ∀i, j ∈ N , i < j,

∧ |ϕ[i]t | ≤ ϕ̄, |θ[i]t | ≤ θ̄, |ψ[i]
t | ≤ ψ̄, ∀i ∈ N}, (11)

in order to avoid collisions among the quadrotors, and limit
the angle variation according to positive thresholds ϕ̄, θ̄, ψ̄.

It is worth highlighting that, due to the combinatorial
nature of the strategy, the formulated SMPC problem (10)
can be computationally demanding. More specifically, the
computational complexity is indeed given by the number of
evaluations of the nonlinear dynamics f

(
x
[i]
t , u

[i]
t (σ

[i]
t )

)
that

have to be performed for computing the optimal sequence
u∗
k = [u∗k(σ

∗
k), . . . , u

∗
k+N−1(σ

∗
k+N−1) ]. The number of

possible control sequences belonging to the set W is given
by the cardinality |W| = mN , so that, for n UAVs, the whole
complexity is n·mN . As a consequence, some simplifications
are introduced as follows.

1) Switching policies: In order to alleviate the computa-
tional burden required to solve the optimal control problem
(10), the set of possible sequences W is reduced by intro-
ducing policies in order to determine the permitted switching
between the considered modes. For example, one can impose
that only one agent per time can modify its dynamics, or,
depending on the task’s constraints, some sequence can be
discarded (e.g., employing only the heading, the forward
and the vertical motions in the case of a non-holonomic
way of navigation). This implies the selection of the optimal
input sequence be within a subset of feasible sequences, i.e.,
u∗[i]

k ∈ F ⊂ W .
2) Clustering: Despite the introduction of switching poli-

cies, the number of agents is still a critical parameter
that compromises real-time computations and could possibly
affect fault-tolerance, organizational complexity and main-
tenance problems. Therefore, a distributed control method
is a valid solution to further reduce the complexity, locally
solving the optimal control problem inside subsystems that
share limited resources over a constrained communication
network. Making reference to the distributed solution in [18,
§5.2.1], a clustering approach is hereafter introduced.
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Let C[i]
k be the set defined by the clustering method as

C[i]
k := {j ∈ N | dij ≤ rcl, ∀j ̸= i}, (12)

where rcl is a predefined radius of the sphere cluster attached
to the ith robot centroid. Consider now Fig. 2, where
each quadrotor locally generates the the optimal input se-
quence u∗[i]

k := [u∗k(σ
∗[i]

k ), . . . , u∗k+N−1(σ
∗[i]

k+N−1)]
⊤. The ith

...
...

SMPC 1

SMPC 2

SMPC n− 1

SMPC n

X [1]
Ck

X [2]
Ck

X [n−1]
Ck

X [n]
Ck

U [1]
Ck

U [2]
Ck

U [n−1]
Ck

U [n]
Ck

u[1]

u[2]

u[n−1]

u[n]

x[1]

x[2]

x[n−1]

x[n]

Fig. 2. Sequential distributed SMPC architecture.

quadrotor receives at each sampling time the state feedback
set

X [i]
Ck

:= {x[j]k ∈ R6, ∀j ̸= i, j ∈ C[i]
k }, (13)

and the predicted input set

U [i]
Ck

:= {u[j]
k , ∀j ̸= i, j ∈ C[i]

k }, (14)

in order to compute, according to the receding horizon
principle, the input u[i]k in a decreasing sequential order,
according to a predefined indexing criterion. This implies
that the jth SMPC, j = n, . . . , 2, retrieves no predicted input
set from subsystem κ = j−1, . . . , 1. To solve this issue, the
optimization problem feasibility is guaranteed by letting the
jth SMPC, j = n, . . . , 2, assume specific trajectories for the
predicted input subset U [κ]

k , κ = j − 1, . . . , 1 (for instance
the quadrotors are kept still along the prediction horizon).

3) Distributed SMPC: For each quadrotor the SMPC
problem is finally formulated by defining the cost as

J
[i]
k :=

∑
t∈Tk

∑
j∈C[i]

k

γijt
d̃2ijt
2
, (15)

which takes into account the quadrotors inside the cluster
C[i]
k . The proposed SMPC problem is then stated as

min
σk

J
[i]
k

subject to, ∀ t ∈ Tk, ∀κ ∈ C[i]
k ∧ κ = i,

x
[κ]
t+1 = fd

σ
[κ]
t

(x
[κ]
t , u

[κ]
t (σ

[κ]
t )) , x

[κ]
k = x̃

[κ]
k ,

x̂
[i]
t ∈ X̂ , u

[κ]
t (σ

[κ]
t ) ∈ Usw,

(16)

with x̂[i]t ∈ R6|C[i]
k | being the vector containing all the states

of the agents in the cluster, while the state constraint set is

X̂ := {x̂[i]t ∈ R6|C[i]
k | | dijt > d, ∀j ∈ C[i]

k , i < j

∧ |ϕ[i]t | ≤ ϕ̄, |θ[i]t | ≤ θ̄, |ψ[i]
t | ≤ ψ̄}. (17)

Remark 4.1 (Sub-optimality): The distributed SMPC so-
lution depends on the predefined indexing criterion. Then,
other sub-optimal solutions can be found by reassigning the
indexes, solving an optimization problem aimed at searching
for the index criterion which generates the smallest cost. ▽

Remark 4.2 (Scalability): It is worth highlighting that, by
virtue of the clustering method and the collision avoidance
mechanism, which imply a maximum number of agents
belonging to the same subgroup, if the total number of
quadrotors increased, this would not correspondingly affect
the computational complexity to solve (16). ▽

V. CASE-STUDY

In this section, the proposed distributed SMPC is assessed
in simulation relying on different sizes of the UAVs swarm.

A. Settings

The simulated test benchmark consists of different scenar-
ios to evaluate the performance of the proposed algorithm on
UAVs swarms with a various population size, ranging from
n = 10 to 150 agents. The quadrotors have a random initial
distribution over a tridimensional grid in a 6× 6× 6 m cube
space and are charaterized by the parameters listed in Table
I. Finally, some performance metrics are introduced.

TABLE I
PARAMETERS.

ℓ v̄ w̄ d̄ d rcl N

0.225m 0.1m s−1 0.2 rad s−1 3.5ℓ 2ℓ 4ℓ 3

Let a cluster of UAVs be the maximal connected subgraph
of the graph defined by the UAVs positions, where two agents
are considered to be adjacent if another one cannot fit in
between them, that is if dij < 2d̄ [11]. Therefore, the first
index is given by the ratio between the number of quadrotors
within a cluster, as defined above, namely nC , and the total
number of agents n, that is

µa :=
nC
n
, (18)

with full aggregation corresponding to µ∗
a = 1. The second

index is the packing density ratio between the sum of the
sphere volumes of diameter d̄ for each agent, and the volume
of the smallest sphere encapsulating the previous ones, i.e.,

µp :=
nd̄3[

2

(
max
i∈N

∥∥∥[p[i]x p[i]y p[i]z ]⊤ − b
∥∥∥
2

)
+ d̄

]3 , (19)

where b is the barycentre of the network. Note that the sphere
packing problem has been widely studied in the literature, see
e.g., [19], and optimal density values for systems up to 200
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equal spheres are listed in [20]. Then, the percentage error
between the density ratio µp and its optimal value given by
µ∗

p is computed as

µδ :=

∣∣∣∣∣µp − µ∗
p

µ∗
p

∣∣∣∣∣ 100%. (20)

Also the computation time to solve the SMPC, i.e., µtc , and
the objective cost value, i.e., µJ , are adopted. The average
values of the performance metrics, denoted as µ̃a,p,δ,tc,J , are
computed over 25 simulations of 100 s, and with T = 0.01 s.

B. Results on the 20-UAVs scenario

First, an illustrative example with n = 20 UAVs is
shown. Fig. 3 illustrates the time evolution of the average
performance metrics µ̃a in (18) and µ̃p in (19) (blue lines),
respectively. Moreover, the evolutions of their maximum and
minimum values (red lines), the maximum aggregation ratio
µ∗

a = 1, the optimal packing density ratio µ∗
p,20 = 0.477

(green lines), and the median simulation (black line), indi-
cated by the apex (13), are illustrated. Relying on the median
simulation, Fig. 4 shows the trajectories of the quadrotors,
where the initial and final positions are represented by black
circles and blue stars, respectively. It is worth highlighting
that the swarm aggregation occurs in the vicinity of the
origin, while, as expected, the collision among the quadrotors
is avoided.

(a) aggregation

(b) packing ratio

Fig. 3. Time evolution of the performance metrics when the distributed
SMPC is used: µa (a), and µp (b).

(a) planar view (b) spatial view

Fig. 4. Swarm trajectories (n = 20). Planar view (a), spatial view (b).

Finally, note that the proposed distributed SMPC has been
tested on a laptop with 12th Gen Intel(R) Core(TM) i7-

12700H processor, achieving an average computational time
of 3.8× 10−4 s to solve (16).

Comparison and discussion: In order to further assess
the proposed distributed SMPC (briefly, dSMPC), the results
are hereafter compared with those achieved by applying
a centralized SMPC (briefly, cSMPC), and a distributed
version of the CLF approach (briefly, dCLF) as baseline.
The outcome of the simulations is reported in Table II.

TABLE II
AVERAGE PERFORMANCE METRICS.

Strategy µa
1 µ̃p µ̃δ µ̃tc (s) µ̃J (m2) 2

dSMPC 1 0.4197 0.12 3.8× 10−4 169.455
cSMPC 1 0.443 0.0712 1.0109 166.352
dCLF 1 0.4 0.1614 1.98× 10−4 174.775

1 The metric µ̃a is recorded at t = 100 s.
2 As for the dCLF strategy, µ̃J is computed over the last N time instants.

(a) aggregation

(b) packing ratio

Fig. 5. Time evolution of the performance metrics when the centralized
SMPC is used (partially transparent lines represent the metrics in the case
of distributed SMPC): µa (a), and µp (b).

(a) aggregation

(b) packing ratio

Fig. 6. Time evolution of the performance metrics when the distributed
CLF baseline is used (partially transparent lines represent the metrics in the
case of distributed SMPC): µa (a), and µp (b).

Figs 5 and 6 show the time evolution of the average
performance metrics µ̃a and µ̃p for the cSMPC and the
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dCLF strategies, respectively, where the transparent lines
are the corresponding signals in the case of dSMPC. The
results highlight that the three strategies are finally (at t =
100 s) capable of fully aggregating the system while fulfilling
the collision avoidance objective. As expected, the cSMPC
performs better in terms of packing with respect to dSMPC
and dCLF. The dSMPC performance is however better than
the one achieved with the dCLF approach. These results
are also coherent with the values of the objective cost µ̃J .
Nevertheless, a higher average computational time is evident
(about 4 orders of magnitude) for the cSMPC approach,
while the dSMPC takes only almost twice as long as the
time taken by the dCLF, which is the fastest method since
no predictions occur.

C. Results on larger-scale UAVs scenarios
In order to assess the scalability of the proposal in more

complex scenarios, different population sizes of the UAVs
swarm, ranging from n = 10 to 150 UAVs, are now
considered. Specifically, 25 simulations were performed for
each value n, and the time taken for solving the distributed
SMPC problem was recorded. Fig. 7 shows a box plot of
these times, and it is worth highlighting that, despite the
increasing number of UAVs, the solution to (16) is still
feasible with an average computational time of 8.3633×10−4

s. Clearly, as expected, the computational time, depending
on the clustering mechanism, slightly rises with the higher
number of UAVs (see Remark 4.2), but, even with the most
demanding setting (n = 150), the average value for the
proposal is below T = 0.01 s (i.e., 1.2× 10−3 s).

Fig. 7. Box plot of the computational times to solve (16). Each box
represents values obtained from 25 simulations with different sizes of the
swarm population.

VI. CONCLUSIONS

This letter has proposed a distributed SMPC strategy to
solve a rendezvous problem for a scalable UAVs swarm.
The proposed approach is based on a switched formulation
of the UAV model suitably quantizing the velocity inputs.
Under the assumption that the UAVs location is available, a
clustering method is first defined, and a sequential distributed
MPC, with collision avoidance properties, is then solved.
Future works will be devoted to the application on a real
setup, and the extension to general trajectory optimization
problems and more complex scenarios, e.g., in presence of
disturbances, delays or fixed and moving obstacles. The use
of alternative collision avoidance constraints (for instance
reformulating them in linear terms, see e.g., [21]) is also of
interest.
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