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Abstract— We study a class of stochastic Generalized Lin-
ear Switched System (GLSS), which includes subclasses of
jump-Markov, piecewise-linear and Linear Parameter-Varying
(LPV) systems. We prove that the output of such systems can
be decomposed into deterministic and stochastic components.
Using this decomposition, we show existence of state-space
representation in innovation form, and we provide sufficient
conditions for such representations to be minimal and unique
up to isomorphism.

I. INTRODUCTION

A discrete-time stochastic Generalized Linear Switched
State-Space Representation (GLSS) is a system

S

x(t+ 1) =

nµ∑
i=1

(Aix(t) +Biu(t) +Kiv(t))µi(t)

y(t) = Cx(t) +Du(t) + Fv(t), t ∈ Z
(1)

where Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ki ∈ Rnx×nn , i =
1, . . . , nµ, C ∈ Rny×nx and D ∈ Rny×nu , F ∈ Rny×nn
are constant matrices. The stochastic processes x,u,y,v and
µ = (µ1, . . . ,µnµ)T are the state, input, output, noise and
switching processes respectively, taking values respectively
in Rnx ,Rnu ,Rny ,Rnn ,Rnµ and are defined on Z.

Intuitively, (1) is a generalization of linear switched sys-
tems to the case of infinitely many discrete modes. If µ(t)
takes values in the set of unit vectors, i.e., µi(t) ∈ {0, 1},
i = 1, . . . , nµ,

∑nµ
i=1 µi(t) = 1, then (1) is a switched

system [15]. If, in addition, the process θ(t), defined by
θ(t) = i ⇐⇒ µi(t) = 1, is a Markov chain, then (1) is a
jump-Markov system [3]. If µ takes values from a possibly
infinite set and µ1 = 1, then (1) could be viewed as a sub-
class of linear parameter varying (LPV) systems [17] with
an affine dependence on scheduling, and (µ2, . . . ,µnµ)T

corresponds to the scheduling signal. However, in contrast
to LPV systems, in general we are agnostic about the role
of µ in control, hence the use of the term GLSS.

Context and motivation: Consider the following non-
stochastic counterpart of (1)

x(t+ 1) =

nµ∑
i=1

(Aix(t) +Biu(t) +Kiv(t))µi(t)

y(t) = Cx(t) +Du(t) + Fv(t), t ∈ Z
(2)

where all the signals are deterministic. To emphasize the
difference between stochastic and deterministic signals, we
use bold for the former. Intuitively, (2) is the true system
we would like to identify, and (1) is obtained from (2) by
considering noise, input and switching signals which are

sampled from the processes v,u,µ respectively. For the
tuple of matrices S = ({Ai, Bi,Ki}

nµ
i=0, C,D, F ) of (1)

define the behavior BS of S as the set of all tuples of
trajectories (u, µ, y) such that there exists trajectories x and
v for which (2) holds. Clearly, all samples paths of (u,µ,v)
belong to BS .

The goal of system identification is to find matrices Ŝ =
({Âi, B̂i, K̂i}

nµ
i=0, Ĉ, D̂, F̂ ) from a sample path (u, µ, y) of

(u,µ,y), such that the behavior BŜ corresponding to the
tuple of matrices Ŝ is an approximation of BS , i.e., the
outputs of the system determined by Ŝ should approximate
the outputs of (2), for any choice of u, µ, v, and not only
for samples from (u,µ,v). That is, only the data used for
system identification is stochastic, but not the true system
itself. This assumption is realistic (measurement error, etc.).

Assuming that the signals used for identification are
stochastic allows us to use statistical reasoning about iden-
tification algorithms, by viewing Ŝ as a statistics for the
matrices of (1). In turn, the latter parameterize the joint
distribution of (u,µ,y). Good statistical properties of Ŝ,
e.g., consistency, guarantee only that the output of the
stochastic system determined by Ŝ is close to that of (1),
for the specific stochastic input u and switching µ. However,
this does not imply that the behaviors BŜ and BS of Ŝ and S
are close. In fact, the outputs of two GLSS may be the same
for the input u and switching µ used during identification,
but be different for others [14].

In the LTI case, this gap was resolved by assuming that the
data generator (1) and the stochastic system corresponding
to Ŝ are minimal and in innovation form. Since two minimal
systems in innovation form with the same outputs and inputs
are isomorphic [8], if the stochastic system corresponding to
Ŝ is close to the data generator, then, intuitively, the matrices
Ŝ and S are close after a suitable basis transformation, and
hence their behaviors are close. Moreover, innovation form
is useful for developing and analyzing system identification
algorithms, and establishing a correspondence between state-
space representations and optimal predictors.

A key step in the proof of existence and uniqueness (up
to isomorphism) of minimal LTI systems in innovation form
is the decomposition y(t) = yd(t) + ys(t) of the output of
the LTI system, such that yd is the output of a noiseless
LTI system driven by the input, and ys is the output of an
autonomous LTI system which is driven only by the noise.
The results on minimal LTI systems in innovation form then
follow from realization theory [8] for the autonomous LTI
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system generating ys.
Contribution: In this paper, we study GLSSs with white

noise inputs, uncorrelated with the switching and with the
noise. We show that the output y(t) of such a GLSS admits
the decomposition y(t) = yd(t) + ys(t), where yd is the
output of a GLSS with no noise v, and ys is the output
of a GLSS with no input u. Furthermore, by using results
on realization theory of GLSSs with no inputs [11], we use
this decomposition to show existence of an innovation form
for GLSSs with inputs. Moreover, we present sufficient con-
ditions for minimality and uniqueness (up to isomorphism)
of GLSSs in innovation form. Intuitively, an isomorphism
between two GLSSs is a linear change of basis, independent
of the discrete modes, which transforms the matrices of one
GLSS to the corresponding matrices of the other GLSS. This
means that minimal GLSSs in innovation form have the same
useful properties as their LTI counterparts. In particular, if
two minimal GLSSs in innovation form generate (approxi-
mately) the same output for the data used for identification,
then they generate (approximately) the same output for any
input and switching signal.

Related work: System identification in general, and sub-
space methods in particular, of switched [7], jump-Markov
[1] and LPV systems [5], [13], [16], [17], [19]–[21] is a well-
established topic. Stochastic realization theory of GLSSs
with no inputs, i.e., jump-Markov systems with no inputs,
bilinear systems and autonomous stochastic LPV systems
were addressed in [11]. With respect to [11] the main
difference is the presence of the control input u.

Existence of a decomposition and existence of innovation
form appeared in [9], but only for the case of LPV systems
with zero mean i.i.d. scheduling. With respect to [9], the main
novelty is that we allow more general switching processes,
including finite Markov chains, and that we address minimal-
ity and uniqueness of innovation representations. Moreover,
in [9] the proofs were not presented.

The existence of innovation representation was studied for
LPV systems in [4], [5]. In contrast to this paper, in [4],
[5] the noise gain of the innovation representation has a
dynamical dependence on the scheduling, and there is no
claim on minimality and uniqueness of such representations.
In particular, it is unclear when the innovation representation
from [4], [5] generates the same output as the original
model for all scheduling signals. However, [4], [5] has the
advantage that it is valid for any scheduling signal.

II. PRELIMINARIES

Below we present the notation used in the paper, and we
recall a number of concepts from [11] in order to define the
subclass of GLSS for which our results hold.

Probability theory: We use the terminology of probability
theory [2]. The random variables and stochastic processes
are understood w.r.t. to a fixed probability space (Ω,F , P ),
where F is a σ-algebra over the sample space Ω, and P
is the probability measure. The expected value of a random
variable r is denoted by E[r] and conditional expectation

w.r.t. σ-algebra F is denoted by E [r | F ]. The stochastic
processes are defined over the discrete time-axis Z.

Finite sequences: In what follows Σ denotes the finite
set (alphabet) Σ = {1, . . . , nµ}. A non empty word over
Σ is a finite sequence of letters (elements) of Σ, i.e., w =
σ1σ2 · · ·σk, for some k ∈ N, k > 0, σ1, σ2, . . . , σk ∈ Σ;
|w| := k is the length of w. The set of all nonempty words
is denoted by Σ+. We denote the empty word by ε and by
convention |ε| = 0. Let Σ∗ = {ε}∪Σ+. The concatenation of
two nonempty words v = a1a2 · · · am and w = b1b2 · · · bn
is defined as vw = a1 · · · amb1 · · · bn for some m,n > 0.
By convention vε = εv = v for all v ∈ Σ∗.

Notation for matrices: We denote by In the n×n identity
matrix. Consider n × n square matrices {Aσ}σ∈Σ. For any
w = σ1σ2 · · ·σk ∈ Σ+, k > 0 and σ1, . . . , σk ∈ Σ, we
define Aw = AσkAσk−1

· · ·Aσ1 . For the empty word ε, set
Aε = In.

Notions from [11]: admissible switching, Zero Mean
Wide Sense Stationary (ZMWSSI), Square Integrable
(SII) processes: We first state our assumptions for the
switching process. For every word w ∈ Σ+ where w =
σ1σ2 · · ·σk, k ≥ 1, σ1, . . . , σk ∈ Σ, we define the process
µw as follows:

µw(t) = µσ1
(t− k + 1)µσ2

(t− k + 2) · · ·µσk(t), (3)

where µi(t) is the ith entry of µ(t) for every i ∈ Σ. For the
empty word w = ε, we set µε(t) = 1.

Definition 1 (Admissible process, [11]): The switching
process µ is called admissible, if the following holds:

1. There exists a set E ⊆ Σ× Σ such that:
– ∀σ ∈ Σ,∃σ′ ∈ Σ : (σ, σ′) ∈ E .
– Let L be the set of all words w = σ1 · · ·σk ∈

Σ+, σ1, . . . , σk ∈ Σ, k > 0 such that (σi, σi+1) ∈ E ,
for all i = 1, . . . , k − 1. Then for all w ∈ Σ+, w /∈
L,µw = 0.

2. Denote by Fµ,−
t the σ-algebra generated by the random

variables {µ(k)}k<t. There exists positive numbers {pσ}σ∈Σ

such that for any w, v ∈ Σ+, σ, σ
′ ∈ Σ, t ∈ Z:

E[µwσ(t)µvσ′ (t)|F
µ,−
t ]=


pσµw(t−1)µv(t−1) σ = σ

′
,

wσ ∈ L
vσ ∈ L

0 otherwise

E[µwσ(t)µσ′ (t) | F
µ,−
t ] =

 pσµw(t− 1) σ = σ
′

and
wσ ∈ L

0 otherwise

E[µσ(t)µσ′ (t) | F
µ,−
t ] = 0 if σ 6= σ

′

3. There exist real numbers {ασ}σ∈Σ such that∑
σ∈Σ ασµσ(t) = 1 for all t ∈ Z.
4. For each w, v ∈ Σ+, the process

[
µw,µv

]T
is square

integrable and wide-sense stationary.
From [11] we recall some examples of admissible processes.

Example 1 (White noise): If µ = [µ1,µ2, . . . ,µnµ ]T is
an i.i.d. process such that µ1 = 1, for all i, j = 2, . . . , nµ,
t ∈ Z, µi(t),µj(t) are independent and µi(t) is zero mean,
then µ is admissible with E = Σ× Σ and pσ = E[µ2

σ(t)].



Example 2 (Discrete valued i.i.d process): Let θ be an
i.i.d process with values in Σ = {1, . . . , nµ}. Let µσ(t) =
χ(θ(t) = σ) for all σ ∈ Σ, t ∈ Z, where χ is the indicator
function. Let E = Σ × Σ, and pσ = P (θ(t) = σ), ασ = 1
for all σ ∈ Σ. Then µ is admissible.

Example 3 (Markov chain): Let θ be a stationary finite
state Markov process with values in Θ. Assume P (θ(t) =
q2 | θ(t − 1) = q1) = p(q2,q1) > 0, q1, q2 ∈ Θ. Let us take
Σ = Θ × Θ, µ(q2,q1)(t) = χ(θ(t + 1) = q2,θ(t) = q1) for
all q1, q2 ∈ Θ, t ∈ Z, and let E = {(σ1, σ2) ∈ Σ× Σ | σ1 =
(q2, q1), σ2 = (q3, q2), q1, q2, q3 ∈ Θ}. Define ασ = 1 for
all σ ∈ Σ. Let us identify Σ with the set {1, . . . , nµ}, where
nµ is the square of cardinality of Θ. Then µ is admissible.

Assumption 1: The switching process µ is admissible.
This assumption imposes restrictions on the data used for
system identification, but not necessarily for the model class
which will be identified. It can be thought of as a persistence
of excitation condition. In particular, binary and white noises,
which are the simplest persistently exciting signals, sat-
isfy our assumption. Moreover, admissible switching signals
cover the fairly general case of Markov chains.

Remark 1: For LPV systems, our assumptions imply that
the scheduling signal used for identification is stochastic. In
addition to this being a persistence of excitation condition,
this assumption is also justified by the presence of measure-
ment errors, or when the scheduling is externally generated,
or it is a function of the stochastic states/inputs, [13].

Next, we recall the concept of ZMWSSI process w.r.t µ
from [11]. To this end, let {pσ}σ∈Σ be the constants from
Definition 1. For any w = σ1 · · ·σk ∈ Σ+, σ1, . . . , σk ∈ Σ,
for a process r, define the product pw and the process zrw

pw = pσ1pσ2 · · · pσk ,

zrw(t) = r(t− |w|)µw(t− 1)
1
√
pw
,

(4)

where µw is as in (3).The process zrw in (4) is interpreted
as the product of the past of r and µ.

Definition 2 (ZMWSSI, [11]): A process r is Zero Mean
Wide Sense Stationary w.r.t. µ (ZMWSSI) if:

(1) For t ∈ Z, the σ-algebras generated by the variables
{r(k)}k≤t, {µ(k)}k<t and {µ(k)}k≥t, denoted by Fr

t ,
Fµ,−
t and Fµ,+

t respectively, are such that Fr
t and Fµ,+

t

are conditionally independent w.r.t. Fµ,−
t .

(2) The processes {r, {zrw}w∈Σ+} are zero mean, square
integrable and are jointly wide sense stationary.

Intuitively, ZMWSSI is an extension of wide-sense station-
arity, where Σ+ is viewed as time axis: ZMWSSI implies the
covariances E

[
zrw(t)(zrv(t))

T
]

do not depend on t, and they
depend on the difference between v and w. Next, we recall
the definition of a square integrable process w.r.t. µ.

Definition 3 (SII process, [11]): A process r is Square
Integrable w.r.t. µ (SII), if for all w ∈ Σ∗, t ∈ Z, the random
variable r(t+ |w|)µw(t+ |w| − 1) is square integrable.
As it was mentioned in [11, Section III, Remark 2], if µ is
essentially bounded, then any ZMWSSI process is SII.

Assumptions, inputs and outputs and on GLSSs: First,
we define the notion of white noise processes w.r.t. µ, which

will be used for stating our assumptions on GLSSs.
Definition 4 (White noise): A ZMWSSI process r is a

white noise w.r.t. µ, if for all w, v ∈ Σ∗, σ ∈ Σ, σv ∈ L,

E[zrw(t)(zrσv(t))
T ]=

{
0 if w 6= σv,w 6= ε
E[zrσ(t)(zrσ(t))T ] if w = σv

and E[r(t)(zrσv(t))
T ] = 0, and E[zrσ(t)(zrσ(t))T ] is nonsin-

gular for all σ ∈ Σ
Intuitively, if r is a white noise process w.r.t. µ, then
{zrw(t)}w∈Σ+ is a sequence of uncorrelated random vari-
ables. Due to 3. of Definition 1, the product r(t− k)r(t) is
a linear combination of {zrw(t)}w∈Σ+ , hence a white noise
process w.r.t. µ is also a white noise process in the classical
sense. Conversely, if r is a white noise and it is independent
of {µ(s)}s∈Z, then it is a white noise process w.r.t. µ.

Assumption 2 (Inputs and outputs): (1) u is a white noise
w.r.t. µ, (2) the process

[
yT , uT

]T
is a ZMWSSI.

The assumption that u is white noise was made for the
sake of simplicity, we conjecture that the results of the paper
can be extended to more general inputs, e.g., inputs generated
by autoregressive models driven by white noise. Next, we
define the class of systems considered in this paper.

Definition 5 (Stationary GLSS): A stationary GLSS (ab-
breviated sGLSS) of (y,u,µ) is a system (1), such that

1. w =
[
vT , uT

]T
is a white noise process w.r.t. µ, and

E[v(t)uT (t)µ2
σ(t)]=0, ∀σ ∈ Σ.

2. The process
[
xT, wT

]T
is ZMWSSI, and for all σ ∈ Σ,

w ∈ Σ+, E[zxσ(t)(zwσ (t))T ]=0, E[x(t)(zww (t))T ]=0 hold.
3. The eigenvalues of

∑
σ∈Σ pσAσ ⊗ Aσ are inside the

open unit circle, where ⊗ denotes the Kronecker product.
4. For all σ1, σ2 ∈ Σ, if (σ1, σ2) /∈ E , then Aσ2

Aσ1
= 0

and Aσ2

[
Bσ1 , Kσ1

]
E[zwσ1

(t)(zwσ1
(t))T ] = 0.

If Bi = 0, i ∈ Σ, and D = 0 then we call (1) an
autonomous stationary GLSS (asGLSS) of (y,µ).

Remark 2: In stochastic realization theory of LTI systems
[12], it is assumed that y does not Granger cause u. Note
that part (1) of Definition 2, when applied to y, is similar to
Granger causality, but it captures absence of feedback from
y to µ, hence it is different from Granger-causality in [12].

Remark 3: Note that u and v may have different vari-
ances, as long as they satisfy condition 1. of Definition 5.

Intuitively, sGLSSs are introduced in order to ensure that
all the relevant stochastic processes are stationary in a suit-
able sense. The latter is a widespread assumption in system
identification. In the terminology of [11], a sGLSS (resp.
asGLSS) corresponds to a stationary Generalized Bilinear
System (GBS) with noise

[
vT , uT

]T
(resp. v).

From [11] it follows that the processes x and y are
ZMWSSI, and hence Assumption 2 is satisfied for all
(u,µ,y) generated by sGLSS. Indeed, by [11, Lemma 2]

x(t)=
∑

σ∈Σ,w∈Σ∗
σw∈L

√
pσwAw

(
Kσz

v
σw(t) +Bσz

u
σw(t)

)
, (5)

where the infinite sum converges in the mean square sense.
Hence, the state x is uniquely determined by the system
matrices and the input u and noise v, and it is the limit of
any state trajectory started from some initial state.



Notation 1: We identify the sGLSS S of the form (1) with
the tuple S = ({Aσ,Kσ, Bσ}

nµ
σ=1, C,D, F,v), and if S is a

asGLSS, i.e. Bσ = 0, σ ∈ Σ, D = 0, then we will identify
it with the tuple S = ({Aσ,Kσ}

nµ
σ=1, C, F,v).

III. MAIN RESULT

We start by recalling from [11] the following terminology.
Notation 2 (Orthogonal projection El): Recall from [2]

that the set of real valued square integrable random variables,
denoted by H1, forms a Hilbert-space with the scalar product
defined as 〈z1, z2〉 = E[z1z2]. Let z be a square integrable
random variable taking its values in Rk. Let M be a closed
subspace of H1. The orthogonal projection of z onto M ,
denoted by El[z | M ], is defined as the random variable
z∗ =

[
z∗1, . . . , z

∗
k

]T
such that z∗i ∈ M is the orthogonal

projection of the ith coordinate zi of z, viewed as an element
of H1 onto M . If S is a subset of square integrable random
variables in Rp, and M is generated by the coordinates of the
elements of S, then instead of El[z |M ] we use El[z | S].
Intuitively, El[z | S] is the best (minimal variance) linear
prediction of z based on the elements of S.

Using the notation above, let us define the deterministic
component yd of y as follows

yd(t) = El[y(t) | {zuw(t)}w∈Σ+ ∪ {u(t)}]. (6)

Also, define the stochastic component of y as

ys(t) = y(t)− yd(t). (7)

Intuitively, yd(t) represents the best prediction of y(t) which
is linear in the present and past values of u and non-
linear in the past values of µ. In fact, yd is the output
of the asGLSS obtained from (1) by considering v = 0
and viewing u as noise. That is, yd(t) is the output of a
system with no noise, hence yd(t) is a deterministic function
of {u(s),µ(s)}s<t ∪ {u(t)}. This motivates us to call yd

the deterministic component, similarly to LTI literature [6,
Definition 9.3]. In contrast, ys(t) is the output of the asGLSS
obtained from (1) by taking u = 0 and viewing v as noise,
and thus ys does not depend on u.

Theorem 1: For a sGLSS of the form (1), Sd =
({Aσ, Bσ}

nµ
σ=1, C,D,u) is an asGLSS of (yd,µ) and Ss =

({Aσ,Kσ}
nµ
σ=1, C, F,v) is an asGLSS of (ys,µ).

The proof of Theorem 1 is presented in the Appendix A.
The converse of Theorem 1 also holds. To this end, recall

from [11] the definition of the innovation process of ys:

es(t) = ys(t)− El[ys(t) | {zy
s

w (t)}w∈Σ+ ] (8)

Intuitively, es(t) is the difference between ys(t) and the best
linear prediction of ys(t) based on its own past multiplied
with past values of the switching process.

Theorem 2: Assume that there exists a sGLSS of (y,u,µ)
and that the following holds:

1. Ŝd = ({Âi, B̂i}
nµ
i=1, Ĉ, D̂,u) is an asGLSS of (yd,µ).

2. Ŝs = ({Âi, K̂i}
nµ
i=1, Ĉ, Iny ,v) is an asGLSS of (ys,µ)

in innovation form, i.e. v = es.
Then Ŝ = ({Âi, K̂i, B̂i}

nµ
i=1, Ĉ, D̂, I, e

s) is a sGLSS of
(y,u,µ), and es(t) = y(t)− ŷ(t), where

ŷ(t) = El[y(t) | {zyw(t), zuw(t)}w∈Σ+ ∪ {u(t)}]. (9)

The proof of Theorem 2 is presented in Section B.
Remark 4: The condition that the matrices {Ai}

nµ
i=1 and

C of Ŝd and of Ŝs are the same can be relaxed: if S̄d =
({Âdi , B̂di }

nµ
i=1, Ĉ

d, D̂,u) and S̄s = ({Âsi , B̂si }
nµ
i=1, Ĉ

s, I, es)
are asGLSS of (ys,µ) and (ys,µ) respectively, then with

Âi=

[
Âdi 0

0 Âsi

]
, B̂i=

[
B̂di
0

]
, K̂i=

[
0

K̂s
i

]
, Ĉ =

[
(Cd)T

(Cs)T

]T
,

Ŝd and Ŝs from Theorem 2 are asGLSSs of (yd,µ) and
(ys,µ) respectively and Theorem 2 applies.
Thus, Theorem 1 – 2 means that finding sGLSSs of (y,u,µ)
is equivalent to finding an asGLSS representations of the
deterministic and stochastic components respectively.

Theorem 2 suggests that es(t) can be viewed as the
innovation process of y. Indeed, ŷ(t) from (9) is the best
linear prediction of y(t) based on past values of y and
past and current values of u multiplied by past values of
the switching process. Then es(t) is the prediction error
y(t)− ŷ(t). This motivates the following definition.

Definition 6 (Innovation form): The sGLSS (1) is in in-
novation form, if F is the identity matrix and v = es.
Similarly to the LTI case [8], an sGLSS in innovation form
can be viewed as a recursive filter driven by y, u, µ, whose
output is the optimal prediction ŷ(t) from (9). Indeed, from
es(t) = y(t)−Cx(t)−Du(t) it follows that x(t + 1) is a
function of x(t),u(t),y(t),µ(t), and ŷ(t) = Cx(t)+Du(t)

In what follows we make the assumption that ys is SII,
which is always satisfied when µ is bounded1.

Corollary 1 (Existence): Assume that ys is SII. Then any
sGLSS of (y,u,µ) can be transformed to a sGLSS of
(y,u,µ) in innovation form.

Proof: From Theorem 1 it follows that Ss is an asGLSS
of (ys,µ) and Sd is an asGLSS of (yd,µ). From [11,
Theorem 2] it follows that there exists a (minimal) asGLSS
S̄s of (ys,µ) in innovation form and by [11, Theorem 3]
it can be computed from Ss using [11, Algorithm 1]. Then
using Remark 4 and Theorem 2, it follows that Ŝ defined in
Theorem 2 is a sGLSS of (y,u,µ) in innovation form.
Next, we formulate conditions for minimality of sGLSSs.
To this end, we define the dimension the sGLSS S from (1),
denoted by dim(S), as the dimension nx of its state-space.

Corollary 2 (Minimality): Assume that S is a sGLSS of
(y,u,µ), ys is SII, and assume that Ss from Theorem 1
is observable and reachable in the terminology of [11], if
viewed as a stationary GBS. Then the dimension of S is
minimal among all the sGLSSs of (y,u,µ).

Proof: Let Ŝ be a sGLSS of (y,u,µ) such that
dim(Ŝ) < dim(S). Then by Theorem 1, Ŝs is an asGLSS
of (y,µ) of the same dimension as Ŝ. However, from [11,
Theorem 2], Ss is a minimal dimensional asGLSS of (y,µ)
and hence dim(Ss) ≤ dim(Ŝs). However, dim(Ss) =
dim(S) by construction and hence dim(S) ≤ dim(Ŝ), which
is a contradiction.
Note that observability and reachability in the sense of [11]
can be characterized by rank conditions of suitable matrices,

1This follows from [11, Remark 2] and from the fact that ys is the output
of a asGLSS, and thus by [11] it is ZMWSSI.



which can be constructed from the matrices of Ss. We also
get the following sufficient condition for isomorphism of
minimal sGLSSs in innovation form.

Corollary 3 (Isomorphism): Assume that S is of the form
(1) and Ŝ = ({Âσ, B̂σ, K̂σ}σ∈Σ, Ĉ, D̂, I, e

s) and they are
both sGLSS of (y,u,µ) in innovation form and Ss and Ŝs
are both reachable and observable as stationary GBS in the
terminology of [11]. Assume that ys is SII, and that the
covariance matrix E[es(t)(es(t))Tµ2

σ(t)] is nonsingular and
Im[BTσ , B̂

T
σ ]T ⊆ Im[KT

σ , K̂
T
σ ]T , σ ∈ Σ and D̂ = D. Then

there exists a non-singular matrix T such that for all σ ∈ Σ,

TAσT
−1=Âσ, T [Kσ, Bσ] = [K̂σ, B̂σ], CT−1=Ĉ (10)

Proof: Since Ss and Ŝs are both minimal asGLSS of
(y,µ) in innovation form, and by [11, Theorem 2], they are
isomorphic, i.e., there exists a non-singular matrix T such
that TAσT−1 = Âσ , TKσ = K̂σ , CT−1 = Ĉ holds. Since
Im[BTσ , B̂

T
σ ]T ⊆ Im[KT

σ , K̂
T
σ ]T , for some matrix Zσ , Bσ =

KσZσ , B̂σ = K̂σZσ , from which (10) follows.

IV. CONCLUSION

We have shown that outputs of stochastic generalized
linear switched systems can be decomposed into two parts,
deterministic and stochastic one, and we used it to derive
existence of representation in innovation form and to formu-
late sufficient conditions for minimality and uniqueness of
such representations up to isomorphism. Future work will
be directed towards extending these results for a larger class
of inputs and switching signals.

APPENDIX

PROOFS OF THEOREMS 1 AND 2

In what follows, for a ZMWSSI process r, we denote by
Hr
t,+ the closed subspace of H1 (see Notation 2) generated

by the entries of {zrw(t)}w∈Σ+∪{r(t)} and by Hr
t the closed

subspace of H1 generated by the entries of {zrw(t)}w∈Σ+ .

A. Proof of Theorem 1

Lemma 1: The entries of v(t), {zvw(t)}w∈Σ+ are orthog-
onal to Hu

t,+.
Proof: By definition, w(t)=[vT (t),uT (t)]T is a white

noise process w.r.t. µ, and v(t) is the upper nn block of
w(t). Since w is a white noise w.r.t. µ, E[w(t)(zww (t))T ] =
0, and 1√

pσ
E[v(t)(zuw(t))T ] is the upper-left block of that

latter matrix, and hence it is also zero. From the definition
of sGLSS, it follows that E[v(t)(u(t))Tµ2

i (t)] = 0, i∈Σ.
Since E[v(t)(u(t))Tµi(t)µj(t)] = 0 for i 6= j due to
w being ZMWSSI ( [11, Lemma 7]), and

∑np
i=1 αiµi =

1 for some {αi}
nµ
i=1, it follows E[v(t)(u(t))T ] =∑nµ

i,j=1 αiαjE[v(t)(u(t))Tµi(t)µj(t)] = 0. That is, v(t)
is orthogonal to Hu

t,+. Since w(t) is a ZMWSSI, from
[11, Lemma 7] it follows that E[zww (t)(zwv (t))T ]=0 for all
v ∈ Σ+, v 6= w or v /∈ L or w /∈ L, and if v = w ∈ L
and σ is the first letter of w, then E[zww (t)(zww (t))T ] =
E[zwσ (t)(zwσ (t))T ].
Since E[zvw(t)(zuv (t))T ] is the upper right block of
E[zww (t)(zwv (t))T ], it follows that E[zvw(t)(zuv (t))T ] = 0 if
v 6=w, or either v /∈L or w /∈ L, and E[zvw(t)(zuw(t))T ]=

E[zvσ(t)(zuσ(t))T ]= 1
pσ
E[u(t−1)v(t−1)µ2

σ(t − 1)] for any
w ∈ L, where σ is the first letter of w. From Definition
5, it follows that the latter expectation is zero. That is,
E[zvw(t)(zuv (t))T ]=0 for all v ∈ Σ+.
Since w(t) is a white noise w.r.t. µ, by [11, Lemma 7]
E[zww (t)(w(t))T ] = E[zwws(t)(z

w
s (t))T ] = 0 for any s ∈

Σ+, and since E[zvw(t)(u(t))T ] is the upper right block
of E[zww (t)(w(t))T ], E[zvw(t)(u(t))T ] = 0. Since zvw(t) is
orthogonal to the generators of Hu

t,+, the lemma follows.
Lemma 2: Define xd(t) = El[x(t) | Hu

t,+]. The entries of
xd(t) belong to Hu

t and

xd(t)=
∑

w∈Σ∗,σ∈Σ,σw∈L

√
pσwAwBσz

u
σw(t), (11)

where the convergence is in the mean square sense.
%vspace-3pt Proof: It is clear from the definition that
the components of xd(t) belong to Hu

t,+. From Lemma
1 it follows that, El[zvσw(t) | Hu

t,+] = 0, and since the
components of zuσw(t) belong to Hu

t,+, it follows that
El[z

u
σw(t) | Hu

t,+] = zuσw(t). Since (5) holds and the
map z 7→ El[z | M ] (where z ∈ H1) is a con-
tinuous linear operator for any closed subspace M , it
follows that xd(t) will be the infinite sum of the el-
ements

√
pσwAw

(
KσEl[z

v
σw(t)|Hu

t,+]+BσEl[z
u
σw(t)|Hu

t,+]
)
,

i.e., (11) holds. Since the components of zuσw(t) belong to
Hu
t , the components of the right-hand side of (11) belong

to Hu
t and hence the components of xd(t) belong to Hu

t .
The convergence of the right-hand side of (11) in the mean
square sense follows from that of (5).

Lemma 3: Define xs(t) = x(t) − xd(t). The entries of
xs(t) belong to Hv

t , they are orthogonal to Hu
t,+ and

xs(t) =
∑

w∈Σ∗,σ∈Σ,σw∈L

√
pσwAwKσz

v
σw(t), (12)

where the sum converges in the mean-square sense.
Proof: From (11), xs(t) = x(t) − xd(t) and (5), it

follows that (12) holds. By Lemma 1, {zvw(t)}w∈Σ+ are
orthogonal to Hu

t,+, hence all the summands in the right-
hand side of (12) are orthogonal to Hu

t,+.
Proof: (Proof of Theorem 1): The proof is an exten-

sion of [10, proof of Lemma 1]. Since the eigenvalues of∑
σ∈ΣpσAσ⊗Aσare inside the open unit disk and u and v

are white noise processes, from (11)-(12) and [11, Lemma 3]
it follows that xd is the unique state process of Sd and xs is
the unique state process of Ss. Notice that yd(t)=CEl[x(t) |
Hu
t,+] +DEl[u(t) | Hu

t,+] + El[v(t) | Hu
t,+]. By Lemma 1,

v(t) is orthogonal to Hu
t,+, El[v(t) | Hu

t,+]=0 and as the
components u(t) belong to Hu

t,+, El[u(t) |Hu
t,+] = u(t).

Hence, yd(t)=Cxd(t)+Du(t) and ys(t)=Cxs(t)+Fv(t).
That is, Sd is an asGLSS of (yd,µ) and Ss is an asGLSS
of (ys,µ) respectively.

B. Proof of Theorem 2
Assume that S of the form (1) is a sGLSS of (y,u,µ).
Lemma 4: The entries of the random variables

ys(t), es(t), {zysv (t), ze
s

v (t)}v∈Σ+ belong to Hv
t,+.

Proof: Recall from the proof of Theorem 1 that ys(t) =
Cxs(t) + v(t). Then by (12), the components of ys(t)



belong to Hv
t,+. Then by [11, Lemma 11], the components

of zy
s

v (t) belong to Hv
t,+ and hence, Hys

t ⊆ Hv
t,+. Since

es(t) = ys(t) − El[y
s(t) | Hys

t ], this then implies that
the components of es(t) belong to Hv

t,+. Since zvv (t) =∑nµ
i=1 αi

√
piz

v
vi(t + 1), v(t) =

∑nµ
i=1 αi

√
piz

v
i (t + 1), as∑nµ

i=1 αiµi = 1, it follows that Hv
t,+ ⊆ Hv

t+1 and from [11,
Lemma 11] it follows that the components of ze

s

v (t) belong
to Hv

t ⊆ Hv
t,+.

Lemma 5: The entries of {zysv (t), ze
s

v (t)}v∈Σ+ , ys(t) and
es(t) are orthogonal to Hu

t,+.
Proof: The entries ys(t), es(t), {zysv (t), ze

s

v (t)}v∈Σ+

belong to Hv
t,+, and by Lemma 1 the elements of Hv

t,+ are
orthogonal to Hu

t,+.
Lemma 6: r =

[
(es)T , uT

]T
is a white noise process

w.r.t. µ and E[es(t)uT (t)µ2
σ(t)] = 0 for all σ ∈ Σ.

Proof: We first show that r is a ZMWSSI, by showing
that r satisfies the conditions of Definition 2 one by one.

Part 1. By assumption u is a ZMWSSI and white noise
process w.r.t. µ. From the fact that Ŝs is an asGLSS
of (ys,µ) it follows that es is also a ZMWSSI. Thus
es(t),u(t), {zesw (t), zuw(t)}w∈Σ+ are zero mean, square in-
tegrable, and hence so are r(t) and zrw(t). Finally, we show
that r(t), zrw(t), w ∈ Σ+ are jointly wide-sense stationary,
i.e., for all s, t,∈ Z, E[h1(t)(h1(s)T )], where h1(τ),h2(τ)∈
{r(τ)}∪{zrw(τ)}w∈Σ+ , depends on t−s. We show only the
case E

[
r(t)(zrw(s))T

]
=E

[
r(t− s)(zrw(0))T

]
, t > s, the

proof of the general case is similar. By repeated application
of zuv (s) =

∑nµ
i=1 αiz

u
vi(s+ 1) it follows that the entries of

zuv (s) belong to Hu
t,+. By Lemma 5, E

[
ze
s

w (t)(zuv (s))T
]

=
0, and hence E

[
zrw(t)(zrv(s))

T
]

is a block-diagonal ma-
trix, and the diagonal blocks are E

[
ze
s

w (t)(ze
s

v (s))T
]

and
E
[
zuw(t)(zuv (s))T

]
. As u and es are ZMWSSI, the latter

blocks depend on t− s.
Part 2. By Lemma 4, the entries es(t) belong to Hv

t,+(t).
Moreover, by definition of sGLSS, w = [vT ,uT ]T is
ZMWSSI. Hence, the σ-algebras Fw

t and Fµ,+
t are con-

ditionally independent w.r.t. Fµ,−
t . Since es(t) belongs to

Hv
t,+, es(t) is measurable with respect to the σ-algebra

generated by {v(t)} ∪ {zvv (t)}v∈Σ+ and the latter σ-algebra
is a subset of Fw

t ∨F
µ,−
t , where F1∨F2 denotes the smallest

σ-algebra generated by the union of sets F1 and F2. That is,
es(t) is measurable w.r.t. the σ algebra Fw

t ∨F
µ,−
t . Hence,

Fr
t ⊆ Fw

t ∨ F
µ,−
t . Since Fw

t and Fµ,+ are conditionally
independent w.r.t. Fµ,−

t , from [18, Proposition 2.4] it follows
that Fw

t ∨ F
µ,−
t and Fµ,+

t are conditionally independent
w.r.t. Fµ,−

t , and as Fr
t ⊆ Fw

t ∨ F
µ,−
t , it follows that Fr

t

and Fµ,+ are conditionally independent w.r.t. Fµ,−
t .

Next we show that r is a white noise process w.r.t.
µ. To this end, by [11, Lemma 7], it is enough to
show that E[r(t)(zrw(t))T ] = 0, w ∈ Σ+. By Lemma 5
E
[
r(t)(zrw(t))T

]
is block diagonal, with the block on the

diagonal being E
[
es(t)(ze

s

w (t))T
]
, E

[
u(t)(zuw(t))T

]
, and

the latter are zero as es and u are white noise w.r.t µ.
Finally, E[es(t)uT (t)µ2

σ(t)] = 0, σ ∈ Σ follows from
Lemma 5.

Proof: [Proof of Theorem 2] The proof is an extension

of [10, proof of Lemma 2]. From Lemma 6 it follows that
es and u satisfy the condition of E[es(t)(u(t))Tµ2

σ(t)] = 0,
σ ∈ Σ. Since Ŝs and Ŝd are both asGLSS, it follows that the
eigenevalues of

∑nµ
i=1 piÂi⊗Âi are inside the open unit disk.

Hence Ŝ satisfies the conditions of a sGLSS. Let x̂s and x̂d

be the unique state processes of Ŝs and Ŝd respectively. Then
x̂(t) = x̂d(t)+x̂s(t) is the unique state process of Ŝ. Indeed,
x̂(t+1) =

∑nµ
i=1(Âix̂(t)+B̂iu(t)+K̂ie

s(t))µi(t) holds and
x̂(t) is a ZMWSSI, as it is a sum of two ZMWSSI processes.
Finally, from yd(t) = Ĉx̂d(t) + D̂u(t) (as Ŝd is an asGLSS
of (yd,µ)) and ys(t) = Ĉx̂s(t)+es(t) (as Ŝs is an asGLSS
of (ys,µ)), it follows that y(t) = Ĉx̂(t) + D̂u(t) + es(t),
i.e., Ŝ is a sGLSS of (y,u,µ).
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likelihood estimation of LPV-SS models. Automatica, 97(9):392–403,
2018.
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