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Abstract— Partially Observable Markov Decision Processes
(POMDPs) provide an efficient way to model real-world se-
quential decision making processes. Motivated by the problem
of maintenance and inspection of a group of infrastructure
components with independent dynamics, this paper presents
an algorithm to find the optimal policy for a multi-component
budget-constrained POMDP. We first introduce a budgeted-
POMDP model (b-POMDP) which enables us to find the optimal
policy for a POMDP while adhering to budget constraints. Next,
we prove that the value function or maximal collected reward
for a special class of b-POMDPs is a concave function of the
budget for the finite horizon case. Our second contribution
is an algorithm to calculate the optimal policy for a multi-
component budget-constrained POMDP by finding the optimal
budget split among the individual component POMDPs. The
optimal budget split is posed as a welfare maximization problem
and the solution is computed by exploiting the concavity of the
value function. We illustrate the effectiveness of the proposed
algorithm by proposing a maintenance and inspection policy
for a group of real-world infrastructure components with
different deterioration dynamics, inspection and maintenance
costs. We show that the proposed algorithm vastly outperforms
the policies currently used in practice.

I. INTRODUCTION

Sequential decision-making is an integral component of
many real world problems like machine maintenance, struc-
tural inspection and autonomous robotics [1]. Markov Deci-
sion Processes (MDPs) have provided an efficient framework
to model and solve such problems while accounting for the
corresponding uncertainty [2]. POMDPs are a generalized
version of MDPs, allowing for more uncertainty to be ac-
counted for in the form of partial observability of the system
state [3]. However, finding optimal policies for POMDPs is
much more computationally intensive as compared to MDPs
and is PSPACE-complete [4]. Synthesis of optimal policies
for POMDPs is a classical problem and many algorithms
have been proposed for the same [5], [6], [7].

This paper considers optimal planning for a class of struc-
tured budget-constrained POMDPs. This setting is motivated
by infrastructure maintenance planning – a widely studied
problem [8], [9] that involves finding the optimal policy for
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maintenance and inspection, of an infrastructure component
or a group of components within a certain budget [10], [11].
For simplicity of planning, the stochastic dynamics of multi-
component systems are modelled using a POMDP [12]. Also,
the dynamics of individual components are assumed to be
independent of each other [13]. We will thus model such
a setting by multi-component budget-constrained POMDPs
where the transition probabilities of the individual compo-
nent POMDPs are decoupled.

An algorithm for solving cost-constrained POMDPs has
been proposed in [14]. However, this algorithm becomes
computationally infeasible for multi-component POMDPs
with very large state spaces. A POMDP-based solution
for optimal maintenance and inspection of structures using
Dynamic Bayesian Networks is presented in [15]. However,
in addition to computational infeasibility, this algorithm does
not account for budget constraints. Optimal allocation for
MDPs has been studied in [16]. The paper models the
statistical ranking and selection problem as an MDP and
derives an approximately optimal allocation policy using
value function approximation. In our work, we study op-
timal budget allocation for multi-component POMDPs, for
infrastructure management. A method for solving budget-
constrained MDPs has been presented in [17]. The paper
introduces a budgeted-MDP model which includes the budget
as an implicit part of the state. This is because the paper
uses a cost function, similar to Constrained MDPs [18], to
keep a track of the cost incurred by the policy. Hence, this
algorithm cannot be directly extended to POMDPs because
the partial observability of the state would cause a violation
of the budget constraint in some cases.

In this work, we propose a computationally efficient
algorithm for optimal policy synthesis of a multi-component
budget-constrained POMDP. Our contributions here are:

• we introduce a b-POMDP model to facilitate strict
adherence to budget constraints in POMDPs,

• we obtain an approximately optimal policy for multi-
component POMDPs by finding the optimal budget split
among the individual component POMDPs.

The b-POMDP model includes the total cost incurred up
to a time instant k explicitly as a part of the state vector.
We show that the value function for a particular class of
b-POMDPs is a concave function of the budget. Next, we
compute the optimal policy for the individual component
POMDPs by modeling them as b-POMDPs and using an
online solver like POMCP [7]. Doing so gives us the
approximate maximal total reward collected by the policy in
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terms of the budget allocated to the b-POMDP. We use these
rewards to calculate the optimum distribution of the total
budget among the individual component b-POMDPs and find
the approximately optimal policy of the multi-component
POMDP. The budget splitting is posed as a welfare max-
imization problem constrained by the total budget of the
multi-component POMDP. The concave nature of the value
function renders this as a convex optimization problem, thus
guaranteeing a global optimum. We demonstrate the utility
of the proposed algorithm by finding optimal maintenance
and inspection policies for multiple components of a realistic
general administrative building, subject to a budget. Based on
this real data, we show that our algorithm vastly outperforms
the policy currently used in practice.

II. PRELIMINARIES AND BACKGROUND

In this section, we provide background on Partially Ob-
servable Markov Decision Processes for sequential decision-
making with stochastic dynamics. We start by defining the
notation used in the paper.

Given a finite set A, |A| denotes its cardinality and ∆(A)
denotes the set of all probability distributions over the set A.
Notation N0 denotes the set of natural numbers including 0
i.e. N0 = {0, 1, 2, . . .}. The symbols ⌊.⌋ and ⌈.⌉ denote the
floor and ceiling functions respectively.

A. Partially Observable Markov Decision Process
A discrete-time finite-horizon POMDP [19], [20] M is

specified by the 8-tuple (S, A, π, T,Ω, O,R,H), where S
denotes a finite set of states, A denotes a finite set of actions,
π : S → A denotes the policy which specifies the action to
take in a given state s and T : S × A → ∆(S) denotes
the transition probability function, where ∆(S) is the space
of probability distributions over S. Furthermore, Ω denotes
a finite set of observations and O : Ω × S × A → ∆(Ω)
denotes the observation probability function where ∆(Ω) is
analogous to ∆(S). Finally, R : S ×A → [0, Rmax] denotes
the reward function and H ∈ N0 denotes the finite planning
horizon.

For the above POMDP, at each time step, the environment
is in some state s ∈ S and the agent interacts with the
environment by taking an action a ∈ A. Doing so results
in the environment transitioning to a new state s̄ ∈ S in the
next time step with probability T (s, a, s̄). Simultaneously,
the agent receives an observation o ∈ Ω regarding the state
of the environment with probability O(s̄, a, o) which depends
on the new state of the environment and the action taken by
the agent. In a POMDP the agent doesn’t have access to the
true state of the environment. However, the agent can update
it’s belief about the true state of the environment using this
observation. The agent also receives a reward R(s, a).

The problem of optimal policy synthesis for a finite-
horizon POMDP is that of choosing a sequence of actions
which maximizes the expected total reward.

III. PROBLEM FORMULATION

We consider a multi-component POMDP, which is a col-
lection of n component POMDPs. The component POMDPs

are weakly-coupled in the sense that they have independent
transition probabilities and are connected only by the shared
total budget. In this paper, we consider optimal policy synthe-
sis for POMDPs with budget, i.e., each action incurs a cost
and the total cost incurred by the optimal policy is limited
by the budget. We first formally define the multi-component
POMDP with a budget and then define the problem of finding
the optimal policy for such a POMDP.

A. Multi-Component Decoupled POMDP with Shared Bud-
get

For a multi-component POMDP, the state space S ⊆ Nn
0

is given by S = S1×S2×. . .×Sn. The state space Si ∈ N0,
for component i, is given by Si = {0, 1, 2, . . . , smax}, where
smax ∈ N0.The state sk ∈ S, at time step k is given by
sk = {s1k, s2k, . . . , snk} where sik ∈ Si represents the state of
component i at time step k. The action space is given by

A =

n∏
i=1

Ai,

where the action space Ai for component i is given by Ai =
{di, qi,mi}. Action di lets the component move to a new
state according to the transition probabilities. The action qi

provides an observation which is equal to the next state s̄i

of the component and action mi drives the component state
to smax. The transition probability function for the multi-
component POMDP for s, s̄ ∈ S and a ∈ A is given by

T (s, a, s̄) =

n∏
i=1

T i(si, ai, s̄i).

T i denotes the transition probability function for component
i and is defined as

T i(s, a, s̄i) =


1, if s̄i = smax and ai = mi,

pi(si, ai, s̄i), if s̄i ≤ si and ai ∈ {di, qi},
1, if s̄i = 0 = si and ai ∈ Ai,

0, otherwise.
(1)

The probability pi(si, ai, s̄i) is chosen according to a prob-
ability distribution specific to component i. From the above
equation, it can be observed that 0 is an absorbing state.

The observation space is given by Ω = S∪{e}, where e ∈
N0 is an observation that does not provide any information
regarding the true state of the system, i.e., e /∈ Si for all
i ∈ {1, 2, . . . , n}. The observation function for the multi-
component POMDP is given by

O(s̄, a, o) =

n∏
i=0

Oi(s̄i, ai, oi).

Here, Oi is the observation probability function for compo-
nent i and is defined as

Oi(s̄i, ai, oi) =


1, if oi = s̄i and ai ∈ {qi,mi}
1, if oi = e and ai = di

0, otherwise.

For each component i, each action di, qi and mi incurs a
cost cid, c

i
q and cim respectively, against a total budget B.
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B. Problem Statement

For a multi-component POMDP, given by the formulation
in the previous section, we consider the problem of finding an
optimal policy π∗ which maximizes the time before reaching
the absorbing state. Mathematically, π∗ maximizes t such
that st > 0. Furthermore, for a horizon of length H , π∗

should be such that the total cost incurred for the multi-
component POMDP does not exceed the total budget. We
propose an approximately optimal solution for the above
problem through a two-step approach. In the first step, we
will solve a single-component POMDP for any given budget.
In the second step, we will partition the total budget B into
budgets for each individual component.

IV. SOLUTION APPROACH

In this section, we detail our methodology for solving the
problem of optimal policy synthesis of a multi-component
POMDP. First, we introduce the b-POMDP model and dis-
cuss how to solve a single b-POMDP. Next, we discuss why
the value function for such a POMDP is a concave function
of the budget. Finally, we present our proposed method for
finding the optimal policy for an n-component POMDP by
computing the optimal split of the total budget, among the
individual component POMDPs.

A. Budgeted-POMDP Model (b-POMDP)

Our main goal is to find an optimal policy for a POMDP
while adhering to a total budget for actions. The budgeted-
MDP model in [17] tracks the incurred cost using a cost
function similar to Constrained MDPs [18]. This model
can’t be extended directly to a POMDP because the partial
observability of the state would lead to budget violation in
some cases. Hence, we introduce a new b-POMDP model.
In a b-POMDP, the budget constraint is incorporated by
augmenting the total cost incurred upto time instant k, to
each state of the state space. Thus, if we consider a single
component POMDP with a total budget B, the modified state
at time instant k according to the b-POMDP formulation
is given by (sk, ck) where sk is as defined in the previous
section, for i = 1. We assume that unlike sk, ck is completely
observable at all time instants. The transition function for the
cost component of the state is given by:

Tc(c
′|c, a) =


1, if c′ = c+ cm and a = m

1, if c′ = c+ cq and a = q

1, if c′ = c+ cd and a = d

0, otherwise .

The transition function for the overall b-POMDP is:

T ′((s, c), a, (s̄, c′)) = T (s, a, s̄)Tc(c, a, c
′), (2)

where T (s, a, s̄) is defined in Section III-A. The new for-
mulation prevents the policy from violating the budget at
any time instant k. This is done by making ck > min{B −
cm, B− ci} an absorbing state, similar to s = 0. The reward

function for the b-POMDP is given by:

R′((s, c), a) =

{
r1 > 0, if s > 0,

r2 = 0, if s = 0.

To find an optimal policy for a b-POMDP, we use the
method of Monte-Carlo Planning in POMDPs (POMCP [7]).
POMCP is an online planning algorithm for large POMDPs,
which combines a Monte-Carlo update of the agent’s belief
with a Monte-Carlo tree search for the best action from the
current belief state. For a b-POMDP, the maximal collected
reward (value function) obtained using POMCP will be a
function of the budget B associated with it. We will now
prove that this value function is concave in the budget for a
special subclass of our overall problem.

B. Sketch of Proof for Concavity of Value Function

Consider an MDP with state space SMDP =
{0, 1, 2 . . . smax}, where smax ∈ N0 and action space
AMDP = {m, d}. The state of the system decreases by d0 ∈
N0 unless we perform action m. The transition probability
function is defined as:

T (s′|s, a) =


1, if s̄ = smax and a = m

1, if s̄ = s− d0 and a = d

1, if s̄ = 0 = s and a ∈ AMDP

0, otherwise,

From the above transition function, we can clearly see that
state 0 is an absorbing state. The cost for the d action is
cd = 0 and the cost for the m action is cm = 1. Let the
available budget be denoted by b ∈ N0. This means that
we can perform the action m at most b times. The reward
function is the same as that for a b-POMDP.

Let VH be the value function for a given horizon length
with H steps to go. Then we prove that for all values of H ,
the following relations hold:

1) For a given initial state s0, the value function VH(s0, b)
is an increasing function of b.

2) For s0 > d0, VH(s0, b) is constant with respect to the
budget for all b ≥ ⌊H/2⌋,

3) For s0 ≤ d0, VH(s0, b) is constant with respect to the
budget for all b ≥ ⌈H/2⌉,

4) For budget values b′′ = b′ + 1 = b+ 2 with b ≥ 0 the
following relation holds

VH(s0, b
′′)− VH(s0, b

′) ≤ VH(s0, b
′)− VH(s0, b).

The first claim is trivial to prove by comparing the value
functions, corresponding to the same optimal policy and
initial state s0 for any two budget values. We prove the other
three claims using mathematical induction. First, we show
that these properties hold true for a horizon of length 0.
Next, we assume that these properties are true for a horizon
of length H and use this to show that they hold true for a
horizon of length H + 1. We do this by manipulating the
Bellman equation given by

VH+1(s0, b) = r(s0, a) + VH(s̄, b′),
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where s0, s̄ ∈ S , a ∈ A and s̄ and b′ are decided based
on s0 and a. In summary, the above claims imply that for
b′ = αb+ (1− α)b′′ for some α ∈ [0, 1],

VH(s0, b
′) = αVH(s0, b) + (1− α)VH(s0, b

′′).

Hence, the value function is a concave function of the budget.
A detailed version of this proof can be found in this paper’s

extended version1. The proof can be easily extended to any
general cm ∈ R+ by scaling the costs and budget with 1/cm.
However, the proof works under heavy assumptions of full
observability and deterministic transitions. Nonetheless, we
empirically observe that that same property is often true
for general systems, partially observable and stochastic, and
we believe the same proof approach might work for those
systems, but we leave it for future work.

We will now use this concavity property to obtain an ap-
proximately optimal policy for an n-component POMDP by
optimally allocating the budget to each component POMDP.

C. Optimal Policy Synthesis for Multi-Component POMDP

Consider a multi-component POMDP with n components
and budget B as described in Section III-A. The size of the
state space is (|S|)n where |S| is the size of the state space
of each component POMDP. Also, the size of the total action
space is 3n. Directly applying a POMDP solver to such
a large state and action space may not be computationally
feasible. Hence, we propose an algorithm which decouples
the n component POMDPs by allocating a portion of the
total budget to each of them prior to the beginning of the
system run. We then compute the approximate value function
for each component POMDP as a function of the budget and
then using that, obtain the optimal split of the total budget.

Given a total budget B, we assume that the ith component
POMDP is alloted a budget bi from the total budget. Hence,

b1 + b2 + . . .+ bn = B (3)

We now have n independent POMDPs, where each POMDP
has its own total budget. We formulate each of them as
a b-POMDP and solve each b-POMDP using the POMCP
algorithm as discussed in Section IV-A. Let the maxi-
mal collected reward, for component i, obtained using the
POMCP algorithm, for a given initial state s0 and horizon
H , be denoted by V i

H(s0, bi). We can then find the optimal
budget split among the n b-POMDPs by solving a welfare
maximization problem. Welfare maximization is the concept
of maximizing the overall well-being or welfare of a society,
and is achieved by maximizing some measure of social
welfare (e.g. maximal collected reward). We thus maximize
the total maximal collected reward, for all components, with
respect to bi while adhering to the constraint in (3), i.e.,

max
bi

n∑
i=1

V i
H(s0, bi)

s.t.
n∑

i=1

bi = B.

(4)

1 https://arxiv.org/pdf/2303.10302.pdf

Using the results we proved in Section IV-B, we know that
VH(s0, bi) is a concave function of bi in the special case
mentioned in Section IV-B and emperically observe it to
be concave in general. The welfare maximization problem
then becomes a constrained convex optimization problem.
Hence, it can be solved easily and is guaranteed to have a
global optimum. The solution to (4) provides the optimal
budget allocation for each b-POMDP which in-turn gives
us the optimal policy for all n component POMDPs. Let
πi : Si → Ai be a policy for component i with budget bi
obtained using the POMCP algorithm. Then, we define the
overall policy, for the n-component POMDP, π : S → A by

π =

n∏
i=1

πi.

While such a policy is naturally not guaranteed to be gener-
ally optimal on the multi-component POMDP, it provably
satisfies the budgetary constraints and performs well in
practice. To illustrate its performance on real data, we now
move to the implementation and evaluation section.

V. IMPLEMENTATION AND EVALUATION

In this section we illustrate the utility of the pro-
posed approach for multi-component decision making with
budgetary-constraints. In particular, we compare the policy
described above with existing approaches on a scenario of
multi-component building management. Our implementation
utilizes the POMDP.jl [21] Julia package for efficiently
solving the budgeted-POMDPs using POMCP, as well as
CVXPY [22] for solving the convex optimization formula-
tion of the budget allocation problem. The initial budget-split
for solving the budget allocation problem is chosen randomly
while satisfying the constraint of (3).

We model the components that comprise a typical ad-
ministration building with a total size of 10,000 sq. ft. The
building comprises multiple components such as lighting sys-
tems, roofing components, boilers, and carpeting, where each
component’s cost of replacement and inspection are based
on empirically derived industry averages. Each component’s
health is defined by the Condition Index (CI) [23], which
takes values between 0 and 100. The condition deteriorates
stochastically over time, depending on various factors, and
can only be observed through explicit inspections, which
incur a cost. The component fails when the CI reaches below
a failure threshold, which we assume to be 0. Components
can also be replaced, restoring their CI to its full value.

The building is associated with an average maintenance
budget of $2,200,000 for a given period of interest. Us-
ing historic CI data for each component, we synthesize
the transition probabilities of their corresponding Partially
Observable Markov Decision Processes (POMDPs). We con-
sider 20 sustainable components from the building, with
replacement costs ranging from 0.15% to 3% of the total
budget and inspection costs ranging from 0.01% to 0.03%
of the total budget. We scale the total budget to 10,000
units and appropriately scale the replacement and inspection
costs of all components while ensuring that they are rounded
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to the nearest integers. The decision-maker’s objective is
to maximize the time until failure of the components by
effectively allocating the budget among the components and
taking replacement and inspections when needed. As in
Section IV.C, we model this objective as a POMDP by
assigning a reward of 1 when the CI is greater than the
failure threshold and 0 otherwise, and modeling the state
of 0 health and budget exhaustion as absorbing states. For
our experiments, we consider simulations with a horizon of
up to 100 decision steps with a 1 year step size.

A. Maintenance Policy Synthesis

In this section we compare the maintenance and inspection
policies obtained from the proposed POMDP-based model
with a realistic baseline approach. In the baseline approach,
a building manager typically schedules component inspection
at a regular interval and the true health of the component is
only obtained at these regular intervals. In the absence of an
inspection, the CI of a component at a given time step is
estimated to be the most probable CI state as determined by
its CI transition dynamics. The baseline policy used in this
section replaces the component if its estimated CI is less
than a pre-determined threshold.

We use time-to-failure (TTF), defined as the number of
simulation steps until failure, as the performance metric. We
run experiments to calculate the TTF for each component by
averaging the values obtained over 5 independent simulations
with 100 maximum possible simulation steps. We set the
maximum tree depth for POMCP rollouts to 50 and use a
UCB exploration constant of 10. In the baseline policy, we
inspect the CI every 5 steps and replace the component if
the estimated CI is below 15. Figure 1 shows the simulation
results comparing the TTF obtained for different budget
values using the baseline and the proposed approach. The
proposed approach provides a clear advantage over baseline
strategy over the entire range of budget values for all 20
components, irrespective of the replacement costs.

Fig. 1. Comparison of the proposed (blue) and baseline (red) approaches
using time-to-failure for a range of budget values. (a) Overall results
obtained by averaging over all components. (b) Results for the Air Handling
Unit component with a replacement cost of 250 units. (c) Results for the
Lighting Equipment component with a replacement cost of 24 units.

Figure 2 shows sample CI histories for the same com-
ponent obtained from simulations using the proposed ap-
proach and the baseline policy. The proposed approach
takes inspection and replacement actions only when deemed
necessary based on the latest belief estimate and the potential
loss of value due to an inaccurate estimate or due to not

taking a replacement action. Such a behavior holds true for
every component without any component specific parameter
tuning. On the other hand, the estimated state from the
baseline policy based on the most-probable transition may
not always be the same as the real transition, ultimately
resulting in early failures. Although it is possible to enhance
the baseline by incorporating component-specific parameters
and budget-aware heuristics, our experiments indicate that
its performance still lags behind the proposed approach,
particularly when the budget is tightly constrained.

Fig. 2. Sample condition index (CI) histories illustrating the performance of
the proposed policy when compared to the baseline for the Boiler component
with a replacement cost of 45 units, an inspection cost of 1 unit, and a total
budget of 500 units. (a) CI history using proposed approach showing failure
at 80 time steps. (b) Baseline approach failing at 39 time steps.

B. Budget Allocation

We demonstrate the effectiveness of our proposed budget
allocation approach by comparing it to a baseline that de-
pends on two component properties: (i) mean-time-to-failure
(MTTF) which is the expected number of steps a compo-
nent takes for its condition index to go below the failure
threshold when starting from maximum possible condition
index, and (ii) the replacement cost of the component. The
baseline allocation is proportional to ratio of the component’s
replacement cost and MTTF.

We quantify the performance of the budget allocation al-
gorithms by running 20 independent simulations over all the
components using the allocated budgets and calculating the
overall TTF for the building. To ensure fairness, we compare
both budget allocation algorithms by running simulations
using policies obtained by the same decision making strat-
egy: the POMCP-based approach. Figure 3 summarizes the

Fig. 3. Comparison of baseline and proposed budget allocation approaches
for the all 20 components for an overall budget of 10,000 units.

TTF results from the baseline and the proposed approaches
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for all components in the building. The proposed allocation
approach achieves an overall TTF of 1510, outperforming
the baseline that achieves an overall TTF of 1355. Hence the
proposed approach maximizes the overall TTF in accordance
with the objective defined by (4). Analyzing individual com-
ponent data we observe that instances where the proposed
approach underperforms the baseline exhibit only slight
differences in TTF values. In contrast, when the proposed
approach outperforms the baseline, we observe a significant
improvement. Note that the maximal TTF of 100 is achieved
by both strategies for 50% of components, the proposed
strategy performs better for 35% of the components, and the
baseline performs better only for 15% of the components.

Number of Components Time (mean ± std. dev. of 7 runs)

5 333ms± 21.4ms
10 412ms± 37.1ms
20 552ms± 31.6ms

TABLE I
COMPARISON OF TIME TAKEN TO FIND OPTIMAL BUDGET SPLIT AMONG

5, 10 AND 20 COMPONENTS RESPECTIVELY, FOR A TOTAL BUDGET OF

10000 UNITS.

The results in Table I present the time taken to solve
the optimization problem given by (4). As can be clearly
observed, the solution time increases with an increase in the
number of components. However, the values are always of
the order of milliseconds.

VI. FUTURE WORK

There are two possible directions of future work. While
the proposed approach makes it possible to compute an
approximately optimal policy in a feasible amount of time,
the computational cost of using the POMCP algorithm is still
high. Our first direction of work is to reduce this cost by
incorporating a learning framework so as eliminate repeated
runs of POMCP. Finally, the budget allocation scheme is
fixed in the sense that the budget-split is done before the
start of the planning horizon. The second direction of work
is to consider other efficient budget allocation methods. A
sequential algorithm for optimal computing budget allocation
is presented in [24]. Applying this algorithm to our problem
may result in more accurate budget allocation. Similarly,
another method which can be explored is the allocating
method presented in [25]. Also, following these methods
may allow us to generalize our algorithm for cases where
the value function does not satisfy the concavity property.
Furthermore, another direction is to derive an optimal dy-
namic budget allocation scheme to account for change in
transition probabilities of the component states during the
planning horizon and also account for a cyclical budget.
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