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Abstract— The exact pole placement problem concerns com-
puting a static feedback law for a linear dynamical system
that will assign its poles at a set of pre-specified locations.
This is a classic problem in feedback control and numerous
methodologies have been proposed in the literature for cases
where a model of the system to control is available. In this paper,
we study the problem of computing feedback laws for pole
placement (and, more generally, eigenstructure assignment)
directly from experimental data. Interestingly, we show that the
closed-loop poles can be placed exactly at arbitrary locations
without relying on any model description but by using only
finite-length trajectories generated by the open-loop system.
In turn, these findings imply that classical control goals,
such as feedback stabilization or meeting transient transient
performance specifications, can be achieved directly from data
without first identifying a system model. Numerical experiments
demonstrate the benefits of the data-driven pole-placement
approach compared to its model-based counterpart.

I. INTRODUCTION

Data-driven control methods enable the synthesis of con-
trollers directly from data generated by physical systems,
and thus elude the need to construct or identify a mathemat-
ical model. Data-driven approaches are especially useful in
cases where first principles are challenging to apply, models
are difficult to identify, or the identification task leads to
numerically-unreliable solutions [1], [2]. In these cases, data-
driven techniques set out a huge potential as controllers can
be synthesized directly from data, and thus uncertainties in
the model shall not compromise the controller quality.

Data-driven control is, by now, a well-investigated area
of research (see, e.g., the representative works [3]–[5]).
Despite the availability of several techniques to synthesize
various types of controllers from data, the problem of data-
driven pole placement and the (more general) problem of
data-driven eigenstructure assignment via static feedback has
not been studied until now. The classical problem of pole
placement consists of finding a static feedback law such that
the poles of the closed-loop system are placed at a set of pre-
specified locations; analogously, the problem of eigenstruc-
ture assignment is that of finding a feedback law such that
the closed-loop system has a pre-specified set of eigenvalues
and eigenvectors (hereafter named eigenstructure). Motivated
by this, in this paper we study the data-driven pole place-
ment problem and the data-driven eigenstructure assignment
problem. Our results show that it is possible to place the
closed-loop eigenvalues exactly at arbitrary locations (here,
“exactly” means that the closed-loop poles can be placed at
exact locations, in contrast with cases where they are placed
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within certain regions) by using formulas that can be applied
directly on data. Moreover, our results show that the data-
driven eigenstructure assignment problem is feasible under
the same conditions required for its model-based counterpart.

Paper contributions. This paper features two main contri-
butions. First, we show that static feedback laws (described
by a feedback gain) that place the poles at an arbitrary set of
locations can be computed directly from data collected from
finite-length open-loop control experiments. We remark that
our formulas apply also to cases where the open-loop system
is not stable. We provide an explicit formula to compute
the feedback gain and we show that the problem is always
feasible when the underlying system is controllable. Second,
we study the eigenstructure assignment problem and we
provide a necessary and sufficient condition to check when
such problem is feasible. Moreover, we provide an explicit
formula to compute feedback gains that assign a pre-specified
eigenstructure. Finally, as a minor contribution, we evaluate
via numerical simulations the benefits of the proposed data-
driven method as compared to model-based approaches.

Related work. Several techniques have been proposed to
synthesize controllers from data while avoiding the need
to identify a system model. Solutions for static feedback
control are studied in [6], [7], the linear quadratic regulator
(LQR) in [3], model predictive control (MPC) in [5], [8],
minimum-energy control laws in [4], trajectory tracking
problems in [9], distributed control problems in [10], and
feedback-optimization controllers are proposed in [11]. Some
extensions to the case of nonlinear systems are presented
in [12], [13]. Most of these methods exploit the ability to
express future trajectories of a linear system in terms of a
sufficiently rich past trajectory, as shown by the Fundamental
Lemma [14]. With respect to this body of literature, in this
work, we focus on the exact pole-placement problem.

The model-based exact pole placement problem has a long
history; a non-exhaustive list of references includes [15]–
[18]. All these methods derive feedback laws departing from
a model description of the system to control, while our focus
here is to derive formulas that can be applied directly on data.
In line with this work is the recent contribution [19], which
studies the problem of placing the closed-loop poles in linear
matrix inequality (LMI) regions; in contrast, in this work, we
focus on placing the poles at exact locations and, in addition,
we address the eigenstructure assignment problem.

II. PRELIMINARIES

In this section, we recall some useful facts on behavioral
system theory from [14]. Given a signal (time-series)
z : Z → Rσ , and scalars T ∈ Z≥0, i ∈ Z≥0, we

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 685



denote the restriction of z to the interval [i, i + T − 1]
by z[i,i+T−1] = {z(i), . . . , z(i+ T − 1)}. With a slight
abuse of notation, we will denote by z[i,i+T−1] :=
(z(i), . . . , z(i+ T − 1)) ∈ RσT also the vectorization of
z[i,i+T−1], where the distinction will be clear from the
context. Given the T−long signal z[i,i+T−1], we denote
the associated Hankel matrix with L ≥ 1 (block) rows by:

HL(z[i,i+T−1]) =


z(i) z(i+ 1) . . . z(i+ T − L)

z(i+ 1) z(i+ 2) . . . z(i+ T − L+ 1)
...

...
. . .

...
z(i+ L−1) z(i+ L) . . . z(i+ T − 1)

 ,

Notice that HL(z[i,i+T−1]) ∈ RLσ×(T−L+1). The following
definition is instrumental for our analysis.

Definition 2.1: (Persistently exciting signal [14]) The
signal z[i,i+T−1] ∈ RσT is persistently exciting of order L
if the matrix HL(z[i,i+T−1]) has full row rank σL. □

We note that persistence of excitation implicitly requires that
the number of columns of HL(z[i,i+T−1]) is non-smaller than
the number of rows, thus giving T −L+1 ≥ Lσ. We recall
the following property of persistently exciting inputs.

Lemma 2.2: (Fundamental Lemma [14, Thm 1]) Assume
that the following linear system is controllable: x(t + 1) =
Ax(t) + Bu(t), where x : Z≥0 → Rn and u : Z≥0 →
Rm and A,B are matrices of suitable dimensions, and let
(u[0,T−1], x[0,T−1]) be an input-state trajectory generated by
this system. If u[0,T−1] is persistently exciting of order n+d:

rank

[
H1(x[0,T−1])
Hd(u[0,T−1])

]
= n+ dm.

□

This condition will play a fundamental role in the sequel.

III. PROBLEM SETTING

In this section, we formulate the problem of interest and
discuss existing model-based techniques for its solution.

A. Problem formulation

Consider the discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n and B ∈ Rn×m denote, respectively, the
system and input matrices, and x : Z≥0 → Rn and u :
Z≥0 → Rm denote, respectively, the state and input signals.
We assume that B has full column rank. The behavior of (1)
is governed by the poles of the system, that is, by the
eigenvalues of A. It is often desirable to modify the poles to
obtain certain properties, such as system stability or a desired
transient performance. This can be achieved using a state-
feedback control law of the form u(t) = −Kx(t) + v(t),
where v : Z≥0 → Rm is a new free input variable and
K ∈ Rm×n is the state feedback matrix (also called feedback
gain), which should be chosen so that the controlled system

x(t+ 1) = (A−BK)x(t) + v(t), (2)

has its poles at desired locations. In line with [15]–[18], we
make the following assumption.

Assumption 1 (Desired set of pole locations): The set of
desired pole locations contains n complex numbers L =
{λ1, . . . , λn} and is closed under complex conjugation. □

The data-driven state-feedback pole placement problem
can now be made mathematically formal as follows.

Problem 1 (Pole placement): Given a set of complex
numbers L satisfying Assumption 1 and historical data D =
(u, x) generated by (1), find, when possible, a state feedback
matrix K ∈ Rm×n such that the eigenvalues of A−BK are
the elements of the set L. □

Conditions for the existence of solutions to the pole place-
ment problem are well known [20]: a solution exists if and
only if L contains all uncontrollable modes of (A,B) [20].
Motivated by this, we will make the following assumption.

Assumption 2 (Controllability): All modes of (A,B) are
controllable. □

In the single-input case (m = 1), the solution to Prob-
lem 1, when it exists, is unique [20]. In the multi-input case
m > 1, the feedback gain K that solves the pole placement
problem is in general non-unique. One typical way to select
a particular K within the ambiguity set is to choose the one
that assigns the closed-loop eigenstructure:

(A−BK)X = XΛ, (3)

where Λ is an n×n diagonal matrix with spectrum given by
L and X is a non-singular matrix of associated closed-loop
eigenvectors, chosen according to some notion of optimality.
For instance, [16, Sec. 2.5] shows that choosing a matrix
of eigenvectors X that is well-conditioned leads to pole
locations that are robust against perturbations of the entries
of A. Motivated by this, in addition to Problem 1, we
will consider the data-driven state-feedback eigenstructure
assignment problem, formulated precisely as follows.

Problem 2 (Eigenstructure assignment): Given a set of
complex numbers L satisfying Assumption 1, a matrix of
linearly independent eigenvectors X, and historical data D =
(u, x) generated by (1), find, when possible, a state feedback
matrix K ∈ Rm×n such that (3) holds. □

B. Existing model-based pole-placement methods

When A and B are known, several formulas have been
proposed in the literature to solve the eigenstructure as-
signment problem. We next summarize some of the most
celebrated. For a matrix M, we denote by M† its Moore-
Penrose inverse; if M is square, λ(M) denotes its spectrum.

1) Approach in [16, Thm 3]. Let B =
[
U0, U1

] [Z
0

]
with [U0, U1] orthogonal and Z nonsingular. The
following choice satisfies (3):

K = Z−1UT
0 (A−XΛX−1). (4)

2) Approach in [17, Main Theorem]. Assume that λ(A)∩
λ(Λ) = ∅ and let G and X satisfy AX−XΛ+BG =
0. Then, the following choice satisfies (3):

K = −GX−1. (5)
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3) Approach in [18, Thm 1]. Let X be an invertible matrix
that satisfies (I − BB†)(XΛ − AX) = 0. Then, the
following choice satisfies (3):

K = B†(A−XΛX−1). (6)

It is evident from (4)-(6) (see also Remark 3.1) that
to obtain a numerically-reliable K using these formulas,
matrices (A,B) must be known with high precision.

Remark 3.1: (Eigenvalue sensitivity with respect to
model uncertainty) It is possible to quantify the sensitivity
of the eigenvalues of A − BK against perturbations of
the entries of A or B as follows. Let λ denote a simple
eigenvalue of M := A−BK with left and right eigenvectors
x and y, respectively. Wilkinson [21] showed that if a
perturbation ∆M is made to the entries of M , there exists
a simple eigenvalue λ̂ of M +∆M such that

|λ̂− λ| ≤ cond(λ,M)∥∆M∥+O(∥∆M∥2),

where cond(λ,M) = ∥x∥∥y∥
|y∗x| denotes the condition number

of λ (here, y∗ denotes the conjugate transpose of y). Notice
that cond(λ,M) ≥ 1 and cond(λ,M) = 1 if and only if
M is a normal matrix, that is MTM = MMT. Thus, in a
first-order sense, perturbations of the entries of A or B lead
to shifts in the eigenvalues of A− BK as amplified by the
condition number of the matrix of eigenvectors X . □

Since, in practice, matrices (A,B) must be first identified
from (possibly noisy) historical data before (4)-(6) can be
applied, a promising way to reduce the sensitivity of the
closed-loop pole locations is to bypass the system identifi-
cation process and to develop methods for determining K
directly from data. Motivated by this, the focus of this paper
is on deriving direct formulas for pole placement from data,
which do not require knowledge of A and B.

IV. DATA-DRIVEN POLE PLACEMENT

In this section, we will tackle Problem 1. We will assume
the availability of historical data D = (u, x) generated by (1),
and we will use the following representation of the data:

U0 :=
[
u(0) u(1) . . . u(T − 1)

]
∈ Rm×T ,

X0 :=
[
x(0) x(1) . . . x(T − 1)

]
∈ Rn×T ,

X1 :=
[
x(1) x(2) . . . x(T )

]
∈ Rn×T . (7)

Notice that only the first T samples of u and T +1 samples
of x are needed to construct U0, X0, X1. In what follows,
for a matrix M, we will denote by R{M} the range space
generated by its columns and by N {M} their null space.

Theorem 4.1 (Data-driven pole placement): Let assump-
tions 1–2 be satisfied, L = {λ1, . . . , λn}, and u[0,T−1]

be persistently exciting of order n + 1. Then, there exists
M = [m1, . . . ,mn] ∈ RT×n, with rank(M) = n, such that:

0 = (X1 − λiX0)mi, ∀i ∈ {1, . . . , n}. (8)

Moreover, for any M that satisfies (8), the matrix

K = −U0M(X0M)†, (9)

satisfies det(A−BK − λI) = 0 for all λ ∈ L. □

Proof: To prove existence of M , notice that

(X1 − λiX0)mi =
[
A− λiI, B

] [X0

U0

]
mi. (10)

Since (A,B) is controllable, rank[A−λiI, B] = n and thus
[A − λiI, B] has a nontrivial (m-dimensional) null space.
Thus, it is sufficient to choose the columns of M so that:[

X0

U0

]
mi ∈ N {

[
A− λiI, B

]
}. (11)

Since u[0,T−1] is persistently exciting of order n + 1,
Lemma 2.2 guarantees rank[XT

0 , U
T
0 ]

T = n + m, and thus
mi can always be chosen so that (11) holds, thus proving
existence of M . To show that rank(M) = n, notice that

dimN {
[
X0

U0

]
} ≥ mn, (12)

and thus there always exist n linearly independent vectors mi

that satisfy (11). To show (12), notice that [XT
0 , U

T
0 ]

T is an
(n+m)×T dimensional matrix; since u[0,T−1] is persistently
exciting of order n + 1, we have T ≥ nm + m + n (cf.
discussion after Definition 2.1), from which (12) follows.

To prove the second part of the claim, notice that

0 = (X1 − λiX0)mi = (AX0 +BU0 − λiX0)mi

= (A− λiI)X0mi +BU0mi, (13)

where the second identity follows from X1 = AX0 +BU0,
which holds because X0, X1, U0 are generated by (1). Next,
by using (9) we have −U0mi = KX0mi. In fact, since
rank(M) = n, rank(X0M) = n and thus (X0M)† is a right
inverse of X0M. By substituting this identity into (13):

(A−BK − λiI)X0mi = 0,

which proves the claim.
The formula (9) provides a direct way to determine feed-

back gains by performing algebraic operations on the data
and without identifying (A,B). The condition (8) specifies a
set of linear equations in the unknown M, which can thus be
determined using standard linear equation solvers. We refer
to Section VI for an illustration of the numerical benefits of
using (9) as compared to model-based pole placement.

In our result, persistence of excitation is needed to guar-
antee existence of M that satisfies (8); persistence of ex-
citation may be relaxed in practice, provided that the data
satisfies (11). Finally, we recall that, as a well-known result,
the feedback gain K that places the poles at L is in general
not unique. In our formula, non-uniqueness of K is reflected
in the non-uniqueness of M . Accordingly, all admissible K
that place the poles at L can be obtained by varying the i-th
column of M within the null space of X1 −λiX0. We refer
to (11) in the proof of the theorem for a precise discussion.

Remark 4.2: (Extension to continuous-time systems)
When the system to control is a continuous-time one, namely,
(1) is replaced by ẋ(t) = Ax(t) + Bu(t), the formula (9)
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still holds unchanged, provided that (7) are replaced by

U0 :=
[
u(0) u(∆) . . . u((T − 1)∆)

]
∈ Rm×T ,

X0 :=
[
x(0) x(∆) . . . x((T − 1)∆)

]
∈ Rn×T ,

X1 :=
[
ẋ(0) ẋ(∆) . . . ẋ((T − 1)∆)

]
∈ Rn×T ,

where ∆ > 0 is an arbitrary sampling time. □

V. DATA-DRIVEN EIGENSTRUCTURE ASSIGNMENT

In this section, we will tackle the eigenstructure assign-
ment problem. It is natural to begin by asking under what
conditions a given nonsingular matrix X can be assigned as
eigenvectors. The following result addresses this question.

Theorem 5.1 (Feasibility of eigenstructure assignment):
Let Assumptions 1–2 hold, X ∈ Rn×n be a nonsingular
matrix, and let u[0,T−1] be persistently exciting of order
n+ 1. There exists a solution K to (3) if and only if

∆A := A−XΛX−1 ∈ R{X1

[
X0

U0

]† [
0
Im

]
}. (14)

□
Proof: Notice that (3) holds if and only if

−BK = XΛX−1 −A.

Since K is a free variable, this holds if and only if XΛX−1−
A ∈ R{B}. To characterize R{B}, let z ∈ Rm be arbitrary,
and notice that Bz can be expressed as:

Bz =
[
A B

] [0
z

]
=

[
A B

] [X0

U0

]
g, (15)

for some g ∈ RT−1. Here, the last identity follows by noting
that, because u[0,T−1] is persistently exciting of order n+1,

by Lemma 2.2 rank

[
X0

U0

]
= n+m, and thus there exists g

such that (15) holds. Any g as in (15) can be expressed as:

g =

[
X0

U0

]† [
0
z

]
+ w, (16)

where w satisfies X0w = U0w = 0. Next, rewrite (15) as:

Bz =
[
A B

] [X0

U0

]
g = X1g. (17)

By combining (16) with (17), we obtain:

Bz = X1

[
X0

U0

]† [
0
z

]
+X1w

= X1

[
X0

U0

]† [
0
z

]
+
[
A B

] [X0

U0

]
w = X1

[
X0

U0

]† [
0
z

]
,

where the last identity follows by definition of w. Hence,

R{B} = R{X1

[
X0

U0

]† [
0
Im

]
},

which proves the claim.
The theorem provides a characterization of all perturba-

tions ∆A of A that can be achieved via static feedback:
these are all and only the matrices that belong to the space:

R{X1

[
X0

U0

]† [
0
Im

]
}.

When the open-loop system matrix A is known, the theorem
also provides a condition to determine whether the eigen-
structure assignment problem admits a solution: the problem
is feasible if and only if A−XΛX−1 belongs to the range
space of the matrix characterized in (14).

Before stating our result, we present the following techni-
cal lemma, which is a direct consequence of [16, Cor 1].

Lemma 5.2: Let Assumptions 1–2 hold, X ∈ Rn×n be
a nonsingular matrix, and xj denote the j-th column of X
corresponding to λj ∈ L. Then, xj ∈ Sj , where

Sj = N {UT(A− λjI)},

and U is such that its columns form a basis for N {B}.
Moreover, the space Sj has dimension m. □

We remark that this lemma is of model-based nature, and
thus the provided characterization is of little use when A and
B are unknown. Despite its nature, in what follows we will
use this lemma for technical purposes (to derive necessary
conditions for the eigenstructure assignment problem to be
feasible and in the proof of the subsequent result). Since the
maximum number of independent eigenvectors that can be
chosen for each assigned eigenvalue is equal to dim(Sj) =
m, it follows that the algebraic multiplicity of the eigenvalue
λj ∈ L to be assigned must be less than or equal to m. The
lemma thus motivates the following assumption.

Assumption 3 (Eigenstructure properties): The pole lo-
cations L = {λ1, . . . , λn} and eigenvectors X satisfy:

1) L contains ν complex numbers with associated alge-
braic multiplicities {m1, . . . ,mν} satisfying m1+· · ·+
mν = n and mi ≤ m for all i ∈ {1, . . . , ν},

2) pairs of complex conjugate poles with λi = λ∗
j satisfy

mi = mj ,
3) X is such that the desired (A−BK) is non-defective

(i.e., it admits n linearly independent eigenvectors). □

With this technical assumption, we now provide the fol-
lowing formula for eigenstructure assignment.

Theorem 5.3 (Data-driven eigenstructure assignment):
Let Assumptions 1–3 be satisfied and u[0,T−1] be
persistently exciting of order n + 1. There exists a
matrix M = [m1, . . . ,mn] ∈ RT−1×n, with rank(M) = n,
that satisfies:

0 = (X1 − λiX0)mi, ∀i ∈ {1, . . . , n},
X = X0M, (18)

Moreover, given M as in (18), the following K satisfies (3):

K = −U0M(X0M)†. (19)

□
Proof: We begin by proving the existence of M . By

iterating the steps in (10)–(11) for the first condition in (18),
we conclude that a matrix M that satisfies (18) exists if and
only if the following two conditions hold simultaneously:[

X0

U0

]
mi ∈ N (

[
A− λiI, B

]
), xi = X0mi,
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Fig. 1. Accuracy of closed-loop pole locations obtained using (9) when data
generated by a stable system (green line) and by an unstable system (orange
dashed line). The considered unstable system is the chemical reactor (20);
data for the stable system has been generated by pre-stabilizing the reactor
model. The simulation illustrates that (9) is more accurate by several orders
of magnitude when applied to data generated by a stable system.

where xi denotes the i-th row of X . Since Lemma 5.2
guarantees that xi ∈ N {B} and (12) holds we conclude
that there exists at least n linearly independent vectors that
satisfy (18). To prove the second part of the claim, notice:

0 = (X1 − λiX0)mi = (AX0 +BU0 − λiX0)mi

= (A− λiI)X0mi +BU0mi,

where the last identity follows from X1 = AX0 + BU0,
which holds because X0, X1, U0 are generated by (1). Next,
by using (9) we have −U0mi = KX0mi. In fact, since
rank(M) = n, rank(X0M) = n and thus (X0M)† is a right
inverse of X0M. By substituting this identity into (13):

(A−BK − λiI)X0mi = 0,

from which λi is an eigenvalue of A−BK with eigenvector
X0mi. The conclusion follows using X = X0M.

The formula (19) provides an explicit way to determine
feedback gains that assign the desired eigenstructure by per-
forming algebraic computations on the data. Notice that, with
respect to the conditions for pole placement (8), assigning the
eigenstructure imposes n2 additional constraints on M (given
by X = X0M ). Similarly to (8), condition (18) specifies a
set of linear equations in the unknown M, and thus M can
be determined using standard linear equation solvers.

VI. NUMERICAL ANALYSIS

In this section, we illustrate the methods via numerical
simulations. We first apply the formulas to stabilize the
dynamics of a chemical reactor, and then we compare their
accuracy with respect to their model-based counterparts.

Consider the following model describing a chemical reac-
tor obtained by discretizing [16, Example 1]:

A =


6.9771 2.0379 5.0672 −2.2212
−0.6941 −0.0434 −0.4738 0.3425
0.2048 0.9081 0.3159 0.6172
−0.5082 0.7106 −0.2000 0.8531

 ,

BT =

[
4.8874 1.4777 5.0448 4.6020
−6.5545 0.5230 −1.1389 −0.1133

]
. (20)

This system is unstable and the open-loop eigenvalues are:

eig(A) = {7.0162, 1.0798, 0.0002, 0.0065},

and thus state feedback is required to stabilize the system.
We move the two unstable modes inside the unitary circle,

keeping the original stable modes. We thus assign the set:
L = {0.5, 0.3, 0.0002, 0.0065}. Historical data is generated
by simulating the open-loop system for T = 10 time steps
by applying i.i.d. Gaussian noise as the input signal and
starting from zero initial conditions. It is well-known that
this input is persistently exciting of any order. The feedback
gain obtained as in (9) using the built-in fsolve routine in
Matlab R2022a to solve (8) is:

K =

[
−0.1758 −1.3970 2.8668 −2.4679
−0.4441 0.2711 4.9848 −4.9424

]
, (21)

leading to the closed-loop eigenvalues:

eig(A−BK) = {0.4999, 0.3001, 0.0002, 0.0066}.

We interpret the error between the elements of L and the
spectrum of A − BK as numerical error due to the poor
conditioning of the regression problem (8) resulting from
the use of data generated by an unstable system (whose
state is diverging over time). For example, after t = 10 time
steps, we observed ∥x(10)∥ = 1.254×105, which makes the
regression matrix in (8) numerically poorly conditioned.

To further illustrate the challenges in dealing with unstable
systems, Fig. 1 compares the accuracy of the closed-loop
eigenvalues when (9) is applied to data generated by an
unstable system (orange lines) and when it is applied to
data generated by a stable system (green lines). The latter is
obtained by first stabilizing (20) with u(t) = −Kx(t)+v(t)
using K given as in (21) and, subsequently, by using the
input v(t) = −K2x(t) (see (2)) with K2 obtained by
applying (9) to data generated by A − BK. The figure
illustrates that the accuracy of the resulting pole locations
deteriorates as the size of the data set T increases when
the data is generated by an unstable system and, on the
other hand, the pole accuracy remains high when the data
is generated by a stable system. These findings suggest that
a tradeoff must be found for T so that there is enough data
to satisfy the persistence of excitation conditions and, at the
same time, limited data is used to avoid numerical issues.

Remark 6.1: (Challenges in controlling unstable dynam-
ics) Challenges related to identifying and controlling unstable
dynamics have previously been observed in both the system
identification and data-driven control literature; we point out
that a promising approach to handle these cases is that of
combining multiple short trajectories [22]. □

Next, we compare the accuracy of pole locations obtained
using (9) and using a model-based formula, applied to an
identified model. In both cases, the methods are applied to
noisy data, and we conducted Montecarlo simulations over
100 experiments. We generated the data by simulating:

x(t+ 1) = A0x(t) +B0u(t) + e(t),

with x(0) ∼ N (0, In), u(t) ∼ N (0, Im), e(t) ∼
N (0, σ2

eIn), and the matrices A0 and B0 have been chosen
randomly and such that the modulus of all the eigenvalues
of A0 is inside the unit circle and (A0, B0) is controllable,
with m = ⌊n/2⌋. We identified (A0, B0) from noisy data by
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Fig. 2. Montecarlo simulation comparing the accuracy of (9) with that of a
model-based formula applied to an identified model. The methods have been
applied to noisy data with Gaussian distribution and three different levels
of variance: σ2

e = 1 (top), σ2
e = 10 (middle), and σ2

e = 100 (bottom). The
results suggest that the higher the noise variance, the more the data-driven
formula becomes preferable over a model-based pole placement approach.

solving the least-squares problem:[
A B

]
∈ arg min

[A,B]
∥X1 −

[
A B

] [X0

U0

]
∥F.

The set L has been chosen so that its entries are uniformly
distributed in [−n, n]; for the model-based pole placement,
we determined K using the built-in place routine in
Matlab R2022a. Fig. 2 compares the accuracy of the
pole locations obtained using the model-based placement
routine and the formula (9), for increasing values of the state
space size n. The figure illustrates that the pole locations
obtained through (9) are more accurate by about one order
of magnitude for all considered values of n. Moreover, by
comparing the results for three different choices of the noise
variance: σ2

e = 1 (top), σ2
e = 10 (middle), and σ2

e = 100
(bottom), the numerics suggest the higher the noise variance,
the more the data-driven approach is preferable over the
model-based one. We interpret this result by noting that
errors in the identified (A,B) propagates nonlinearly through
the place routine, thus compromising the controller quality.

VII. CONCLUSIONS

In this paper, we derived data-driven formulas to compute
static feedback matrices that assign arbitrarily the eigenstruc-
ture of a linear dynamical system. By leveraging the linearity
of the dynamics and a persistence of excitation condition, we
showed for the first time that the closed-loop eigenstructure
can be assigned exactly. Further, we illustrated the benefits
of the data-driven methods, as compared to the model-
based counterpart, through a set of numerical simulations,

which showcase the numerical robustness of the approach,
especially in the presence of noise in the measured data.
This paper also opens several directions for future research,
including an analytic investigation of the sensitivity of the
closed-loop pole locations in the presence of noise, and the
derivation of methods to handle uncontrollable modes.
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