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Abstract—Control laws for continuous-time dynamical systems
are most often implemented via digital controllers using a sample-
and-hold technique. Numerical discretization of the continuous
system is an integral part of subsequent analysis. Feedback
linearizability of such sampled systems is dependent upon the
choice of discretization map or technique. In this article, for
feedback linearizable continuous-time systems, we utilize the idea
of retraction maps to construct discretizations that are feedback
linearizable as well. We also propose a method to functionally
compose discretizations to obtain higher-order integrators that
are feedback linearizable.

Index Terms—Numerical algorithms, Feedback Linearization,
Sampled-data control

I. INTRODUCTION

Digital controllers facilitate the implementation of
continuous-time control systems via discretization. For
non-autonomous systems i.e., for systems with inputs this is
done via (a) sample and hold technique where the control
input is held constant between two sampling intervals and
(b) a discretization scheme that solves the evolution of the
continuous-time dynamical systems numerically. Different
numerical schemes result in different discretizations of the
continuous time systems. On Euclidean spaces i.e., for systems
evolving on R"”, some of the common numerical integration
schemes are Euler Integrations methods, Runge-kutta-based
methods, Simpson 1/3 rule, etc. [1]. While these schemes
perform well for systems evolving in Euclidean spaces, when
implemented for systems evolving on general manifolds, they
do not guarantee that the system states stay on the manifold.
In order to maintain the non-euclidean structure of the
underlying manifold one would like to construct integrators
that respect the underlying geometry of the continuous-time
dynamical system. Such integrators are called geometric
integrators and these result in more accurate long-term
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behavior. A summary of geometric integrator schemes is
given in [1], [2]. Retraction maps are a generalization of
Euclidean discretizations on non-euclidean manifolds (see
[3], [4]). Retraction maps allow us to construct geometric
discretizations that guarantee the system states stay on the
manifold.

Feedback linearization allows us to transform a nonlinear
control system into a linear system via a coordinate trans-
formation and control feedback. This allows us to utilize
the control design methods such as pole placement [5] etc.,
available for linear systems to synthesize controls for the
nonlinear system. A study of feedback linearization for con-
tinuous time systems is provided in [6]-[8] and references
therein. A discrete-time equivalent of feedback linearization
is studied in [9]-[13]. Sampling, in general, does not preserve
the feedback linearization, i.e., given a feedback-linearizable
continuous time system, under sample and hold method and
a particular choice of discretization the resulting discrete-time
system need not be feedback linearizable (in discrete time) in
general [14]-[17]. Since feedback linearization allows us to
utilize the advantages of linear control theory, it is of interest to
find (numerical) discretizations that are feedback linearizable.

Contribution: In this article, given a feedback-linearizable
continuous-time system we utilize retraction maps to construct
discretizations that are feedback linearizable. We also provide
a way to compose these discretizations to generate symmetric
discretizations that are accurate up to the second order while
maintaining feedback linearizability. However, this requires
multirate sampling.

II. RETRACTION AND DISCRETIZATION MAPS

Let M be an n dimensional manifold and T'M be the asso-
ciated tangent bundle. Let TM > (z,v) — 7Tps(z,v) == x be
the canonical projection onto the manifold. Further, for each
x € M, let 0, be the zero vector in T, M.

Definition 1 (Retraction map [3]): Let R: TM — M be
smooth and R, =: R|r,a, then R is a retraction if for all
x €M, (1) Ry(0;) =z, and (2) Ty, R, is the identity map
on 1, M.
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Definition 2 (Discretization map [3]): Let U C T'M be an
open neighborhood of the zero section of the tangent bundle
TM. U > (x,v) — R(z,v) = (R'(x,v), R*(z,v)) €
M x M is a discretization map if, for any = € M, it satisfies
(1) (#,0,) — R(z,0,) = (z,2), and (2) T(z 0, R* —
T(m,om)Rl =Idr, v Tz0,)TeM ~ T, M — T, M is equal
to the identity map on T, M, where T, o )R" is the tangent
map of R, i € {1,2} at (z,0,) € TM.

Definition 3 (Adjoint discretization): Let R be a discretiza-
tion on M. Consider the inversion map (z,y) > M x M —
Ir(z,y) = (y,x) € M x M. The adjoint of R is defined by
U >3 (x,v) — R*(x,v) = Iy (R(z, —v)).

A discretization is called symmetric if R = R*.

Proposition 1: Given X € X a vector field on M and a
fixed time discretization map ¢t — (t — ah,t + (1 — a)h),
« € [0,1], the discretization of X defined by

R @k, wpy1) = hX (Tar (R~ (2, Tit1)))
eM

is a first-order discretization of X and second-order if R is
symmetric.

Proposition 2: Let M and N be n dimensional manifolds
and M > x — ¢(x) =ty € N be a diffeomorphism. For a
given discretization R on M, Ry := (¢ x ¢p)o RoT¢p ' is a
discretization on N (see Figure 1).

Proof: For any given y € N we have that

Ry(y,0,) =((¢ x ¢) o RoTé™") (y,0,)
=((¢x ) o RoTd™") ((),0p(x))
=(¢ x ¢)" ' R(z,0,)
=(¢ x ¢) Nz, x) = (y,9).

This proves the first condition. Now, given a vector u, € TN,
we have

(Tty.0,) R — Ty, Rs) (v, uy)

71 o Rl o 71
=] oo Rt oo g, 50,

—(¢o R? 0T~ )(y, suy)]
:y¢(ier@@¢ﬂwme
— R (s(T¢™")(y, uy))]
=Ty6((To™ 1)y uy)), = (3. uy)
which proves the second condition. [ ]
Using the inversion map 7); one can easily show that R} =
(px p)oR*oT'¢p~! is the adjoint discretization of R. Further,

Ry is symmetric if R is symmetric. From definition of R and
R4, Fig. 1 commutes.

III. CONTINUOUS TIME CONTROL SYSTEM

Let M be an n dimensional manifold and U C R™ be open.
For each u € U let X(-,u) € X(M) be a vector field on M.
Then for a fixed 7 > 0, a continuous-time dynamical system
(CS) on M is given by

dx

i X (x(t),u(t)) for all t e [0,7T], (D

T
TM TN
Rk Ry
M x M N x N
Fig. 1. R and R, commute as shown above

with ¢ — 2(¢t) € M and t — w(¢) for all t € [0,T]. A
point (zg,ug) € M x U is said to be an equilibrium point of
(1) if X (zo,uo) = 0.

A. Feedback Linearization of Continuous Time Systems

Let M and N be two n-dimensional manifolds and ¢ :
M — N be a diffeomorphism. Let X € X(M) be a vector
field on M. Then X, := Tpo X o ¢~ ! is a vector field on N.
Further for the dynamical system

dy

= Xo(y(t),u(t)) for all t € [0,T], 2

with y(0) = ¢(x(0)) satisfy y(t) = ¢(x(t)), for all ¢ € [0, 7],
where z(t) is a solution of (1).

Definition 4 (Feedback linearization [8]): Let O(zg) > xq
and O(ug) 3 ug be open neighorhoods around xg and ug of
M and U, respectively. Let O(xg) 2 x — ¢(x) =y €
N := R" be a diffeomorphism to its image and O(zg) x
O(up) 3 (x,u) — (x,u) == v € R™ be such that for each
fixed z, ¢(x,-) : U — R™ is invertible. A given continuous
time system (1) is said to be (locally) feedback linearizable
around (g, ug) on O(xg) x O(yg) if there exist matrices A €
R™™ and B € R™ "™ such that X4(y,u) = Ay + Bv with
v = (¢~ 'y, u). The feedback linearized dynamical system
is given by
% = Ay(t) + Bo(t) for all t € [0,T]. 3)
For background on feedback linearization, we refer the reader
to [6]-[8] and references therein.

Assumption: System (1) is controllable and is feedback equiv-
alent to a controllable linear system (3)

IV. NUMERICAL DISCRETIZATION OF CONTINUOUS-TIME
SYSTEMS

Continuous time control systems are implemented via dig-
ital controllers using the sample and hold method where
the control input v is held constant at a fixed value be-
tween two successive samples i.e., u(t) = uy forall ¢t €
[ty tet1], toq1 = tx + h, forall k € N, where h is the
fixed sampling period. Further, since analytical solutions for
(1) are often not available in closed form, the solutions are to
be approximated numerically.

Definition 5: Let U C R™ be open and for each u € U,
X (-,u) € X(M) is a vector field on z. Let R be a discretiza-
tion map on M then using Proposition 1 a discretization of
X(-,u) is defined by

Rz, vp1) = RX (s (R (2n, 2p41))s up) — (4)
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where the control input u is held constant over the interval
[thytit1] €., u(t) = ug for all ¢ € [tr, tri1].

Different choices for R lead to different numerical discretiza-
tion schemes. For example, on Euclidean spaces (M = R™),
R(x,v) = (z,z+v) results in the Explicit Euler discretization
scheme zy1 = x + hX (zk, ux). Solving (4) for xj41, the
sampled discrete-time system can be explicitly written as

Tpt1 = F(zg, ug; h), 5)

where xp, € M and up € U for all k € Nand M x U >
(x,u) — F(x,u;h) € M is a smooth map (if F' is not well
defined on entire M one may very well work with a local
definition of F, by replacing M with an open neighborhood
around zo in M). From the properties of retraction maps,
one can show that at equilibrium point (zo,uo) one has
F({L‘o, Uup; h) = Xp.

A. Feedback Linearization of Discrete-Time Systems

The idea of feedback linearization can be extended to
discrete-time systems as well. Consider the discrete-time sys-
tem given by (5).

Definition 6 (Feedback linearization (discrete-time) [9]): Let
O(x0) 3 2o and O(ug) > ug be open neighborhoods around
xo and ug. Let O(xg) 2 ¢ —> y = ¢(z) € N = R"
be a diffeomorphism onto its image, and O(zg) x O(ug) >
(x,u) — v = (x,u) € R™ be such that for each x, ¢(z, -)
is locally invertible. The discrete-time system (5) is said to be
feedback linearizable if there exist matrices A, € R™*™ and
B;, € R™*™ guch that

O(Fy(z,u)) = Apd(x) + Bpip(z,u) = Apy + Bpo.
The discrete-time system (5) is linearized to
Yk+1 = Anyr + Brog. (6)

The feedback linearizability of discrete-time systems has been
dealt with in great detail in [9]-[12]. For sampled time contin-
uous time system the feedback linearizability is in general not
preserved, i.e., a feedback linearizable continuous time system
when implemented with sample and hold may not result in a
feedback linearizable discrete-time system. The linearizability
is not only dependent upon the underlying continuous-time
system but also on the choice of discretization (see [14]).
Using this as our motivation we are interested in the following
problem — given a (locally) feedback linearizable continuous
time system (1) is it possible to construct a numerical
discretization (5) that is also (locally) feedback linearizable
in the sense of Definition 6?

B. Constructing Feedback Linearizable Discretization Maps

Let M be an n-dimensional manifold. Consider the con-
tinuous time system given by (1) on M. Let ¢ and ¥ be
as in Definition (4). Suppose (1) is feedback linearizable to
(3). Keeping v(t) = vy for all ¢ € [ty,tkq1], let R be a
discretization map on N, and a discretization scheme for(3)
such that it preserves the linearity of (3), i.e., it results in a
discrete system yi+1 = Apyr + Bpvg, where A, € R™*"

and Bj, € R"*™. Given a discretization map R on N, using
Proposition 2, one can construct a discretization map on M

Ry = (¢ x ¢) ' oRoT¢, (7
and a discretization scheme for (1)
Ry (@, wrrr) = hX (g (RS (e, wern),un)), (8)

then we have the following result.

Theorem 1: The discretization scheme given by (8), for (1)
is feedback linearizable in the discrete-time domain.

Proof: Define y, = ¢(xx) and ¢(zg, up) = vi for all
k € N. From (7), we have
RY (wk,x41) =(T¢~ o R o (¢ % ¢)) (@, s
:(T¢71 © Ril)(ykv yk+1)7
and
X(rar (R (wn, @), up)

= X(rm((Tod™" o R (yk, yr41))s ur))
= Xy (N (R Wk, yrr1)), ur)).-

From (8), we have

(2, w41) = R (BX (Tar (R 2 (2, 2141))
and therefore,

(¢ % O)(@k, Tpy1)

= (¢x9)o Rdfl(hX(TM(R;l($k7$k+1)),uk)
R((hXo(mn (R (Y Yrs1)), ur))
which implies

(Yk, Y1) = R(hX¢>(TN(R_1(yk7yk+1))»Uk))-

Since R preserves linearity and X,(y,u) = Ay + Bv with
v = (¢~ y,u), we have yrp1 = Apyp + But(ak,ug) =
Apyr, + Brvg., thereby linearizing (8).

|

Remark 1: It is important to note that independent of the
order of R one can ensure an accuracy of Ry only up to the
first order. This is due to the fact that while implementing
(1) via the sample and hold, the control input u is to be
held constant on the interval [ty, ¢511[. This is in general not
possible while simultaneously keeping the linearized control
input v constant over [tg,tr+1[ as v(t) = ¥(x(t),u(t)).
Instead of employing the exact control input w(t) over the
interval, we apply the control uy, satisfying v, = ¥(zk, ur)
for all t € [ty,tr+1], where x) is the state sampled at t = t.

C. Linearizability of Adjoint Discretization

Given a discretization map, I4-1 one can construct an
adjoint discretization R;‘)_l as given by the Definition 3. From
proposition 2 we have

Ry 1= (¢px¢) 'oR oTo. )
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Theorem 2: Let R be a discretization of (3) preserving
linearity for h as well as —h. Let R* be the adjoint of R,
then R;‘),l given by (9) results in a discretization

(10)

that is feedback linearizable. Moreover, the linearizing coor-
dinate is given by x — ¢(x) := y and the linearized system
is given by

Tpt1 = F* (g, uk; h),

Yk = A_nYr41 + B_pvg, (1D)

with vy = 1/1(xk+1,uk).

The proof of the above theorem follows a similar process to
that of Theorem 1 and hence is omitted. The control input uy
is to be calculated implicitly from the control input vg. Similar
to Ry-1, R;‘),l is also accurate upto first order.

V. CONSTRUCTING HIGHER ORDER DISCRETIZATIONS

Definition 7 (Global and truncated error [18]): Consider
the continuous time system (1), then for a given discretization
(5) the k-step global error is

er = x(tg) — xk,

where z(t)) is the exact solution of (1) evaluated at ¢, =
to + hk, and the one-step truncated error at tj is

Z(tr) = (x(ty + h) — F(x(ty), ug; h))) /h.
Definition 8 (Order of discretization [18]): A discretization
is of order r, if for some fixed K > 0, ||Z(t;)]] < Kh" for
all t, € [0,7] and h > 0.
The discretizations R in Definition 1 are in general first order.
However, if R is symmetric, it is accurate up to the second

order. This serves as our motivation to construct symmetric
discretization.

A. Symmetric Discretizations
Let M be an n dimensional manifold and X € X(M) be a
vector field on M. Let R be a discretization map on M and
R* be its associated adjoint. Composing R and R*, we define
a discretization scheme as follows :
- h _
R @k, Tpy1/0) = §X(TM(R Y@k Thy1/2)))
*\ — h *\ —
(B) ™ @ngrjz i) = 5 X (B 7 (@r41/2, T041)))
(12)

In the above equation, w12 € M is to be taken as an
intermediate point and is solved implicitly to get a discrete
system of type (5).

Proposition 3: The discretization given by (12) is symmetric
and is therefore accurate up to the second order.
For proof of Proposition 3, we refer the reader to [19].

For nonautonomous systems, the control input uy is held
constant between ¢ € [tg,tg+1[, (12) is then modified as

h
R Yap, 2py1)2) = §X(TM(R71($1@,$k+1/2)),uk)

(R*) ™M (@pt1/2, Ths1)

h
:§X(TM((R*)71(xk'+l/2a Tht1)), Uk)-
(13)

Under closed-loop performance i.e., applying a feedback con-
trol uy = u(xy), (12) loses its symmetric nature. This can be
overcome by employing multirate sampling methods.

B. Multirate Sampling

Definition 9 (Multirate sampling): Consider a continuous
time system given by (1). Let h be the sampling time in-
terval ie., xx = x(tx) and tp11 = ¢ + h. For a fixed
N € {1,2,...,n}, and for each ¢ € {1,2,...N} let
(x,u) — Fij(z,u) = F¥(x) be discretizations of (1). The
N step evolution is then given by

Trpn = FUY 1o 0 B o Fi(z)  (14)

Sampling states xj, at a rate IV times slower than that of control
input u; we get a multistep discretization given by

TN = F(Th, Uk, . UppN—1) (15)

The control input ug, . .., ug4ny—1 are to be computed a priori
at ¢;, are functions of the state .

Setting N = 2 and F; and F5 as F' and F* from (5) and
(7) respectively, under multirate sampling, the discrete system
generated by (13) is given by

Tpq1/2 =F(2r, up; h/2)
Trpy1/2 =F (Trq1, upg1;—h/2).

Let ux, = u(zy) be a closed-loop control input for discretiza-
tion (4). Setting ugy1 = u(xr41) renders (13) symmetric and
the discretization is given by

Fay, u(zy); h/2) = Feppr, w(Tg); —h/2),

which is symmetric and therefore is of second order. Corre-
sponding continuous time control input is given by

u(t) = {

where t5.41/0 =g + % and tx4q =t + h.

Theorem 3: Consider the continuous time system given by
(1). Let Ry be its discretization as given by (7) and (8) be its
associated discretization. Then one can construct a symmetric
discretization given by (13), the resulting discrete system given
by

(16)

t € [thytryr/2l
te [tk+1/27tk+1[7

Uk,

Uk+1,

F(xg,ur; h/2) = F(pg1, uks1; —h/2) (17)

is symmetric and is of second order. Moreover, (17) is feed-
back linearizable under coordinates x — ¢(z) = y and the
modified control input is given by (z,u) — ¥(x,u) =: v.
The linearized system is given by

Apyr + Brvy = A_pryrs + Boprvgg, (18)

where h' = h/2.

Remark 2: The control input vg, vi4+1 can be computed
apriori at t = t; from y. The control input uy and wugi
are than computed implicitly solving ¢ (zy,ug) = vg, with
z = o~ (k)
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Remark 3: Theorem 3 is different from the result in [14] in
the sense that here the rate of multi-sampling is fixed apriori
while in [14] the sampling rate is chosen such that the resulting
scheme is feedback linearizable.

VI. EXAMPLE

In order to demonstrate the ideas discussed we consider
the following example. Consider the following example from
[20, Chapter 4, Example 4.2.5]. Let € R? and u € R, the
continuous time equations (CS) are given by

d X :Cg(]. + QCQ) 0
& T2 | = T + | 1+2 | u, (CS)
X3 $2(1 + $1) —I3
which compactly written is 4 = f(z) + g(z)u. System (CS)

is feedback linearizable locally around x = 0. Setting
o(x) = (z1,23(1 4+ x2), w321 + (1 + 21) (1 + 22)72) = 3
and
Y(z,u) = ((1+ 1) (14 22)(1 + 222) — z123)u
+23(1 + 22) + aw3(1 4+ 22)® + 21 (1 + 1) (1 4 222) = v,

(CS) is (feedback) linearizable about x = 0 and the linearized
system (CLS) is given by

dy
—=A B CLS
ar Y+ B, (CLS)
01 0 0
where A={0 0 1|, B=[0].Note that the standard
0 0 O 1

Euler scheme for (CS), xi+1 = xx + h(f(xk) + g(ak)ur) is
not feedback linearizable [10, Theorem 6].

Choosing the Explicit Euler Scheme (EES) R3 x R3 >
(y,w) — R(y,w) = (y,y+w) for the linearized continuous
system (CLS), this results in

Yk+1 = Yk + h(Ayk + B’Uk). (19)

Lifting R via ¢—!, we get a discretization Ry such that
for the continuous time system (CS) it induces following
discretization scheme

Tht1 = ¢71 ((I + hA)¢p(zr) + hBY(zy, uk))

= F(a:k,uk;h). (EES)

where I is the identity matrix of appropriate order.

Remark 4: We call this scheme (EES) as it is induced by
an Euler integration of (CLS), however, this is different from
the standard Explicit Euler Scheme for (CS) (zx4+1 = z +
h(f(zr) + g(zk)u).

One can immediately see that (EES) is feedback linearizable
around z = 0.

The associated adjoint scheme R*(y,w) = (y — w,y)
defines the Implicit Euler Scheme (IES) for (CLS), which can
be lifted via ¢ to define R(’;_l. The associated discretization
scheme is given by

2k = F(Tre1,ug; h). (IES)

Discretization Associated Control
(EES) v = Ky
(IES) v = Kyk41
(SES) vk = Kyk, k41 = Kyk4
TABLE T
CONTROL INPUT FOR VARIOUS DISCRETIZATION SCHEMES FOR EXAMPLE
(CS).
Order of error magnitude
Stepsize (EES) | (ES) (SES)
h=10"1 [ 10T [ 1071 [ 1072
h=10"2 11072 | 1072 | 1072
h=10"3 11073 | 1072 [ 10°°F
TABLE 1T

ORDER OF ONE STEP TRUNCATION ERROR ||@% || FOR VARIOUS STEP SIZES
h FOR EXAMPLE (CS).

Composing R4-1 and R(’;_l, and using multirate sampling, the
Symmetric Euler Scheme (SES) for (CS) is given by

F(.’L’k+1,uk+1;—h) = F(xk,uk;h). (SES)
where uyy1 is dependent only on x; and can be computed
apriori. One can see that (IES) and (SES) are feedback lin-
earizable. Moreover, (SES) is symmetric and therefore is accu-
rate up to second-order. The three schemes were implemented
to stabilize the system (CS) to the origin. For this purpose, the
corresponding control laws were chosen as given by Table 1.
The schemes were simulated in MATLAB for various initial
conditions z(0), feedback gain K, and stepsize h. The error
was compared with a standard ODE solver (ODE45). The
order of the one-step truncation error for various step sizes
is given in Table II. We present simulation plots for one
such instance for (SES). The initial condition was fixed at
2(0) = (0.5,0.25,—0.5) and the control gain was set at
K=— (4.8 12 4.8), the step size was chosen as h = 10—2
and the control input was sampled twice for each interval. The
system states and control inputs are plotted in Fig. 2 and 3
respectively. In Fig. 4, we plot the global error of the three
schemes for h = 1072. One can see that (SES) has less error
as compared to (EES) and (IES). From Table II one can see
that the (SES) is of second order in nature while the other
two are of first order. In Fig. 5 we plot the one-step truncation
error for (SES) for various step size h € {1071,1072, 1073},
one can see that truncation error is proportional to A2, which
confirms that the method is of second order.

05—

2k, a(ty)

— 1) —Tok —Tgk - T1(tk)

@y(ti) - as(t) |

0 1 2 3 4 5 6 7 8 9 10
tr. (s)

-0.5

Fig. 2. System state x for (SES) plotted against exact discretization x(t)

for h = 10~2 and t; € [0,10].
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|
0.5“‘ b

g, u(ty)

05F \/ - -

Fig. 3. Control input uj for (SES) plotted against exact discretization
u(ty) for h = 1072 and t;, € [0, 10].

—(EES)—(IES)—(SES)|

[fexll

Fig. 4. Global error ||e|| for (EES), (IES), and (SES) for h = 10~2 and
ty € [0,10].

VII. CONCLUSIONS

In this article, we have utilized the idea of retraction maps
and their lifts under diffeomorphism to construct feedback
linearizable discretization. Given a continuous-time feedback
linearizable system, we show that one can build first-order
discretization that preserves feedback linearizability. This is
done by lifting a discretization of the linearized continuous
time system. We have also shown a way to functionally
compose two first-order discretizations to design second-order
discretizations that are feedback linearizable. It is observed

10° r r r r r r r r r
1070 g
| | | | | [—h=10T—h=107—h=107
0 1 2 3 4 5 6 7 8 9 10

Fig. 5. One-step truncated error ||Z(¢x)|| for (SES) for
h € {1071,1072,1073} and ¢, € [0, 10].

|

5 0F B

05— ] ] [ =@ —wa s —ay
10 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

: : : . : : :

£ or .

-1 L L L L L L L L — Uk
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ti (s)

Fig. 6. Zoomed in control for (SES), showing multisampling. The control
input uy, is applied twice over each sampling interval A = 10~1.

that symmetric methods are of second order and therefore have
higher accuracy for larger step sizes, however, this comes at
the cost of multi-rate sampling.
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