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Abstract— In micro-assembly applications, ensemble of
chiplets immersed in a dielectric fluid are steered using dielec-
trophoretic forces induced by an array of electrode population.
Generalizing the finite population deterministic models pro-
posed in prior works for individual chiplet position dynamics,
we derive a controlled mean field model for a continuum of
chiplet population in the form of a nonlocal, nonlinear partial
differential equation. The proposed model accounts for the
stochastic forces as well as two different types of nonlocal
interactions, viz. chiplet-to-chiplet and chiplet-to-electrode in-
teractions. Both of these interactions are nonlinear functions of
the electrode voltage input. We prove that the deduced mean
field evolution can be expressed as the Wasserstein gradient
flow of a Lyapunov-like energy functional. With respect to this
functional, the resulting dynamics is a gradient descent on the
manifold of joint population density functions with finite second
moments that are supported on the position coordinates.

I. INTRODUCTION

This work is motivated by micro-assembly applications,
such as printer systems [1], [2] and manufacturing of photo-
voltaic solar cells, where an array of electrodes can be used
to generate spatio-temporally non-homogeneous electric po-
tential landscapes for dynamically assembling the “chiplets”–
micron sized particles immersed in dielectric fluid–into de-
sired patterns. In such applications, the electric potentials
generated by the array of electrodes induce non-uniform
dielectrophoretic forces on the chiplets, thereby resulting
in a population-level chiplet dynamics. The purpose of the
present work is to propose a controlled mean field model for
the same.

There have been several works [3]–[7] on the modeling
and dielectrophoretic control of chiplet population. However,
a continuum limit macroscopic dynamics that accounts for
both chiplet-to-chiplet and chiplet-to-electrode nonlocal in-
teractions, as considered herein, has not appeared before.

The mean field limit pursued here involves considering
the number of chiplets and electrodes as infinity, i.e., to think
both of them as continuum population. There are two reasons
why this could be of interest. First, the continuum limit helps
approximate and better understand the dynamics for large but
finitely many chiplets and electrodes, which is indeed the
situation in the engineering applications mentioned before.
Second, the distributed control synthesis problem for large
but finite population becomes computationally intractable,
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as noted in recent works [6], [8], [9]. A controlled mean
field model opens up the possibility of designing a controller
in the continuum limit with optimality guarantees. Such a
controller can then be applied to a large but finite population
with sub-optimality bounds. We clarify here that in this work,
we only present the mean field model and its properties. We
leave the control synthesis problem for our follow up work.

As in prior works such as [6], we consider the chiplet dy-
namics in two dimensional position coordinate. Specifically,
let x(t) ∈ R2 denote the position vector of a chiplet at any
fixed time t ∈ [0,∞), and let

u : R2 × [0,∞) 7→ [umin, umax] ⊂ R

denote a causal deterministic control policy, i.e., u =
u(x, t). The control u represents the electrode voltage input,
and in practice, the typical voltage range [umin, umax] =
[−400, 400] Volt. We denote the collection of admissible
control policies as U . For a typical experimental set up
detailing the sensing-control architecture, see [6, Sec. II].

A viscous drag force balances the controlled force vector
field fu induced by the joint effect of the chiplet-to-chiplet
and chiplet-to-electrode interactions. At the low Reynolds
number context relevant here, the viscous drag force is pro-
portional to ẋ, where the proportionality constant µ denotes
the viscous coefficient of the dielectric fluid. Ignoring the
acceleration due to negligible mass of a chiplet, the dynamics
then takes a form

µẋ︸︷︷︸
viscous drag force

= fu︸︷︷︸
controlled interaction force

+ noise (1)

where the noise may result from stochastic forcing due to
environmental fluctuations (e.g., dielectric fluid impurities)
and/or unmodeled dynamics.

Contributions: In this paper, we make the following two
specific contributions.

• We derive a controlled mean field dynamics (Sec. III)
for the macroscopic motion of the chiplet population.
The derived model is non-affine in control, and rather
non-standard compared to the existing nonlocal dynam-
ics models available in the literature.

• We establish that the derived mean field dynamics
model can be understood as the Wasserstein gradient
flow (Sec. IV) of a free energy functional over the
manifold of chiplet population density functions.

II. NOTATIONS AND PRELIMINARIES

Wasserstein distance. The Wasserstein distance W between
a pair of probability density functions ρ1(x), ρ2(y) (or
between corresponding probability measures in general) with
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finite second moments, respectively supported on X ,Y ⊆
Rd, is defined as

W (ρ1, ρ2) :=

(
inf

ρ∈Π2(ρ1,ρ2)

∫
X×Y

∥x− y∥22 ρ(x,y)dxdy
) 1

2

(2)

where Π2 (ρ1, ρ2) is the collection of all joint probability
density functions ρ(x,y) supported on the product space
X × Y having finite second moments, x marginal ρ1, and
y marginal ρ2. As such, (2) involves an infinite dimensional
linear program that goes back to the work of Kantorovich
[10]. It is well-known [11, p. 208] that W is a metric on the
space of probability density functions (more generally, on
the space of probability measures). Under mild assumptions,
the minimizing measure ρopt(x,y)dxdy is supported on
the graph of the optimal transport map T opt : X 7→ Y
pushing the measure ρ1(x)dx forward to ρ2(y)dy. For many
connections between the Wasserstein metric and theory of
optimal mass transport, we refer the readers to [11], [12].
Wasserstein gradient of a functional. Let P

(
Rd

)
denote

the space of all probability density functions supported over
the subsets of Rd, and denote the collection of probability
density functions with finite second moments as P2

(
Rd

)
⊂

P
(
Rd

)
. The Wasserstein gradient of a functional Φ :

P2

(
Rd

)
7→ R, denoted as ∇WΦ, evaluated at ρ ∈ P2

(
Rd

)
,

is given by [13, Ch. 8]

∇WΦ (ρ) := −∇ ·
(
ρ∇δΦ

δρ

)
(3)

where ∇ denotes the standard Euclidean gradient, and δ
δρ

denotes the functional derivative w.r.t. ρ.
To exemplify the definition (3), consider the functional

Φ(ρ) =
∫
ρ log ρ (negative entropy) for ρ ∈ P2

(
Rd

)
.

Then δΦ
δρ = 1 + log ρ, ∇(1 + log ρ) = ∇ρ/ρ, and we get

∇WΦ (ρ) = −∇ · ∇ρ = −∆ρ, where ∆ := ∇ · ∇ denotes
the Euclidean Laplacian operator.
Other notations. The notation ⟨·, ·⟩ is used to denote either
the standard Euclidean inner product of vectors, or the L2

inner product of functions, as evident from the context.
For any natural number n, we use the finite set notation
JnK := {1, 2, . . . , n}. The symbols ess sup, E, P, I2, ∥ · ∥2
and ∥ · ∥∞ denote the essential supremum, the expectation,
the probability measure, the 2×2 identity matrix, the vector
2 and ∞ norms, respectively. The symbol ∼ is used as a
shorthand for “follows the statistical distribution density”.

Given probability measures µ0, µ1 on Rd, the total vari-
ation distance distTV(µ0, µ1) := 1

2 supf
∣∣∫ f d(µ0 − µ1)

∣∣
where the supremum is over all measurable f : Rd → R,
∥f∥∞ ≤ 1. For f : Rd → R, we define its Lipschitz constant
∥f∥Lip := supx̸=y

|f(x)−f(y)|
∥x−y∥2

, and its bounded Lipschitz
constant ∥f∥BL := max{∥f∥∞, ∥f∥Lip}. The bounded Lip-
schitz distance [14, Ch. 11.3] between probability measures
µ0, µ1 is distBL(µ0, µ1) := sup∥f∥BL≤1

∣∣∫ f d(µ0 − µ1)
∣∣.

Notice that distBL(µ0, µ1) ≤ 2 distTV(µ0, µ1).
For X ⊆ Rd, we use Cb(X ) to denote the space of all

bounded continuous functions φ : X 7→ R, and Ck
b (X )

comprises those which are also k times continuously dif-
ferentiable (in the sense of mixed partial derivatives of

order k). We say that a function sequence {gn}n∈N where
gn ∈ L1(X ), converges weakly to a function g ∈ L1(X ),
if limn→∞

∫
X (gn − g)ψ = 0 for all ψ ∈ Cb(X ). We

symbolically denote the weak convergence as gn ⇀ g.

III. CONTROLLED MEAN FIELD MODEL

In this Section, we introduce the chiplet population dy-
namics. Such model has its origin in the physical processes
enabling silicon microchips to be manipulated by both elec-
trophoretic and dielectrophoretic forces when they are placed
in dielectric carriers such as Isopar-M [15]. These carriers
have low conductivity which allows long-range Coulomb in-
teractions. In general, the dielectrophoretic forces dominate,
and they are induced by the potential energy generated by
electrostatic potentials created in electrodes. The electrodes
are formed by depositing nm-scale Molybdenum-Chromium
(MoCr) onto a glass substrate via vapor deposition and
then directly patterning them with a laser ablation tool.
The electrodes are then insulated from the chiplets and
dielectric fluid by thermally laminating a micrometer-scale
thick perfluoroalkoxy (PFA) film. The dielectric forces act on
the chiplets, while viscous drag forces proportional to their
velocities oppose their motion. Due to the negligible mass
of the chiplets, their acceleration can be ignored.

Let us denote the normalized chiplet population density
function (PDF) at time t as ρ(x, t). By definition, ρ ≥ 0 and∫
R2 ρ dx = 1 for all t.

We make the following assumptions.
A1. Under an admissible control policy u ∈ U , the chiplet

normalized population distribution over the two dimen-
sional Euclidean configuration space remains absolutely
continuous w.r.t. the Lebesgue measure dx for all t ∈
[0,∞). In other words, the corresponding PDFs ρ(x, t)
exist for all t ∈ [0,∞).

A2. Under an admissible control policy u ∈ U , we have
ρ ∈ P2(R2) for all t.

The sample path dynamics of a chiplet position is gov-
erned by a controlled nonlocal vector field

fu : R2 × [0,∞)× U × P2(R2) 7→ R2

induced by a controlled interaction potential ϕu : R2×R2×
[0,∞) 7→ R, i.e.,

fu(x, t, u, ρ) := −∇ (ρ ∗ ϕu) , (4)

where ∗ denotes generalized convolution in the sense

(ρ ∗ ϕu) (x, t) :=
∫
R2

ϕu(x,y, t)ρ(y, t)dy.

The superscript u in ϕu emphasizes that the potential de-
pends on the choice of control policy. In particular,

ϕu(x,y, t) := ϕucc(x,y, t) + ϕuce(x,y, t), (5a)

ϕucc(x,y, t) :=
1

2
Ccc (∥x− y∥2) (ū(y, t)− ū(x, t))

2
, (5b)

ϕuce(x,y, t) :=
1

2
Cce (∥x− y∥2) (u(y, t)− ū(x, t))

2
, (5c)
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for x,y ∈ R2 and

ū(x, t) :=

∫
R2 Cce (∥x− y∥2)u(y, t)ρ(y, t)dy∫

R2 Cce (∥x− y∥2) ρ(y, t)dy
. (6)

The subscripts cc and ce denote the chiplet-to-chiplet and
chiplet-to-electrode interactions, respectively. As before, the
superscript u highlights the dependence on the choice of
control policy. In (5b)-(5c), Ccc and Cce respectively denote
the chiplet-to-chiplet and chiplet-to-electrode capacitances.
These capacitances can be determined using two dimensional
electrostatic COMSOL® [16] simulations for a symmetric
chiplet geometry. Such simulation model comprises two
metal plates with dimensions defined by the chiplet and elec-
trode geometry, surrounded by a dielectric with properties
identical to those of the Isopar-M solution. The capacitances
are computed from the charges that result on each conductor
when an electric potential is applied to one and the other
is grounded. Once the capacitance among chiplets and elec-
trodes at different distances are computed, differentiable pa-
rameterized capacitance function approximations (e.g., linear
combination of error functions) can be fitted to that data.

In words, (5a) says that the total controlled interaction
potential ϕu is a sum of the chiplet-to-chiplet interaction
potential ϕucc given by (5b), and the chiplet-to-electrode
interaction potential ϕuce given by (5c).

The expressions for (5b), (5c), (6) arise from capacitive
electrical circuit abstraction that lumps the interaction be-
tween the electrodes and the chiplets. In [6, Sec. III], such
an abstraction was detailed for a finite population of n
chiplets and m electrodes. The expressions (5b), (5c), (6)
generalize those in the limit n,m→ ∞. On the other hand,
specializing (5b), (5c), (6) for a finite population {xi}i∈JnK
with ρ ≡ 1

n

∑n
i=1 δxi

where δxi
denotes the Dirac delta at

xi ∈ R2, indeed recovers the development in [6, Sec. III].

Remark 1. An immediate observation from (5) is that even
though the potential ϕucc is symmetric in x,y, the potential
ϕuce is not. Therefore, the overall controlled interaction
potential ϕu is not symmetric in x,y.

Without loss of generality, we assume unity viscous co-
efficient in (1), i.e., µ = 1 (since otherwise we can re-scale
the fu). In addition, assuming the chiplet velocity is affected
by additive standard Gaussian White noise, the sample path
dynamics of the ith chiplet position xi(t) then evolves as
per a controlled interacting diffusion, i.e., as a Itô stochastic
differential equation (SDE) with nonlocal nonlinear drift:

dxi = fu(xi, t, u, ρ) dt+
√

2β−1 dwi(t), i ∈ JnK, (7)

where fu is given by (4), β > 0 denotes inverse temperature,
and wi(t) ∈ R2 denote i.i.d. realizations of a standard
Wiener process that is Ft-adapted on a complete filtered
probability space with sigma-algebra F and associated fil-
tration (Ft)t≥0. In particular, F0 contains all P-null sets and
Ft is right continuous.

The study of SDEs with nonlocal nonlinear drift originated
in [17], and has grown into a substantial literature, see
e.g., [18], [19]. In statistical physics, such models are often
referred to as “propagation of chaos”–a terminology due to

Kac [20]. A novel aspect of the model (7) w.r.t. the existing
literature is that the interaction potential ϕu has a nonlinear
dependence on the control policy u(x, t) as evident from (5).

A. Existence-Uniqueness of Solution for (7)

For a given causal control policy u ∈ U , it is known
[21, Thm. 2.4] that an interacting diffusion of the form (7)
with initial condition xi0 ∼ ρ0 admits unique weak solution
provided the following four conditions hold:
(i) the drift fu is jointly Borel measurable w.r.t. R2×[0,∞)×
P
(
R2

)
,

(ii) the diffusion coefficient
√
2β−1I2 is invertible, and the

driftless SDE dz(t) =
√
2β−1dw(t) admits unique strong

solution,
(iii) the drift fu is uniformly bounded,
(iv) there exists κ > 0 such that

∥fu (x, t, u(x, t), ρ)− fu (x, t, u(x, t), ρ̃) ∥2
≤ κ distTV (ρ, ρ̃) uniformly in (x, t) ∈ R2 × [0,∞).

We assume that the capacitances Ccc, Cce in (5)-(6) are
sufficiently smooth, and the control u can be parameterized
to ensure smoothness for guaranteeing that ∇xϕ

u
cc,∇xϕ

u
ce

(and thus ∇xϕ
u) are ∥·∥2 Lipschitz and uniformly bounded.

As ∇xϕ
u is bounded, fu = ∫R2 ∇xϕ

u(x,y, t)ρ(y)dy,
which being an average of Lipschitz, is itself Lipschitz and
thus continuous. Since fu is continuous, the preimage of
any Borel set in R2 under fu is a measurable set in R2 ×
[0,∞)× U × P2(R2). Thus, condition (i) holds.

Condition (ii) holds for any β > 0 since z(t) is a Wiener
process with variance 2β−1.

For (iii), we find ess sup
(x,t)∈R2×[0,∞)

∥fu (x, t, u(x, t), ρ) ∥∞

= ess sup
(x,t)∈R2×[0,∞)

∥ ∫
R2

∇xϕ
u(x,y, t)ρ(y)dy∥∞

≤ ess sup
(x,t)∈R2×[0,∞)

∫
R2

∥∇xϕ
u(x,y, t)ρ(y)∥∞dy

≤ ∫
R2

ess sup
(x,t)∈R2×[0,∞)

∥∇xϕ
u(x,y, t)ρ(y)∥∞dy

= ∫
R2

ess sup
(x,t)∈R2×[0,∞)

∥∇xϕ
u(x,y, t)∥∞ρ(y)dy (8)

where we used the Leibniz rule, triangle inequality, and that
ρ ≥ 0. Per assumption, ∇xϕ

u is uniformly bounded, and we
have: (8) ≤M ∫R2 ρ(y)dy =M for some constant M > 0.

Condition (iv) holds because

∥fu (x, t, u(x, t), ρ)− fu (x, t, u(x, t), ρ̃) ∥2
=∥∇x ∫

R2

ϕu(x,y, t)(ρ(y)− ρ̃(y))dy∥2

=∥ ∫
R2

(∇xϕ
u(x,y, t)) (ρ(y)− ρ̃(y))dy∥2

≤c distBL(ρ, ρ̃) ≤ κ distTV(ρ, ρ̃) ∀(x, t) ∈ R2 × [0,∞)

for some constant c > 0, κ := 2c, and the second to last
inequality follows from ∇xϕ

u being bounded and Lipschitz.
Thus, we can guarantee the existence-uniqueness of sam-

ple path xi(t), i ∈ JnK, solving the interacting diffusion (7).
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B. Derivation of the Controlled Mean Field Model

Our next result (Theorem 1) derives the macroscopic mean
field dynamics as a nonlinear Fokker-Planck-Kolmogorov
partial differential equation (PDE), and establishes the con-
sistency of the mean field dynamics in the continuum limit
vis-à-vis the finite population dynamics.

Theorem 1. Supposing A1, consider a population of n
interacting chiplets, where the ith chiplet position xi ∈
R2, i ∈ JnK, evolves via (7). Denote the Dirac measure
concentrated at xi as δxi

and let the random empirical
measure ρn := 1

n

∑n
i=1 δxi . Consider the empirical version

of the dynamics (7) given by

dxi = fu (xi, t, u, ρ
n) dt+

√
2β−1 dwi(t),

with respective initial conditions x0i ∈ R2, i ∈ JnK, which
are independently sampled from a given PDF ρ0 supported
on a subset of R2. Then, as n → ∞, almost surely ρn ⇀ ρ
where the deterministic function ρ is a PDF that evolves as
per the macroscopic dynamics

∂ρ

∂t
= −∇ · (ρfu) + β−1∆ρ

= ∇ ·
(
ρ∇

(
ρ ∗ ϕu + β−1(1 + log ρ)

))
, (9)

with the initial condition

ρ(·, t = 0) = ρ0 ∈ P
(
R2

)
(given). (10)

Proof. To describe the dynamics of ρn as n→ ∞, we start
with investigating the time evolution of the quantity

⟨φ, ρn⟩ := 1

n

n∑
i=1

φ (xi) (11)

for any compactly supported test function φ ∈ C2
b (R2).

Using Ito’s rule, we have

dφ (xi) = Lρnφ (xi) dt+∇φ⊤ (xi)
√
2β−1dwi (12)

wherein the infinitesimal generator

Lρφ(x) := ⟨fu(x, t, u, ρ),∇xφ(x)⟩+ β−1∆φ. (13)

Thus,

d ⟨φ, ρn⟩ = 1

n

n∑
i=1

dφ (xi)

= ⟨Lρnφ, ρn⟩dt+ 1

n

n∑
i=1

√
2β−1∇φ⊤ (xi) dwi

:= ⟨Lρnφ, ρn⟩dt+ dMn
t (14)

where Mn
t is a local martingale.

Because φ ∈ C2
b (R2), we have

∣∣∣√2β−1∇φ⊤ (xi)
∣∣∣ ≤

C uniformly for some C > 0. Notice that the quadratic
variation of the noise term in (14) is

[Mn
t ] :=

1

n2

n∑
i=1

∫ t

0

∣∣∣√2β−1∇φ⊤ (xi(s))
∣∣∣2 ds ≤ tC2

n
,

and using Doob’s martingale inequality [22, Ch. 14.11],

E
(
sup
t≤T

Mn
t

)2

≤ E
(
sup
t≤T

(Mn
t )

2

)
≤ 4E

(
(Mn

t )
2
)

≤ 4E ([Mn
t ]) ≤

4tC2

n
.

Hence in the limit n→ ∞, the noise term in (14) vanishes,
resulting in a deterministic evolution equation.

For any t > 0, we take {ρn}∞n=1 to be the (random)
elements of Ω = C([0,∞),P(R2)), the set of continuous
functions from [0,∞) into P(R2) endowed with the topology
of weak convergence. Following the argument of Oelschläger
[23, Proposition 3.1], the sequence Pn of joint PDFs on Ω
induced by the processes {ρn}∞n=1 , is relatively compact
in P (Ω), which is the space of probability measures on Ω.
Oelschläger’s proof makes use of the Prohorov’s theorem
[24, Ch. 5]. The relative compactness implies that the se-
quence Pn weakly converges (along a subsequence) to some
P, where P is the joint PDFs induced by the limiting process
ρ. By Skorohod representation theorem [24, Theorem 6.7],
the sequence {ρn}∞n=1 converges P-almost surely to ρ. Since
the martingale term in (14) vanishes as n→ ∞, we obtain

d ⟨φ, ρ⟩ = ⟨Lρφ, ρ⟩dt =
〈
φ,L∗

ρρ
〉
dt (15)

where L∗ is the adjoint (see e.g., [25, Ch. 2.3, 2.5], [26, p.
278]) of the generator L given by (13), and is defined as

L∗
mρ(x, t) : = −∇ · (ρfu(x, t, u,m)) + β−1∆ρ

= ∇ ·
(
ρ∇

(
m ∗ ϕu + β−1(1 + log ρ)

))
where m ∈ P

(
R2

)
. For any test function φ ∈ C2

b (R2), (15)
is valid almost everywhere, and therefore, ρ is almost surely
a weak solution to the nonlinear Fokker-Planck-Kolmogorov
PDE initial value problem (9)-(10). ■

Notice that the Cauchy problem (9)-(10) involves a nonlinear
nonlocal PDE which in turn depends on control policy u.

The solution ρ(x, t), x ∈ R2, t ∈ [0,∞), for the Cauchy
problem (9)-(10) is understood in weak sense. In other
words, for all compactly supported smooth test functions
θ ∈ C∞

c

(
R2, [0,∞)

)
, the solution ρ(x, t) satisfies∫ ∞

0

∫
R2

(
∂θ

∂t
+Lρθ

)
ρ dx dt+

∫
R2

ρ0(x)θ(x, 0) dx = 0 (16)

where Lρ is defined as in (13). The reason why ρ satisfying
(16) for all θ ∈ C∞

c

(
R2, [0,∞)

)
is called a “weak solution”

of (9)-(10) is because such ρ may not be sufficiently smooth
to satisfy (9). In the next Section, we provide a variational
interpretation of the solution for problem (9)-(10).

IV. CHIPLET POPULATION DYNAMICS AS WASSERSTEIN
GRADIENT FLOW

The structure of the PDE in (9) motivates defining an
energy functional

Φ(ρ) := Φcc(ρ) + Φce(ρ) + Eρ

[
β−1 log ρ

]
= Eρ

[
ρ ∗ ϕu + β−1 log ρ

]
(17)

where Eρ denotes the expectation w.r.t. the PDF ρ, and

Φcc(ρ) :=

∫
R2×R2

ϕucc(x,y)ρ(x)ρ(y)dx dy, (18a)

Φce(ρ) :=

∫
R2×R2

ϕuce(x,y)ρ(x)ρ(y)dx dy. (18b)
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In (17), the term Eρ [ρ ∗ ϕu] quantifies the interaction en-
ergy while the term β−1Eρ [log ρ] (scaled negative entropy)
quantifies the internal energy. We have the following result.

Theorem 2. Let Φ : P2

(
R2

)
7→ R be the energy functional

given in (17). Then,
(i) the chiplet population dynamics given by (4), (5), (9) is
Wasserstein gradient flow of the functional Φ, i.e.,

∂ρ

∂t
= −∇WΦ(ρ). (19)

(ii) Φ is a Lyapunov functional that is decreasing along the
flow generated by (9), i.e., d

dtΦ ≤ 0.

Proof. (i) We start by noticing that the functional derivative

δΦ

δρ
= ρ ∗ ϕu + β−1(1 + log ρ). (20)

Next, we rewrite (9) as

∂ρ

∂t
= ∇ ·

(
ρ∇δΦ

δρ

)
, (21)

which by definition (3), yields (19).
(ii) To show that Φ is decreasing along the flow generated
by (9), we find

d

dt
Φ =

∫
δΦ

δρ

∂ρ

∂t
dx

(21)
=

∫
δΦ

δρ
∇ ·

(
ρ∇δΦ

δρ

)
dx

= −
∫ 〈

∇δΦ

δρ
, ρ∇δΦ

δρ

〉
dx

= −
∫ 〈

∇δΦ

δρ
,∇δΦ

δρ

〉
ρdx

= −Eρ

[∥∥∥∥∇δΦ

δρ

∥∥∥∥2
2

]
≤ 0.

(22)

In order to get from the second line to the third line of (22),
we used the duality1 between the gradient and divergence
operators, namely the fact that for differentiable scalar field
s(x) and vector field v(x), we have

⟨∇s,v⟩L2
+ ⟨s,∇ · v⟩L2

= 0, (23)

where ⟨p, q⟩L2
:=

∫
⟨p, q⟩dx. Specifically, in (22), s ≡ δΦ

δρ

and v ≡ ρ∇ δΦ
δρ . ■

Remark 2. Theorem 2 shows that for an admissible control
policy u ∈ U , the chiplet population dynamics (9)-(10) can
be seen as gradient descent of the energy functional Φ on
the manifold P2

(
R2

)
w.r.t. the Wasserstein metric. We point

out that the statement of Theorem 2 remains valid in the
deterministic limit, i.e., when the noise strength

√
2β−1 ↓ 0.

In that case, the functional Φ in (17) comprises of only the
interaction energy term Eρ [ρ ∗ ϕu], and δΦ

δρ = ρ ∗ϕu. Other
than this, the proof of Theorem 2 remains unchanged.

Remark 3. In the recent systems-control literature, the
Wasserstein gradient flow interpretations and related proxi-
mal algorithms [27], [28] for several linear and nonlinear

1In words, the gradient and the negative divergence are adjoint maps.

Fokker-Planck-Kolmogorov PDEs in prediction and density
control have appeared. New gradient flow interpretations
have also appeared [29]–[31] for well-known filtering equa-
tions. We next point out that the Wasserstein gradient flow
interpretation deduced in Theorem 2 allows approximating
the weak solution of (19) by recursive evaluation of a
Wasserstein proximal operator on the manifold P2

(
R2

)
.

Theorem 3. For a given control policy u ∈ U and po-
tentials (5), let Φ̂(ϱ, ϱk−1) := Eϱ

[
ϱk−1 ∗ ϕu + β−1 log ϱ

]
,

ϱ, ϱk−1 ∈ P2(R2), k ∈ N. Consider the Wasserstein
proximal recursion:

ϱk = proxW
τΦ̂

(ϱk−1)

:= arg inf
ϱ∈P2(R2)

{
1

2
W 2 (ϱ, ϱk−1) + τ Φ̂(ϱ, ϱk−1)

}
(24)

over discrete time tk−1 := (k − 1)τ with fixed step-size
τ > 0, and with initial condition ϱ0 ≡ ρ0 ∈ P2

(
R2

)
. Let

ρ(x, t) be the weak solution of (19) for the same u ∈ U and
the functional Φ given by (17)-(18). Using the sequence of
functions {ϱk−1}k∈N generated by the recursion (24), define
an interpolation ϱτ : R2 × [0,∞) 7→ [0,∞) as

ϱτ (x, t) := ϱk−1(x, τ) ∀ t ∈ [(k − 1)τ, kτ), k ∈ N.

Then ϱτ (x, t)
τ↓0−−→ ρ(x, t) in L1(R2) for all t ∈ [0,∞).

Proof. Follows the development in [32, Sec. 12.3–12.5]. ■

Remark 4. For a given control policy u ∈ U , the
Wasserstein proximal recursion (24) can in turn be
leveraged for numerically updating the PDFs over discrete
time with a small step-size τ . To illustrate Theorem (2),
we fixed a linear control policy u = ⟨k,x⟩ with gain
k := (8.5 × 10−3,−1 × 10−2)⊤, and solved (24) with
τ = 0.1 via [27, Algorithm 1] for n = 400 uniformly spaced
grid samples in the domain [−4 mm, 4 mm]

2 starting from
an initial bivariate Gaussian ρ0 = N

(
(0.5, 0.5)⊤, 0.1I2

)
.

Fig. 1 shows the corresponding decay of the energy
functional Φ in (17)-(18), computed using these PDFs
obtained from the Wasserstein proximal updates. As
in [6, Sec. III], our simulation used capacitances
Ccc(∥x − y∥2), Cce(∥x − y∥2) in (5b)-(5c) of the form
n∑

i=1

ai [erf((∥x− y∥2 + δ)/ci)− erf((∥x− y∥2 − δ)/ci)]

where erf(·) denotes the error function, the parameters
ai, ci are sampled uniformly random in [0, 1], and δ (half of
the electrode pitch) = 10 micrometer.

V. CONCLUSIONS

We presented a controlled mean filed model for the
population dynamics of chiplets, which are tiny (micron
sized or smaller) particles immersed in a dielectric liquid,
and are amenable to reshape into desired concentrations
for micro-assembly applications. In such applications, an
array of electrodes generate a space-time varying electric
potential landscape, thereby strategically inducing the col-
lective motion of the chiplet ensemble. Our derived model
quantifies how exactly the two types of nonlocal nonlinear
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Fig. 1: The energy functional Φ given by (17)-(18) versus
time for the simulation set up summarized in Remark 4.

interactions (viz. chiplet-to-chiplet and chiplet-to-electrode)
jointly induce a macroscopic dynamics in terms of the joint
PDF evolution of the chiplet ensemble. Our results establish
consistency of the model in a limiting sense, and demonstrate
that the resulting PDF evolution can be seen as an infinite
dimensional gradient descent of a Lyapunov-like energy
functional w.r.t. the Wasserstein metric.

While we focused our development for the derivation
of the controlled mean field model, our future work will
investigate the synthesis of optimal control of the chiplet joint
PDF w.r.t. suitable performance objective that allows steering
an initial joint PDF to a desired terminal joint PDF. Such
feedback steering problems are generalized variants of the
so-called Schrödinger bridge problem [33]. We note that the
feedback synthesis for density steering subject to a controlled
mean field nonlocal PDE is relatively less explored but has
started appearing in recent works; see e.g., [34]–[36].
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