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Abstract— We propose two new optimistic planning algo-
rithms for nonlinear hybrid-input systems, in which the input
has both a continuous and a discrete component, and the
discrete component must respect a dwell-time constraint. Both
algorithms select sets of input sequences for refinement at each
step, along with a continuous or discrete step to refine (split).
The dwell-time constraint means that the discrete splits must
keep the discrete mode constant if the required dwell-time is
not yet reached. Convergence rate guarantees are provided
for both algorithms, which show the dependency between the
near-optimality of the sequence returned and the computational
budget. The rates depend on a novel complexity measure of the
dwell-time constrained problem. We present simulation results
for two problems, an adaptive-quantization networked control
system and a model for the COVID pandemic.

Index Terms— Optimal control, hybrid-input systems,
switched systems

I. INTRODUCTION

We consider optimal control of hybrid-input systems in
which the discrete input is subject to a minimum dwell-
time constraint. A hybrid input has both a continuous and
a discrete component, and the dwell-time is the number of
steps elapsed before the discrete input changes its value.
The dwell-time constraint is motivated by preventing fast
switches, either due to physical limitations or to increase per-
formance [1], [7]. Hybrid-input systems occur e.g. in robotics
[3], industrial multiple-tanks systems [16] or the automo-
tive industry [13]. Moreover, in networked control systems
(NCS), the continuous input can be dynamically quantized
[12], where the quantization mode is the discrete input.
Several methods can be used to solve hybrid-input problems
without dwell-time constraints, among which branch-and-
bound approaches [3], switching control [14], or MPC [16].
Optimal control of switched systems is also presented in
[9], [18] (see also references therein), which however do not
consider hybrid inputs or dwell-time constraints. For linear
dynamics, [4] jointly designs a dwell-time constrained mode
sequence and the continuous input.

Differently from these methods, our focus here is on
hybrid-input systems with dwell-time constraints, in which
dynamics can be general nonlinear and cost functions arbi-
trary, as long as both are Lipschitz with respect to the state
and the continuous input. The latter input must be scalar, a
restriction that can be relaxed at extra computational cost. For
such systems, in a first main contribution of this paper (C1),
we propose two methods, called OPHIS∆ and SOPHIS∆:
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Optimistic Planning for Hybrid-Input Systems with dwell-
time, and Simultaneous OPHIS∆. Both algorithms produce
at each step an open-loop sequence, and are meant to be
applied in receding horizon. They are an extension to handle
dwell-time constraints of the existing OPHIS and SOPHIS
methods [10]. This extension is nontrivial since it impacts
the way the computational budget is used and thus also the
convergence to a near-optimal solution.

Both algorithms belong to the optimistic planning (OP)
class [8] and iteratively partition the space of infinitely
long hybrid-input sequences, by choosing for refinement
(splitting) one or several sets at each iteration. Dwell-time
constraints in OP were addressed before in problems with
only discrete inputs [2], or autonomous switched systems
[7]. In contrast, here we focus on hybrid-input systems. In
the methods proposed, for each chosen set, a time step is also
selected, together with the type of split (continuous or dis-
crete). The dwell-time constraint is handled during discrete
splits, by checking whether enough steps have passed since
the last switch (in which case the discrete input can take any
possible value) or the constraint is not yet satisfied (in which
case the discrete input must be equal to its previous value). In
OPHIS∆, a single set is expanded, one that has the maximum
upper bound on the value. SOPHIS∆ refines any sets that
may be optimistic regardless of the Lipschitz constants. Thus,
the dependence on these constants is eliminated from set
selection, but still remains in step selection. In practice, this
gives a performance boost for large horizons.

The second contribution (C2) is a convergence analysis of
(S)OPHIS∆, driven by a novel complexity measure for the
dwell-time constrained problem, which requires analyzing
the worst-case complexity. Exploiting this new measure, we
tailor results from [10] to find convergence rates of the two
methods to the optimal value as computation increases.

Finally, (C3) simulation results are given for two problems,
using SOPHIS∆. First, we consider an NCS framework in
which the network can be configured to transmit more or
less data. Switching between these modes cannot happen
too fast, due to an inability to change the configuration of
the network too often. Therefore, a dwell-time constraint
is imposed. To exemplify this general NCS framework, we
chose an inverted pendulum which must be brought upright.
The motor command is the continuous input, while the way
in which we quantize this value is the discrete input. Then,
we discuss a Susceptible-Infectious-Removed (SIR) model
[11], for pandemic evolution, where SOPHIS∆ is used to
determine an optimal strategy to vaccinate the population
and choose the level of quarantine needed. When only the
vaccination strategy is given as a discrete control input, we
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recover the results from [11], while adding a continuous input
to represent the level of quarantine gives better results.

Summarizing, we provide two novel algorithms for opti-
mal control of dwell-time constrained hybrid-input systems,
and analyze their relation between computation and near-
optimality. The key analytical novelty is the dwell-time
constraint on the discrete input, which adds complexity to
the structure of the tree expanded compared to [10], and
requires a closer look into how discrete and continuous
splits are interspersed. A different complexity measure is
therefore obtained than in [10], leading in turn to different
convergence rates. Compared to [2], the continuous input
makes the problem significantly more challenging. Finally,
the practical relevance of the algorithms is illustrated in two
interesting problems from very different domains.

Next, Section II formalizes the problem, and Section III
describes the two algorithms. The convergence rate analysis
is given in Section IV, followed by the simulation results in
Section V. Conclusions are presented in Section VI.

II. PRELIMINARIES

We consider a discrete-time nonlinear hybrid-input system:

xk+1 = f(xk, uk), uk = [ck, dk]
T (1)

where x ∈ X ⊆ Rm is the state and u ∈ U is the input,
which consists of both a continuous action ck ∈ R and
a discrete mode dk ∈ {0, 1, ..., p}, p ∈ N. Thus, U =
R × {0, 1, ..., p}. We define a switch as a change from
one value of d to another at consecutive steps. The dwell
time constraint ∆ is the number of steps during which the
discrete input must remain unchanged after a switch. We
also define a reward function ρ : X × U → R, representing
immediate performance (negative cost) for each state-action
pair (xk, uk): rk+1 = ρ(xk, uk). Given an initial state x0

and an infinitely-long sequence of actions (inputs) u∞ =
(u0, u1, ...), its infinite-horizon discounted value is:

v(u∞) =

∞∑
k=0

γkρ(xk, uk) (2)

with γ ∈ (0, 1) the discount factor (γ = 1 is excluded).
Denote by S∞

∆ the set of infinitely-long action sequences
that respect the dwell-time constraint. The objective is to find
the constrained optimal value v∗∆ := supu∞∈S∞

∆
v(u∞) and

a sequence u∞ ∈ S∞
∆ that achieves v∗∆. Note that generally

the constrained optimal value is worse than the unconstrained
one, so enforcing a dwell-time constraint may lead to a
performance loss. We make the following assumptions.

Assumption 1. (i) We have rk ∈ [0, 1] and ck ∈ [0, 1].
(ii) Both the dynamics and the rewards are Lipschitz
with respect to the state and the continuous action, i.e.,
∃Lf , Lp s.t. ∀x, x′ ∈ X and c, c′ ∈ [0, 1]:

∥f(x, [c, d]T )− f(x′, [c′, d]T )∥ ≤ Lf (∥x− x′∥+ |c− c′|)
|ρ(x, [c, d]T )− ρ(x′, [c′, d]T )| ≤ Lρ(∥x− x′∥+ |c− c′|)

(iii) γLf < 1.

Bounded costs like in (i) are typical in e.g. reinforcement
learning for control [17], and together with discounting they

ensure boundedness of the sequence values. The bounded
continuous action is needed because we will numerically
refine its interval, and is often naturally satisfied due to
physical limitations, while the unit interval can be reached
by scaling other intervals. Note that now U = ([0, 1] ×
{0, 1, ..., p}). In (ii), Lipschitz continuity is only imposed
w.r.t. the continuous component c of the action, whereas the
variation w.r.t. d can be arbitrary. Note also that (ii) allows
nondifferentiable dynamics and rewards, helping to model
e.g. saturations, actuator dead-zones, etc. and is not a greatly
restrictive property, since usual dynamics and cost functions
satisfy it. The relationship in (iii) means that the dynamics
should become contractive when combined with a shrink rate
equal to γ. This condition is the strongest among the three;
it may be relaxed in future work using stability, see [6].

The next property applies to constrained as well as uncon-
strained sequences.
Lemma 2. [10] For any two sequences u∞,u′

∞ ∈ U∞:

|v(u∞)− v(u′
∞)|

≤ Lρ

D−1∑
k=0

|ck − c′k|γk 1− (γLf )
D−k

1− γLf
+

γD

1− γ
(3)

where D is the first step k at which dk ̸= d′k.
The two terms on the right-hand side of the inequality cor-

respond to the continuous and discrete actions, respectively.

III. (S)OPHIS WITH A DWELL-TIME CONSTRAINT

This section introduces two new algorithms for the hybrid-
input problem with dwell-time constraints of Section II.
These algorithms are generalizations of (S)OPHIS [10], and
simplify to them when the problem is unconstrained (∆ =
1). Moreover, when the continuous input does not exist,
OPHIS∆ specializes to OPδ from [2]. The set and step
selection rules, as well as continuous-input refinements, are
similar to those for (S)OPHIS. The novelty in (S)OPHIS∆
is the way in which a discrete split is carried out, which is
different depending on whether the minimum dwell-time has
been surpassed. This will have non-trivial consequences for
the complexity of the algorithms in the analysis.

A set of hybrid inputs consists of a continuous-action
interval µ and a discrete action set σ for each step k:

Si =
∞∏
k=0

(µi,k, σi,k) (4)

where
∏

means the repeated application of the cross-product
×, and notation (µ, σ) means a set in which c ∈ µ and d ∈ σ.
For clarity, from now on we will refer to the set per step k,
(µi,k, σi,k), as a pair, and the infinite-horizon Si as a set.

For a set i, Di and Ci are respectively the discrete
and continuous horizons (numbers of refined discrete and
continuous steps). Any step k < Ci has already been refined
and its interval is thus strictly smaller than [0, 1], whereas
for all k ≥ Ci, µi,k = [0, 1]. For all k < Di, σi,k = di,k, a
single, definite value, and for all k ≥ Di, σi,k = {0, 1, ..., p}.
A sequence of actions in set i is then (ui,0, ui,1, ui,2, ...),
where ui,k =

[
ci,k, di,k

]T
and ci,k ∈ µi,k, di,k ∈ σi,k.
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Each set has a corresponding dwell-time ∆i, equal to the
number of steps since the last switch for the discrete input:

∆i = max
∆′

s.t. di,Di−∆′′ = di,Di
,∀∆

′′
≤ ∆

′
(5)

Consider now reward ri,k+1 = ρ(xi,k, ui,k), where we
refer by ci,k to the specific action that is at the center of
interval µi,k. Define then the sample value of a set i:

v(i) =

Di−1∑
k=0

γkri,k+1 (6)

Each continuous interval µi,k has a length ai,k. For k ≥ Ci,
ai,k = 1. For each set, we define its diameter δ(i) in the
semimetric of (3), so that:

sup
u∞,u′

∞∈Si
|v(u∞)− v(u′

∞)| ≤ δ(i)

δ(i) = Lρ

∑Di−1
k=0 ai,kγ

k 1−(γLf )
Di−k

1−γLf
+ γDi

1−γ

(7)

For compactness, denote the contribution of step k in the con-
tinuous part of the diameter with λk := Lρakγ

k 1−(γLf )
D−k

1−γLf
.

The algorithms work by iteratively (a) selecting sets to
refine, (b) choosing a continuous or discrete step to split,
and (c) performing a split accordingly. These 3 stages are
repeated as long as budget is still available and they are
detailed below, followed by an example. For both methods,
budget n is the allowed number of calls to f and ρ.
(a) Set selection:A set Si† is selected for refinement, differ-
ently in OPHIS∆/SOPHIS∆. In OPHIS∆, given the sample
value and diameter of set i, define the upper bound:

B(i) = v(i) + δ(i) (8)

so that v(u∞) ≤ B(i),∀u∞ ∈ Si, which follows from
Lemma 2. OPHIS∆ selects for refinement at each iteration
an optimistic set, by maximizing the upper bound:

i† = arg maxi∈AB(i) (9)
where A is the collection of all sets created so far.

In SOPHIS∆, we eliminate the dependency of the set
selection rule on the Lipschitz constants. To this end, we
expand at each iteration all sets that may be optimistic for any
value of this constant (note however that Assumption 1 (ii)
is still required). Denote by H the depth in the tree created
by both methods, equal to the total number of continuous
and discrete expansions done to reach a certain set. Since
all sets at depth H have the same shape, their diameters
δ(i) are the same, so the maximum-upper-bound set at that
depth can only be a set with the largest value v(i). Thus, at
each depth H that still has unexpanded nodes, we expand
set i† with the greatest v value among all sets at that depth.
We also configure a maximum depth Hmax(n) up to which
the expansions are allowed to continue, in order to prevent
expanding indefinitely. If Hmax grows fast with budget n, the
algorithm will favour deep searches, whereas a slower growth
with n focuses the search on breadth. See the convergence
rates in Section IV for more insight on how to select Hmax.
(b) Step and split type selection: After selecting a set Si† ,
we must choose a step to refine, and decide whether we
split discretely or continuously. To this end, we look at the

contribution of each step k up to Di† − 1 to the diameter
(7), as well as at the contribution γ

D
i†

1−γ of the first unrefined
step (at the discrete horizon). Whichever contribution is the
greatest dictates where we split. Thus:

k† = arg maxk∈{0,1,...,D
i†−1

}λ
†
k (10)

If λ†
k ≤ γ

D
i†

1−γ , we split discretely, at horizon Di† . Otherwise,
we make a continuous split, along step min(k†, Ci†). By
this rule, we always have Di ≥ Ci for any set i.

Step selection for SOPHIS∆ remains the same as for
OPHIS∆, so it will unfortunately still depend on the Lip-
schitz constant, and there is no way to avoid this.
(c) Performing a split: A continuous split can be done along
any step k ≤ Ci, by dividing the interval µi,k into M
equal pieces and thus generating M new sets. A discrete
split is always done at horizon Di. If ∆i < ∆, the dwell-
time constraint is active, and only one new set is added,
making discrete action dk definite and equal to dk−1, since
a switch from the value of dk−1 to another is not yet
possible. If ∆i ≥ ∆, the dwell-time constraint is satisfied,
any discrete action is eligible, and a discrete split adds p+1
new sets that make discrete action dk definite, one set for
each discrete possibility. Overall, a tree structure is created,
each node being a set. To each set chosen for refinement,
children are added corresponding to either distinct intervals
for continuous splits, or distinct discrete actions.
Example: An example of the constructed tree is given in
Figure 1, with M = 3, d ∈ {0, 1}, ∆ = 2. In the figure,
the full blue lines correspond to discrete splits, while the red
dotted lines mean continuous refinements. For the discrete
splits, 0 and 1 are added to the branches, to signify the last
discrete action. The grey-filled nodes correspond to sets that
have ∆i < ∆, and are therefore constrained. For those sets,
if a discrete split is chosen, the algorithm will only add one
child. Any children added by a continuous split of a grey
node will also be grey, because continuous action changes
do not impact the dwell-time.

To better understand set splitting, we start by looking
at the root node 0; all continuous intervals are [0, 1] and
all discrete actions are not yet defined. Then, by a dis-
crete split, we get two new sets, where the first discrete
action is defined as 0 for one set, and 1 for the other.
Sets 1 and 2 are now: S1 = ([0, 1], 0) × ([0, 1], {0, 1})∞
and S2 = ([0, 1], 1) × ([0, 1], {0, 1})∞. Both sets have
∆i = 0 and are unconstrained, because no switch has
yet occurred. Then, set 1 is split discretely, getting two
children nodes 3 and 4. Set 3 is unconstrained, since the
last two values of d are equal. However, set 4 is now
constrained, since a switch has been done. Say now that
when 4 is chosen for refinement, a continuous split on step
0 is done. This adds 3 constrained children, 7, 8, and 9,
each corresponding to a third of interval for the first contin-
uous step: S7 = ([0, 1/3], 0)× ([0, 1], 1)× ([0, 1], {0, 1})∞,
S8 = ([1/3, 2/3], 0) × ([0, 1], 1) × ([0, 1], {0, 1})∞, S9 =
([2/3, 1], 0)×([0, 1], 1)×([0, 1], {0, 1})∞. Since they inherit
the discrete input sequence from set 4, they all have ∆i = 1.
Therefore, when a discrete split is done next for sets 7,
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Fig. 1. Example of tree for M = 3, d ∈ {0, 1}, ∆ = 2

8, or 9, only one child corresponding to d1 = d0 = 1
is added; denote these children by 16, 17, and 18. Now,
∆16 = ∆17 = ∆18 = 2, so these nodes are no longer
constrained, and the next discrete split from these nodes will
again have 2 branches, for 0 and 1.

Due to space limits, the pseudocode of the two methods is
presented in supplementary material, at https://arxiv.
org/abs/2305.08760.

IV. ANALYSIS

In this section, we aim to prove that the sub-optimality
of the algorithms converges to 0 as budget n increases.
Due to the introduction of the minimum dwell-time, the
analysis from the unconstrained case [10] cannot be directly
applied. We must instead characterize the more complicated
tree expanded by the (S)OPHIS∆ algorithms. To do this, a
novel problem complexity measure (branching factor of the
constrained tree) is defined that takes the minimum dwell-
time into account. The range of values of this measure is
dictated by the largest possible tree. By exploiting the new
measure, we are then able to tailor the unconstrained-case
results to obtain convergence rates of the new algorithms.

First, recall that we want to find the constrained discounted
optimal value v∗∆, and a dwell-time respecting sequence i∗

that approximately achieves it. Similarly to [10], we have
that: v∗∆ − v(i∗) ≤ δmin (11)

i.e. the algorithm is near-optimal up to the smallest diameter
of any set expanded. Thus, deeper trees give better solutions.

The main part of the analysis focuses on the description
of the near-optimal constrained tree, a sub-tree of the full
tree that only contains optimistic nodes obeying the dwell-
time constraint. This subtree is in fact the one expanded
by (S)OPHIS∆, so characterizing its size is important as
it describes the amount of computationrequired. Define then
the set of constrained near-optimal nodes at depth H as:

∆T ∗
H ={i at H | v(i) + δH ≥ v∗∆,

and ∀k < Di for which dk−1 ̸= dk,

dk−j = dk−1, for 1 ≤ j ≤ ∆, k − j ≥ 0}
(12)

The constrained near-optimal tree has branching factor K:

Definition 3. The asymptotic branching factor is the smallest
K such that ∃C ≥ 1 for which |∆T ∗

H | ≤ CKH/∆, ∀H , where
|.| represents set cardinality.

The branching factor is a new measure of complexity for
the dwell-time constrained problem. In a simple problem,

K will be small, whereas a complex problem requires ex-
panding many nodes at each depth, leading to a large K. We
formalize this next.

Theorem 4. Branching factor K is in the range [K,K],
where K = 1 and K = max(∆(p+ 1),M∆)1/∆.
Proof. The smallest possible value K = 1 follows easily
from the case when the near-optimal tree consists of a single,
optimal path. To find the greatest possible value K, we look
at the situation in which all rewards are identical, therefore
all nodes at each depth have the same v and B and they are
all expanded. We want to find the maximum number of nodes
at depth H , taking into account the h continuous expansions
and the discrete number of splits D. Recall that a continuous
expansion adds M new nodes, and a discrete one adds
either p + 1 new nodes or just 1, respecting the dwell-time
constraint. The number of nodes at depth H = h+D does
not depend on the order of continuous and discrete splits.
We can therefore consider a different tree, which has first D
discrete expansions, all respecting the dwell-time constraint,
followed by h continuous splits. This tree will have the same
number of nodes at depth H as the original one. Reference
[2] proves that |∆T ∗

D| ≤ (p+1)2∆[∆(p+1)]D/∆. Therefore:

|∆T ∗
H | ≤ (p+ 1)2∆[∆(p+ 1)]D/∆Mh

≤ (p+ 1)2∆[∆(p+ 1)]H/∆MH (13)

So, K = max(∆(p+ 1),M∆)1/∆, and K ∈ [K,K].

Let us now compare the complexity of the dwell-time-
constrained problem with the unconstrained case from [10].
In that setting, the unconstrained tree T ∗

H at depth H has size
roughly mH , where the branching factor is m ∈ [1,max(p+
1,M)]. Compared to mH , the constrained tree size KH/∆

intuitively emphasizes that discrete choices are made once
every ∆ steps. Further, note that the full constrained tree
is strictly smaller than the full unconstrained tree, so when
expanding full trees using the same budget, the constrained
algorithms will reach deeper and have better near-optimality.
Now, this is not immediately visible in the formula, since
to extract an easy to interpret branching factor we had to
make some conservative replacements (both h and D by H).
Therefore, to get more insight, consider two cases. In case (i)
∆(p+ 1) ≫ M∆, so |∆T ∗

H | ≃ [∆(p+ 1)]H/∆, significantly
smaller than |T ∗

H | = (p+1)H . In other words, since there are
many discrete actions, the reduction due to the constraints is
significant. Case (ii) M ≫ p+1, so |∆T ∗

H | ≃ MH , the same
as |T ∗

H |; since continuous expansions dominate, the reduced
number of discrete children is less important.

The above applies when in both types of problems (con-
strained and unconstrained), the full tree is expanded. In
general, when the two branching factors do not have their
maximal values, a clear relationship between the complexity
of the constrained and unconstrained problems cannot be
established. It could be that the introduction of the constraints
makes a constrained-optimal solution easier to distinguish,
hence reducing the branching factor/complexity; or, con-
versely, the constraint could eliminate an optimal solution
that would have been easy to find, increasing complexity.
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Next, denote m = K1/∆, meaning that m ∈
[1,max(∆(p+1),M∆)]. We replace this equivalent branch-
ing factor in Theorems 11 and 13 of [10] to get convergence
rates of (S)OPHIS∆, as follows. Recall that i∗ denotes the
sequence returned by either algorithm; and define f(n) =
Õ(g(n)) to mean that f(n) ≤ a(log g(n))bg(n) for some
a, b > 0; i.e. f behaves like g up to a logarithmic factor.
Convergence rate for OPHIS∆: For large budget n:

a) for K > 1: v∗∆ − v(i∗) = Õ

(
γ

√
2τ2(τ∗−1)∆ log n

τ∗2 log K

)
b) for K = 1: v∗∆ − v(i∗) = Õ

(
γn1/4 τ

τ∗

√
2(τ∗−1)

ZC

)
where τ = log(M)

log(1/γ) and τ∗ = ⌈τ⌉.
Convergence rate for SOPHIS∆: For large n:
a) for K > 1, we take Hmax = nϵ, with ϵ ∈ (0, 0.5) and we
have:
v∗∆ − v(i∗) = Õ

(
γˆ
(

τ
τ∗

√
(τ∗−1)(1−2ϵ)∆ logn

logK

))
b) for K = 1, we take Hmax = n1/3, and we have:

v∗∆ − v(i∗) = Õ

(
γˆ
(
n1/6 τ

τ∗

√
2(τ∗ − 1)min{ 1

CZ , 1}
))

where Z = max(M,p+ 1).
These results say that the sub-optimalities of both

OPHIS∆ and SOPHIS∆ converge to 0 as n → ∞. The
simpler the problem (smaller K), the faster the convergence
to 0. In particular, for K = 1 convergence is exponential
in a power of n. For K > 1, the multiplication by ∆
at the numerator of the power of γ for both algorithms
intuitively says that all other things being equal, a larger
dwell-time leads to faster convergence. SOPHIS∆ converges
a bit slower than OPHIS∆, shown by the different powers
of n for K = 1, and by the appearance of ϵ for K > 1.
Further, the results point to a rule for selecting Hmax: try
first with Hmax = n1/3, and if that does not work well, take
Hmax = nϵ and tune ϵ ∈ (0, 0.5); for small ϵ, SOPHIS∆ is
nearly as fast as OPHIS∆. Note that SOPHIS∆ expands sets
for all possible Lipschitz constant values, which intuitively
means that it implicitly optimizes the Lipschitz constant for
the set selection component. In practice, when larger budgets
are available, SOPHIS∆ is preferred, whereas for smaller
budgets, the OPHIS∆ approach of focusing this limited
budget on one value of the Lipschitz constant still pays off.

V. SIMULATION RESULTS

In this section, we present two examples, with the simu-
lations done with SOPHIS∆, since it provides better results
than OPHIS∆ for long time horizons. The first problem is a
quantized NCS framework, applied to an inverted pendulum,
and the second a model of the COVID pandemic evolution.
For both examples, the algorithm works in receding horizon,
so at each step in time, we use it to get an open-loop sequence
of actions, from which we apply the first action.

A. Quantized NCS framework

The first problem concerns a Networked Control System
(NCS), in which we must transmit commands to an actuator
via a network. The precision of the transmitted values is
important for performance. By default, many bits are needed
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Fig. 2. Inverted pendulum: State showing the swingup required to reach
the target state, quantized continuous inputs, and quantization modes in time

in order to transfer a precise value. However, a network
with many bits is costly, so we consider sending a more
precise value when necessary, and a rougher quantization the
rest of the time. This determines a hybrid-input framework,
where the value to be transmitted is the continuous input,
and the mode of the network (quantization level) is the
discrete input, chosen adaptively by the algorithm. Moreover,
a dwell time constraint is needed because we cannot switch
the configuration of the network too fast.

In the algorithms, we use M = 3, and therefore, following
the tree structure, we use for convenience trits instead of bits.
One trit means the left, center or right interval in a continuous
split, and needs 2 bits to be represented. On the actuator’s
side, a decoding will be made to get the actual control value.
If t trits have been sent, this means the interval [0, 1] has been
split t times. For example, if we transmit the sequence of 3
trits: left, center, right, we get first [0, 1/3], then [1/9, 2/9],
and in the end [5/27, 2/9]. The actual control value will be
the center of this last interval, 11/54.

This NCS framework is general: it works for any single-
continuous-input system. Next, we apply it to an inverted
pendulum, with the nonlinear model given as α̈ = 1/J ·
[mgl sin(α) − bα̇ − K2α̇/R + Ku/R], with J = 1.91 ·
10−4kgm2, m = 0.055kg, g = 9.81m/s2, l = 0.042m,
b = 3 · 10−6Nms/rad, K = 0.0536Nm/A, R = 9.5Ω. We
have two states, the angle α and the angular velocity α̇.
The angle wraps in [−π, π] and α̇ ∈ [−15π, 15π]. The DC
motor voltage u ∈ [−3, 3]V . The sample time is Ts = 0.05s
and we use Euler integration. We use the quadratic reward
function ρ(xk+1, uc) = 1 − 0.75x2

1,k+1/π
2 − 0.25(uc)

2/9.
We start from x0 = [−π, 0] (pendulum down) and want
to get to xf = [0, 0] (pendulum up). We set our discrete
modes to either 0 – which means sending a sufficiently large
number of trits (60) to represent the continuous value after
any number of splits made in practice by the algorithms, or 1
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– sending just one trit. We use SOPHIS∆ with M = 3, Lρ =
1.2, Lf = 0.8, γ = 0.8, n = 20000. As baselines, we look
at always sending one trit or 60. Figure 2 shows the states,
the applied quantized control voltage, and the modes over
time for 4 cases: one trit always, adaptive quantization with
dwell-time 4, adaptive quantization with dwell-time 1, and 60
trits always. Constantly using large amount of trits of course
gives the best results, but with high network usage. However,
the results with adaptive quantization are very similar, and
having ∆ = 4 does not lead to a loss in performance
compared to ∆ = 1, while switching is significantly reduced.
Transmitting only one trit all the time degrades the precision
of the continuous input and reduces performance. Note that
the unquantized input (not shown) is approximately the same
as the quantized one, so the algorithm does not waste time
refining it more than needed.
B. Susceptible-Infectious-Removed (SIR) model

We apply SOPHIS∆ for a pandemic evolution model, to
design the vaccination and quarantine strategy. The model is
taken from [11] and its states are: the number of susceptible
(S), infectious (I), removed (R) people. In addition, when
we include the vaccination control, a new state is introduced:
vaccinated (W ) and the model becomes SIRW. The control
variable is ud ∈ {0, 1}, with 0 meaning no vaccines are
administered, and 1 that the maximum percentage of S
persons are vaccinated. First, we use OPD [2] (the method
OPHIS specializes to when there is no continuous action)
just to validate the correctness of our class of methods. As
in [11], we take the values of the parameters: βbaseline =
0.3566, γ = 0.0858 and start from the same initial condi-
tions: In0 = 0.0038, Sn0 = 1−In0, Rn0 = 0,Wn0 = 0. With
OPD, we recover the same results as [11], for the mono-
objective setting there (achieving the minimum number of
infected persons). Then, we add the continuous control
variable, equivalent to the level of quarantine. A higher level
decreases the infection rate of the virus β [15]. We set the
new value as βbaseline−0.5∗uc. The reward function used is
r = 1−0.9998I−0.0001uc−0.0001ud, focusing mostly on
reducing the number of infections, but still including small
penalties for vaccination (due to its costs) and quarantine (as
it impacts the economy). The simulation results for dwell-
time 2 are given in Figure 3, in which the algorithm works
well. Compared to

∫ 70

0
I = 8945.42, the objective function

in [11], we now get 6167.6. However, recall that we use an
additional control variable, which helps reducing the number
of infections. In the unconstrained case, we get 5762.5.1

VI. CONCLUSION

This work presented two new optimistic planning algo-
rithms, OPHIS∆ and SOPHIS∆, suited for hybrid-input
systems in which the discrete input must respect a dwell-
time constraint. The analysis proved that the sub-optimality
for each algorithm converges to 0, as the budget increases.
Two simulation examples were given. In the future, we plan
to analyze the stability of the algorithms.

1SOPHIS∆ also outperforms [5] on the SIR model in that paper, which
natively has 2 control variables. Details are skipped due to space limits.
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Fig. 3. SIR: States and inputs in time with dwell-time 2
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