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Abstract— In this article, we give a condition for the global
controllability of affine nonlinear control systems with drifts
on Euclidean spaces. Under regularity assumptions, the con-
dition is necessary and sufficient in the codimension-1 and
codimension-2 cases, and holds for systems of higher codi-
mensions under mild restrictions. We then investigate motion
planning problems for codimension-1 affine systems, and give
proof of the global existence of the lift to control curves
for certain drifted systems using the homotopy continuation
method.

I. INTRODUCTION

Finding necessary and sufficient conditions for the global
controllability of affine control systems

ẋ(t) = f |x(t) +
m∑
i=1

ui(t)gi|x(t) (1)

with smooth vector fields f , {gi}mi=1 and measurable, essen-
tially bounded controls {ui}mi=1 is a basic problem in control
theory. It has been investigated since the 1930s when Chow
and Rachevskii provided bracket-generating conditions [1]
for the global controllability of the driftless version of (1) as

ẋ(t) =

m∑
i=1

ui(t)gi|x(t), (2)

where {ui}mi=1, {gi}mi=1 are as in (1). The global controlla-
bility condition of (1) has been solved in some simple cases,
such as when the drift vector field f lies in the Lie algebra
generated by {gi}mi=1 [2], for planar systems [19], and for
codimension-1 systems under assumptions requiring global
generating families [14]. The general case, however, remains
open.

Suppose the system (1) is defined on a manifold M . For
∀p ∈M , the reachable set of p is defined as

A(p) :=
⋃
T>0

A(p, T ),
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where

A(p, T ) :=

{
x(T )

∣∣∣∣∣ ∃ui ∈ L1([0, T ],R), i = 1, · · · ,m,
(x(t), u(t)) satisfying (1), x(0) = p

}
.

WhenA(p) contains an open set with respect to the topology
of M , we say that the system (1) is strongly attainable at p.
If for ∀p ∈M , A(p) =M , we call (1) globally controllable.

For globally controllable driftless affine systems, the mo-
tion planning problem has been widely considered. Its basic
objective is: given any pair (p, q) in the state space of a
control system, to design a control that yields an admissible
trajectory steering p to q. Several methods have been pro-
posed for this problem, such as the nilpotent approximation
[11], the loop method [18], and steering with sinusoidal
controllers [15]. However, there have been few investigations
of motion planning problems for drifted affine systems
due to the difficulty of dealing with drift and the lack of
controllability conditions [23].

Over the past thirty years, the homotopy continuation
method (HCM) introduced by [21] has been applied to
motion planning of affine systems and has shown good
performance in numerical practice [3]. The basic idea of
HCM for driftless affine systems is to lift a curve in M
to one in the control space U through the endpoint map
Ep : U → M , u 7→ γu,p(1), where γu,p is the solution
of the control system (2) corresponding to u starting from
p ∈ M . If a path γ(t) connecting q0 and q on M can be
lifted through Ep to a path ζ on U starting from u0, satisfying
Ep(u0) = q0, that is,

∃ζ : [0, 1]→ U , s.t. γ(t) = Ep(ζ(t)), ∀t ∈ [0, 1],

then the trajectory ζ(1) := (u∗1(t), · · · , u∗m(t)) ∈ U will
give the required controls u∗1(t), · · · , u∗m(t) driving system
(1) from p to q by time t = 1.

A sufficient condition for the curve γ(t) to be lifted is
the existence of the solution to the following path-lifting
equation (PLE):

DEp|ζ(t)
dζ(t)

dt
=

dγ(t)

dt
. (3)

If (3) admits a global solution on [0, 1], then the motion
planning problem is solved by u(t) = ζ(1) (numerically, (3)
can be solved by a finite-dimensional approximation of the
control space [3]). Thus, the problem is reduced to avoiding
singular points of DEp and finding conditions on the vector
fields of (2) for the PLE to be solved globally on [0, 1]. It was
proved [10] that if the Moore-Penrose inverse of DEp at u,
denoted by P (u), has linear growth of ‖u‖ on any compact
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set, then (3) is globally solved on [0, 1]. Such conditions
are satisfied for some special types of driftless systems [10],
[22], but so far there are no known results on the application
of HCM to drifted systems. This is because the domain of
the endpoint map should be changed to a product space for
drifted cases, and due to the existence of the drift, the time
parameter cannot be restricted to [0, 1] as in the driftless case,
which will also change the PLE consequently.

In this article, we consider affine systems defined on Rn
with nonzero drifts. We will show that when the control Lie
algebras of the corresponding driftless systems are regular
and the controls are L2, the sufficient conditions given in [8,
Theorem 6.1] are also necessary for global controllability of
systems of codimension 1, and of systems of codimension
2 or higher under certain restrictions. We then discuss the
motion planning problems of globally controllable affine
systems. When a system of codimension 1 allows globally
generating vector fields, we provide a simple steering algo-
rithm; and for general drifted systems, we adopt the HCM
and show the global existence of the lifting curve when the
vector fields satisfy certain restrictions.

II. NECESSARY AND SUFFICIENT CONDITIONS FOR
CONTROLLABILITY: CODIMENSION 1

Consider the system (1) defined on Rn. From now on
we denote by G := Lie{gi} the Lie algebra generated by
{gi}mi=1, i.e. the smallest Lie algebra containing {gi}mi=1. We
make the following assumption:
(A1) G is regular, i.e. dimG|x = Const, ∀x ∈ Rn.

Let M be a manifold and ∆ an involutive distribution
on M (in this article we assume that all distributions are
smooth). Given x ∈ M , denote by I∆(x) the maximal
integral submanifold passing through x corresponding to ∆.
Under the assumption (A1), we define the codimension of the
system (1) as n−dimG, and if the system is of codimension
k, then every integral manifold IG(x) is an (n − k)-
dimensional injectively immersed edgeless submanifold in
Rn, giving Rn a codimension-k foliation structure [6], where
every maximal integral submanifold is a leaf. In fact, IG(x)
is the reachable set of x corresponding to the driftless system
(2). This is the classical Chow-Rashevskii theorem [1].

Given a manifold M and a vector field X ∈ X(M),
denote by ψXt (x) the flow of X starting from x ∈ M after
time t. The critical question in the problem of controllability
of affine nonlinear system (1) is whether {ψft (x)}t<0 can
intersect the reachable set of x (we assume that all vector
fields mentioned are complete).

Lemma 2.1: Consider the control system (1) of codimen-
sion 1. Denote by Af (x) the reachable set of a state x ∈M
with respect to (1). Consider the following system

ẋ(t) = −f |x(t) +
m∑
i=1

ui(t)gi|x(t) (4)

where f , {gi} are vector fields defined as in (1). Denote by
A−f (x) the reachable set of x ∈ M with respect to (4).
Then the following conditions are equivalent:

1) The system (1) is globally controllable;
2) The system (4) is globally controllable;
3) Af (p)∩A−f (p) 6= ∅, ∀p ∈M .

Proof: ∀p, q ∈ M , q ∈ A−f (p) is equivalent to
p ∈ Af (q), hence A−f (p) = M , ∀p ∈ M is equivalent
to Af (p) =M , ∀x ∈M .

On the other hand, if Af (p)∩A−f (p) 6= ∅, then there
exists a control u : [0, 1] → R s.t. the trajectory γu :
[0, T ]→M corresponding to u satisfies γu(0) = γu(T ) = p.
Choose a neighbourhood U of p such that there exists a
point y ∈ γu([0, T ]) satisfying q /∈ Af (p) ∩ U ; then there
is a neighbourhood V of p such that V ⊂ Af (q). Also note
that Af (q) ⊂ Af (p), one can see that Af (p) contains an
open neighborhood of p, hence by the well known fact that
pointwise local controllability implies global controllability
[13], the system is globally controllable.

Proposition 2.2: Consider system (1) of codimension 1.
Suppose ∃p ∈ M such that there is a open neighbourhood
Up of p ∈M such that IG(p) is dense in Up, then the system
is globally controllable from any point q1 ∈ Up to another
point q2 ∈ Up, if and only if, the system is bracket-generating
at each point in Ux.

Proof: We need to show that Af (q)∩A−f (q) 6= ∅,
∀q ∈ Up. Since IG(p) is dense in an open set of M ,
Af (q) and A−f (q) are both dense in Up; also they both
have nonempty interior with respect to the topology of M ,
so there are two open and dense subsets in Up, and they must
intersect. The conclusion follows by Lemma 2.1.

Therefore, for the case where (1) is defined over Rn, we
make another assumption:
(A2) For any open set U ⊂ Rn, IG(x) is not dense in U .
This is equivalent to say that IG(x) is an embedding in Rn,
∀x ∈ Rn [17, Lemma 3.2].

The following lemma is crucial for our proof of the
controllability criteria.

Lemma 2.3: A maximal integral manifold corresponding
to a codimension-1 involutive distribution satisfying (A2)
separates Rn into at least two connected components.

Proof: According to [12], consider an immersion f :
M → N , where M and N are edgeless manifolds of
dimensions n− 1 and n, respectively, if the inverse images
of compact sets are compact and H1(N ;Z/2Z) = 0, then
N\f(M) is not connected. In our context, since the codi-
mension 1 integral manifolds satisfying (A2) are embeddings
and H1(Rn;Z/2Z) = 0, they satisfy these conditions and
hence Rn\IG(x) is not connected.

We call a system (1) regular if its corresponding Lie
algebra G satisfies both (A1) and (A2). The key argument
of the controllability criteria is based on the so-called shift
of the vector fields of regular systems, defined as follows.

Definition 2.4 ([8]): Let M be a smooth manifold and ∆
a distribution on M . Given a vector field X ∈ X(M), by
X ∈ ∆ we mean that X|x ∈ ∆|x, ∀x ∈M .

1) Given x, y ∈ M and tangent vectors ξ ∈ TxM , η ∈
TyM , if ∃g1, · · · , gm ∈ ∆, t1, · · · , tm > 0, s.t.

x = ϕgmtm · · ·ϕ
g1
t1 (y), ξ = (ϕgmtm )∗ · · · (ϕg1t1 )∗(η), (5)
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then ξ is called the ∆-shift of η from y, denoted by
ξ = ∆∗(y, x)(η).

2) Given a subset S ⊂ X(M), the ∆-shift of S to a point
x is defined as

∆∗S(x) := {∆∗(y, x)(S|y)|y ∈ I∆(x)} ⊂ TxM.
(6)

3) A vector field X is called ∆-invariant, if ∆∗X(x) =
X|x, ∀x ∈ M . This is equivalent to that [X,Y ] = 0,
∀Y ∈ ∆.

With the above notions, now we state the main theorem
for codimension-1 cases.

Theorem 2.5: Consider the system (1) of codimension 1
satisfying (A1)(A2). It is globally controllable if and only if

0 ∈ IntCon{G∗f(x), G|x}, ∀x ∈ Rn, (7)

where Con is the convex hull of vectors in TxM .
Proof: The sufficiency was proved in [8, Theorem 6.1].

Here we show the necessity.
Suppose the condition (7) is not satisfied, then ∀x ∈ Rn

there exists a non-vanishing G-invariant smooth vector field
ξ on IG(x) such that ∀x ∈ Rn, f |x ∈ G∗|x, where G∗|x
is the complement in TxRn of the connected component of
TxRn\G|x containing ξ|x; which is denoted as f ∈ G∗ for
short.

Since according to Lemma 2.3 the whole space is sepa-
rated by IG(x), and ξ as a normal vector field actually gives
an orientation of IG(x), one can see that a trajectory of (1)
starting from IG(x) cannot cross it in positive time, since
f ∈ G∗ means that the direction of f on IG(x) is either
zero or equal to the orientation normal vector field. So the
system is not globally controllable.

Remark 2.6: The condition (7) aims to separate Af (x)
and A−f (x), the latter of which is the negative-time reach-
able set of (1). By the Baker-Campell-Hausdorff formula, (7)
is actually equivalent to

0 ∈ IntCon{G|x, adGf |x}, ∀x ∈ Rn. (8)
Due to topological reasons, we cannot always find n − 1
non-vanishing smooth vector fields that pointwise generate a
codimension-1 distribution. But when this is achievable, the
above criterion (7) can be simplified to a form that is easier
to verify.

Corollary 2.7: Consider a codimension-1 system satisfy-
ing (A1)(A2). If there exist n− 1 vector fields g̃1, · · · , g̃n−1
such that ∀x ∈ Rn, G|x = SpanR{g̃1|x, · · · , g̃n−1|x},
construct the following criterion function

C(x) := det(f |x, g̃1|x, · · · , g̃n−1|x), (9)

then the system is globally controllable if and only if for
∀x ∈ Rn, ∃y1, y2 ∈ IG(x), s.t. C(y1)C(y2) < 0, i.e. the
criterion function (9) changes its sign on each leaf.

The proof is straightforward by noticing that (9) aims to
verify whether f gives an orientation of the submanifold
IG(x). This corollary this corollary confirms partly the
conjectures in [20].

III. CONDITIONS FOR CONTROLLABILITY:
CODIMENSION k > 1

Now consider systems of higher codimensions. As an
analogue of (A2), to ensure that integral manifolds are em-
beddings, we make the following assumption on the system
(1).

(A2’) ∀p ∈ Rn, given any (n − k + 1)-dimensional cube
in Rn, IG(p) is not dense in it with respect to the
(n− k + 1)-dimensional Euclidean topology.

Remark 3.1: In fact, one may change (A2’) to a weaker
form: if for ∀x, IG(x) is of finite depth [16], then each of
them is an embedding (while the converse is not always true).

We will show that Theorem 2.5 still holds for
codimension-2 systems under the assumption (A2’), and the
condition (7) is necessary and sufficient for global control-
lability of codimension k (k > 2) systems under certain
restrictions.

First, we define the supporting distribution of vector fields.
Definition 3.2: Consider a codimension-k distribution D

on a manifold M , denote its complement in X(M) by D⊥,
i.e. D|x ⊕ D⊥|x = TxM , ∀x ∈ M . Given a (k − 1)-
dimensional distribution S ⊂ D⊥, a set F ⊂ X(M) is called
S-supported along D if S is D-invariant and there exists a D-
invariant non-vanishing smooth vector field ξ ∈ H\S, such
that ∀x ∈ U , F |x ⊂ S+|x, where S+|x is the complement
in D⊥ of the connected component of (D⊥\S)|x containing
ξ|x, and this is briefly denoted as f ∈ S+.

Since Con{G∗f(x), G|x} is an affine subspace in TxM ,
one can see that under the assumption (A1) any system (1)
which does not satisfy (7) will allow a supporting distribution
S along G. Further, we have the following statement on the
necessity of (7) for a class of codimension-k systems.

Theorem 3.3: Consider the system (1) of codimension k
satisfying (A1)(A2’). If the condition (7) is not satisfied and
for the supporting distribution S we have

f |x /∈ Lie(S)|x, ∀x ∈ Rn, (10)

then the system is not globally controllable.
Proof: If f /∈ Lie(S), then G ⊕ S is a codimension-1

involutive distribution; therefore each of its maximal integral
manifolds will separate Rn into two components. By similar
arguments as in the proof of Theorem 2.5, since f is S-
supported along G, a trajectory starting from x ∈ Rn will
remain in one connected component of Rn\IG⊕S(x) and its
boundary, preventing the system from being controllable.

Since 1-dimensional distributions are always involutive,
we have the following corollary immediately.

Corollary 3.4: For codimension-2 systems satisfying
(A1)(A2’), the condition (7) is necessary and sufficient for
global controllability.

We give an example of codimension 3 to illustrate the
necessity of the condition.

Example 3.5: Consider a system (1) in R6, where m = 2,
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and

g1(x1, · · · , x6) = (1, 0, 0, 0, 0, 0)T,

g2(x1, · · · , x6) = (0, 1, x1, 0, 0, 0)
T,

f(x1, · · · , x6) = (0, 0, 0, 1, x1, x
2
1)

T,

one can check that it satisfies (A1)(A2). To be specific, G =
Lie{g1, g2} = SpanR{(1, 0, 0, 0, 0, 0)T, (0, 1, 0, 0, 0, 0)T,
(0, 0, 1, 0, 0, 0)T}, dimG = 3; SpanR{f,Lie{g1, g2, f}} =
R6. That is to say, this system is strongly attainable; however,
choosing supporting distribution as S := (0, 0, 1, 1, 0, 0)T, it
follows that the system satisfies (10) but does not satisfy
(7) by Remark 2.6. We can check that (0, 0, 0,−1, 0, 0)T
does not belong to the reachable set of (0, 0, 0, 0, 0, 0), since
(0, 0, 0, 0, 0, 0) is not in the interior of Con{g1, g2, adGf}.

Remark 3.6: Consider the control-affine system (1) of
codimension k satisfying (A1)(A2). If (7) is not satisfied
and the corresponding supporting distribution S of f is
involutive, then ∀x ∈ Rn, there exists a neighbourhood of
IG(x) such that all the leaves in this neighbourhood are
partially ordered by the flow of f . However, if the supporting
distribution Lie-generates f , this local partial order on the
foliation cannot be properly defined, since in that case, f
may be recurrent [5], allowing a point to move from leaves
of lower order to those of higher order.

Note that the topological structure of a manifold tangent
to a distribution S may be complicated when S is not
involutive; [4] has shown that the Hausdorff dimension of
a k-dimensional characteristic submanifold tangent to a k-
dimensional non-involutive distribution is less than k−1, so,
in that case, the product manifold will certainly not separate
the whole state space.

Finally, as the sufficiency of the condition (7) for global
controllability has been proved for codimension-k systems
[8], we conjecture that the condition in theorem 3.3 is the
one needs to make (7) necessary and sufficient.

Conjecture 3.7: Consider (1) satisfying (A1)(A2’). If (7)
is not satisfied and for the corresponding supporting distri-
bution S one has f ∈ Lie(S), then the system is globally
controllable.

The argument above can be applied analogously to
switched systems, making the conditions in [7] necessary
and sufficient. We state the conclusion as follows.

Theorem 3.8: Consider a switched control-affine system

ẋ(t) = fσ(t)|x(t) +
m∑
i=1

ui(t)g
σ(t)
i |x(t) (11)

where σ : [0,+∞} → {1, · · · , N} is a measurable
right-continuous mapping called the switching signal, and
{f j}Nj=1, {gji }

j=1,··· ,N
i=1,··· ,m are smooth vector fields on Rn. Let

G := Lie{gji }
j=1,··· ,N
i=1,··· ,m , F := {f j}Nj=1, then if G satisfies

assumptions (A1)(A2’) and

0 ∈ IntCon{G∗F (x), G|x}, ∀x ∈ Rn, (12)

then (12) is necessary and sufficient for global controllability
of system (11) of codimension-1 and codimension-2, and

when the system (11) is regular of codimension k > 2
satisfying

F |x * Lie(S)|x, ∀x ∈ Rn, (13)

the system satisfies (12) if it is globally controllable.

IV. MOTION PLANNING OF DRIFTED CONTROL-AFFINE
SYSTEMS

In this section, we consider motion planning problems of
the system (1). For a class of codimension-1 systems, we
directly lift curves in state spaces to control spaces in two
steps; as for general affine systems, we extend the HCM to
some special kinds of strong bracket-generating drifted affine
systems.

From now on, assume the manifold M on which the
control system (1) is defined to be diffeomorphic to Rn with
Euclidean topology.

A. Simplest Case of Codimension 1

The simplest case is as in Corollary 2.7: the distribution is
globally generated by n− 1 non-vanishing vector fields, and
we assume that the points where f ∈ G form a connected
set of zero measure. Given x ∈ M and an orientation of
IG(x), the whole space is then divided into three parts: the
set above IG(x), the set beneath IG(x) with f along the
positive orientation, and the set beneath IG(x) with f along
the negative orientation.

When the starting and ending points are on different sides
of the separating plane, we design the algorithm in several
steps: first, drive the trajectory along the direction where
C(x) diminishes; when the orientation of the drift vector
field is reversed, then for any two points p, q lying in a
partially ordered foliated space as described in Remark 3.6
and for any curve γ(t) connecting p and q flowing from
higher order slices to lower order ones, that is to say, one
may lift it to an admissible trajectory of 1.

Taking 〈·, ·〉 as conventional Euclidean inner product, a
curve γ : [0, T ] → M is called along a vector field f if
it satisfies 〈γ̇(t), f |γ(t)〉 > 0, ∀t > 0. We restate the above
algorithm driving the trajectory from a point x above IG(x)
to a point y below it. Assume the controls are bounded by
K, and the sampling time is T .

1) Step 1. Find a point p ∈ {q|C(q) = 0}, draw a curve
γ1 : [0, 1]→M along f connecting x and p;

2) Step 2. Draw a curve γ2 : [0, 1] → M along f
connecting p and y.

The concatenation of γ1, γ2 denoted by γ, will be an
admissible curve of (1) and giving the control value at each
point as the coefficients of the linear span of γ̇(t) − f |γ(t)
with respect to {gi|γ(t)}mi=1. In application, one may choose
the curves γ(t) as bounded, and there is a tradeoff between
the bound of controls and the reaching time.

Example 4.1: Consider a system (1) with m = 3 in R4, let
the coordinate be (x1, x2, x3, x4), the controls lie in [−2, 2],
and

g1 = (1, 0, 0, 0), g2 = (0, 1, x2, 0),

g3 = (0, 0, 1, 0), f = (0, 0, 1, x3).
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One can check that the zeros of the criterion function (9) is
H := {(x1, x2, x3, x4) ∈ R4|x3 = 0}. If we want to steer the
system from x = (0, 0, 1, 1) to y = (0, 0,−2,−1), which are
points lying on different sides of the hypersurface spanned by
g1, g2, g3, then using the two-step algorithm above, we may
first let u(t) = (0, 0,−2) to drive x to p = (0, 0, 0, 32 ) ∈ H
during time t ∈ [0, 1], and let u(t) = (0, 0,− 9

5 ) drive p to y
during time t ∈ [1, 72 ].

B. HCM For Drifted Affine Systems

If the system (1) is globally controllable, while the distri-
bution G is regular but not globally generated, we use the
HCM to compute the steering control, since the solution to
the HLE exists globally on the domain.

We will show that the argument in [10][22] still holds for
a class of drifted systems.

In this section we make the following assumptions:
(A3) The driftless part of the system (1) is strong bracket-

generating [10], i.e. ∀η ∈ Rm\{0}, ∀x ∈ Rn, denote
η · g :=

∑m
i=1 ηigi,

Span
{
{gi|x}mi=1, {[η · g, gi]|x}mi=1

}
= TxM ;

(A4) The drift vector field f satisfies

[f, gi]|x ∈ Span{gi|x}mi=1, i = 1, · · · ,m.

We define the endpoint map of system (1) with respect to
p ∈ M as Ep : (0,+∞) × U → M , (T, u(t)) 7→ γu,p(T ),
where γu,p : [0, T ] → M is the trajectory of the system (1)
starting at p and corresponding to u(t).

The tangent of the exponential map is

DEp|T,u(τ, v)
=

∫ 1

0
τ(PT,ut,1 )∗f |γu(t) +

∑m
i=1 v

i(t)(PT,ut,1 )∗gi|γu(t)dt

where Put,1 is the diffeomorphism generated by (1) that maps
a point p to γu,p(1), where γu,p is the solution to (1) that
satisfies γ(t) = p; (PT,ut,1 )∗ denotes its tangent map. A
control that degenerates DEp is called abnormal, and its
image under E|p is called the singular set.

The adjoint map of DEp is given by

(DEp|T,u)∗ : T ∗M → (0,+∞)× U
z 7→ (T̃ , ϕ1,u,z, · · · , ϕm,u,z)

where z ∈ T ∗M , ϕi,u,z(t) := 〈λz(t), gi|γu,p(t)〉, i =
1, · · · ,m are called the switching functions, with (γu,p, λz) :
[0, T ]→ T ∗M being the solution of the Hamiltonian system
satisfying γu,p(0) = p, λz(T ) = z with respect to the
following Hamiltonian:

Hu(x, z) := 〈z, f |x〉+
m∑
i=1

ui〈z, gi|x〉 −
‖u‖2

2
, (14)

that is to say, γu,p(t) is a controlled trajectory of (1) and λz
solves the following adjoint equation with terminal value z:

λ̇(t) = −λ(t)
(
Df |γu,p(t) +

m∑
i=1

ui(t)Dgi|γu,p(t)
)
. (15)

From now on, ‖ · ‖ stands for the Euclidean norm; denote
by ϕ(t) = (ϕ1,u,z(t), · · · , ϕm,u,z(t)) when there is no
misunderstanding on u and z corresponding to the switching
function.

Define bi(t) := 〈λz(t), [f, gi]|γu,p(t)〉, i = 1, · · · ,m,
where (γu,p, λz) is the solution to the above Hamitonian
system. Since [f, gi] ∈ Span{gi}i=1,··· ,m, denoting b(t) :=
(b1(t), · · · , bm(t)), we have b(t) = E(t)ϕ(t), where E(t)
is an n-dimensional time-varying square matrix. Define
B(t) :=

∫ t
0
b(s)ds. When (γ(t), λ(t)) lies on a compact set,

obviously ∃E > 0, s.t. ‖B(t)‖ 6 E
∫ t
0
‖ϕ(s)‖ds.

In the drifted case under assumption (A4), the switching
function satisfies

ϕ̇(t) = u(t)ψ(t) + b(t) = u(t)ψ(t) + E(t)ϕ(t), (16)
ψ(t) := (ψij(t))m×m, ψij(t) := 〈λz(t), [gi, gj ]γu,p(t)〉,

with γu,p, λz defined as before in (14)(15). Then under
assumption (A3), when ϕ̇ = 0, ψ is nonsingular, hence the
only abnormal control is u ≡ 0, and the singular set is hence
{ϕft (p)}t>0.

Similar to the case of [22], to prove the global existence
on [0, 1] of the solution to the PLE (3) for system (1), we
only need to show the norm of the adjoint map of DEp|T,u
is of linear growth with respect to ‖(T, u)‖L2 , that is to say,
for any compact set K ⊂M , ∃c > 0, s.t.

m∑
i=1

∫ 1

0

(ϕi(t))
2 + T 2dt >

c‖z‖2

1 + ‖(T, u)‖2L2

holds for all u ∈ U satisfying Ep(u) ∈ K, ∀z ∈ T ∗Ep(u)M .
Theorem 4.2: Consider the system (1) satisfying (7), as-

suming U = L2([0, T ],Rm). If (1) is SBG and the singular
set is I+f , then for any compact subset K ⊂M\{ϕft (p)}t>0,
∃cK > 0 s.t. ∀u ∈ E−1p (K), ∀z ∈ T ∗Ep(u)M with ‖z‖ = 1,
we have ∫ 1

0

‖u(t)‖dt
∫ 1

0

‖ϕ(t)‖dt > cK ,

where ϕ(t) = (ϕ1,u,z(t), · · · , ϕm,u,z(t)), and λ(t) is the
solution ending at z of the adjoint equation (15) along
γu,p(t), u(t).

Proof: For α > 0 s.t. d(p,K) > α, define two compact
sets

K∗ = {(x, z) ∈ T ∗M |x ∈ K, ‖z‖ = 1},

K∗α = {(x, z) ∈ T ∗M |d(x,K) < α,
1

2
< ‖z‖ < 2},

such that K∗ ∩ (T ∗M\K∗α) = ∅. Construct a function θ :
T ∗M → R satisfying θ|K∗ ≡ 0, θ|T∗M\K∗

α
> 1, and denote

in brief by θ(t) the composition θ(γ(t), λ(t)). Obviously
(γ(0), λ(0)) ∈ T ∗M\K∗α and (γ(T ), λ(T )) ∈ K∗. Then
∃s ∈ (0, 1) s.t. θ(s) = 1. Since θ(1) = 0, it follows that∣∣∣ ∫ 1

s

θ̇(t)dt
∣∣∣ = ∣∣∣ ∫ 1

s

〈u(t), µ(t)〉dt
∣∣∣ > 1,

where 〈u(t), µ(t)〉 :=
∑m
i=1 u

i(t)µi(t), µi(t) := Lf∗
i
θ(t)

(Lg∗i is the directional derivative of a function along the
vector field g∗i ∈ X(T ∗M) which is the dual vector field
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of gi with respect to the canonical symplectic form), i =
1, · · · ,m.

Choose a positive constant ρ > 0. If ‖ϕ(t)‖ > ρ on [s, 1],
then ∃Cµ > 0, s.t.∫ 1

s
〈u(t), µ(t)〉dt <

∫ 1

s
‖ϕ(t)‖
ρ 〈u(t), µ(t)〉dt

<
Cµ
ρ

∫ 1

s
‖ϕ(t)‖dt

∫ 1

s
‖u(t)‖dt,

and hence ∫ 1

0

‖u(t)‖dt
∫ 1

0

‖ϕ(t)‖dt > ρ

Cµ
> 0.

Next, we consider the case when ‖ϕ(t)‖ < ρ on [s, 1].
Define

A(x, t) :=
1

det(ψ(t))
〈xψ+(t), µ(t)〉, x ∈ Rm,

where ψ+ is the matrix of the complementary minors of ψ.
Then by (16), integrating by parts yields∫ 1

s
〈u(t), µ(t)〉dt

=
∫ 1

s
A(ϕ̇(t)− b(t), t)dt

= A(ϕ(1)−B(1), 1)−A(ϕ(s)−B(s), s)

−
∫ 1

s
D2A(ϕ(t)−B(t), t)dt

where D2A is the partial derivative of A with respect to the
second variable. Since A(v, t) is bounded by C1‖v‖ where
C1 > 0, and when ‖ϕ‖ 6 ρ, ‖ϕ(t) − B(t)‖ is bounded by
C2ρ, we have

A(ϕ(1)−B(1), 1)−A(ϕ(s)−B(s), s) 6 C3ρ = 2C1C2ρ,

and D2A(v, t) 6 C4‖ϕ(t)−B(t)‖‖u(t)‖, hence∫ 1

s
D2A(ϕ(t)−B(t), t)dt

6 C4(
∫ 1

s
‖ϕ(t)‖‖u(t)‖dt+

∫ 1

0
E‖ϕ(t)‖dt

∫ 1

s
‖u(t)‖dt)

6 C4

∫ 1

0
‖ϕ(t)‖dt

∫ 1

0
‖u(t)‖dt.

Therefore we have C4

∫ 1

0
‖ϕ(t)‖dt

∫ 1

0
‖u(t)‖dt + C3ρ > 1.

Adjust ρ such that C3ρ 6 1
2 , it follows that∫ 1

0

‖u(t)‖dt
∫ 1

0

‖ϕ(t)‖dt > 1

C4
,

and CK = min{ ρ
Cµ
, 1
C4
} is the lower bound we desired.

In the above discussion, we assume conditions on the norm
of ϕ on the whole interval; obviously the argument still holds
if ‖ϕ(t)‖ > ρ (6 ρ) on some subinterval.

Theorem 4.2 shows that any nonsingular trajectory on a
compact subset of the state space can be lifted to a trajectory
in the control space by solving the PLE (3), giving the
steering control as the final value of the solution.

V. CONCLUSION

In this paper, we studied the conditions for global control-
lability of affine systems with drifts. Under the assumptions
of certain regularities, necessary and sufficient conditions
have been proved for codimension 1 and 2 systems, and
necessary conditions are given for specific systems of higher

codimensions. Then, the motion planning problems for glob-
ally controllable drifting affine systems are investigated,
improving the applicability of the HCM method.

The key point of the controllability condition is the sep-
aration property of foliations. The discussions can all be
extended to systems on simply connected manifolds since
Lemma 2.3 holds for any (edgeless) manifold M satisfying
H1(M,Z/2Z) = 0. Further, if M is compact, (A2) can be
replaced by that each leaf IG(x) is of finite depth since this
is equivalent to that each IG(x) is an embedded submanifold.
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