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Abstract— In this paper, we introduce a data-driven frame-
work for synthesizing controllers that enforce properties ex-
pressed by so-called ℓ universal co-Büchi automata (ℓ-UCA)
over control systems with finite input sets and unknown
mathematical models. The proposed framework leverages the
notion of co-Büchi control barrier certificates (CBC). These
certificates, together with their corresponding controllers, guar-
antee that a region in the state set is visited finitely often
as the system evolves, limiting visits to at most ℓ times. The
CBC is defined over a domain that augments the system
and the ℓ-UCA, incorporating a counter variable to track the
number of visits to the accepting states of ℓ-UCA. However,
constructing these CBCs typically requires precise knowledge
of the dynamics of the system, which is often unavailable in
real-world applications. Therefore, we propose a data-driven
scheme where we initially formulate the CBC conditions as a
robust optimization program (ROP). Since the unknown model
appears in some of the ROP constraints, we employ sampled
data points collected from the system’s trajectories to formulate
a scenario optimization program (SOP) associated with the
ROP. By solving the corresponding SOP, we construct CBCs
and controllers that enforce ℓ-UCA properties for the unknown
system with a formal correctness guarantee. The efficacy of our
data-driven approach is demonstrated by applying it to a three-
tank system whose dynamics is assumed to be unknown.

I. INTRODUCTION

In the last two decades, formal methods have gained
considerable attention in the hybrid systems community.
They offer formal analyses for complex dynamical systems.
However, it remains highly challenging to provide formal
verification and controller synthesis frameworks for complex
systems to enforce high-level logic properties. These prop-
erties, such as those formally expressed as temporal logic
formulae or languages specified by automata [1], require
significant efforts to ensure their satisfaction. Challenges
include the continuity of state sets, the handling of complex
logic requirements, and the absence of closed-form mathe-
matical models in numerous real-world applications.

To address these challenges, there is a growing focus on
employing data-driven abstraction-based methods to synthe-
size controllers that are correct-by-construction for systems
with (partially) unknown dynamics [2]. Examples of such ef-
forts include the results in [3]–[6], which predominantly uti-
lize discretization-based approaches. The proposed schemes
in those results provide formally correct controllers for ω-
regular properties.
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An alternative approach, which is discretization free, ini-
tially proposed in [7], involves utilizing barrier certificates
as an abstraction-free method for formally verifying and
synthesizing controllers for dynamical systems. Barrier cer-
tificates are similar to Lyapunov functions, with level sets
that separate an unsafe region from the trajectories of the
system originating from a given initial set. Consequently,
the existence of such a function offers a (probabilistic)
safety guarantee for the concrete system. However, in the
automata-theoretic verification approach, the primary con-
cern is determining whether a set of states can be visited
only finitely often. Recent results in [8], inspired by bounded
synthesis methods [9], [10], introduce an abstraction-free
method for automata-theoretic verification of discrete-time
dynamical systems. This approach introduces the notion of
co-Büchi barrier certificates (CBC), which provide sufficient
conditions to verify systems against ω-regular properties
described by universal co-Büchi automata (UCA).

A co-Büchi barrier certificate is a real-valued function de-
fined over the product of a system and an automaton, whose
conditions ensure that the accepting states of the automaton
are visited only finitely often. This certificate incorporates a
counter value, which tracks the number of times an accepting
state is visited. The search for this certificate is based on a
preselected upper bound on the number of visits. Upon a
successful search, the system can be verified to meet the
specification represented by the automaton. Unfortunately,
the framework for constructing CBCs, as described in [8],
requires precise models for the corresponding analyzes.
Consequently, these techniques cannot be employed when
the system model is unknown, which is often the case in real-
world applications. In this paper, we introduce a novel data-
driven technique for constructing CBCs, without performing
any system identification, as done in [11], [12].

Contributions. The main goal of this paper is to introduce
a data-driven technique for constructing CBCs and synthe-
sizing controllers to ensure that an unknown system satisfies
an ω-regular property described by an ℓ-UCA in which ℓ
bounds the number of visits to the accepting states of the
automaton. We consider systems with finite input sets and
unknown mathematical models. We begin by formulating the
conditions of CBC as a robust optimization program (ROP).
Since the unknown model appears in some of the ROP’s
constraints, we utilize sampled data points collected from
the system’s trajectories to formulate a scenario optimization
program (SOP) associated with the ROP. By solving the
resulting SOP, we construct CBCs together with controllers
that formally guarantee the enforcement of the ℓ-UCA prop-
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erties for the unknown system.
Related Work. In recent years, limited studies have

explored the formal analysis of unknown dynamical sys-
tems using data-driven and abstraction-free approaches. Our
method is applicable to all classes of nonlinear discrete-
time control systems, unlike the approach in [13], which is
tailored solely to nonlinear polynomial-type systems. While
the findings in [14], [15] concentrate on data-driven meth-
ods for unknown dynamical systems using control barrier
certificates with certain probabilistic confidence levels, our
approach is designed to construct CBCs with a confidence
level of 1 using noise-free data. Additionally, we assume that
an accurate upper bound for the system’s Lipschitz constant
is available. The methods in [13]–[16] provide control barrier
certificates and controllers to ensure that the trajectories
of an unknown system originating from a given set never
reach an unsafe region. Our approach distinguishes itself by
developing a systematic data-driven framework to construct
CBCs. It generalizes classic barrier certificates to ensure
that the trajectories of an unknown system visit a specified
region at most a fixed number of times. This enhancement
broadens the applicability of barrier certificates for ω-regular
properties, providing a more general framework for system
analysis and design. We direct interested readers to [8] for
a comprehensive understanding of the differences between
CBC and traditional barrier certificates.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

Symbols R and R≥0 represent sets of real and non-
negative real numbers, respectively. Notation ∩, ∪, and \ in-
dicate, respectively, set intersection, union and set difference.
The symbol N denotes the set of natural numbers including
0 and for any n ∈ N, N≥n = {i ∈ N | i ≥ n}. In the case
where a, b ∈ N and a < b, we employ the notations (a; b),
and [a; b] to represent, respectively, the open and closed
intervals in N. Similarly, for a, b ∈ R and a < b, we use
(a, b), and [a, b] to represent the corresponding intervals in
R. For any non-empty set Q, notation Cd(Q) depicts the
cardinality of Q, while Qω indicates the set of infinite-length
sequences from Q, i.e., Qω := {⟨wi⟩∞i=0 | wi ∈ Q ∀i ∈ N}.
We denote the indicator function of A ⊆ Q by 1A : Q →
{0, 1}, where 1A(x) = 1 if and only if x ∈ A, and 0
otherwise. Given K vectors vl ∈ Rkl , kl ∈ N, and l ∈ [1;K],
we use v = [v1; . . . ; vK ] to denote the corresponding column
vector of dimension

∑
l kl. Assuming c ∈ Rn, ∥c∥ means

the infinity norm of c. For any B ⊆ Rn and ε > 0,
notation Φε(b̃) is interpreted as {b ∈ B | ∥b − b̃∥ ≤ ε}.
Therefore, we create a partition of B into cells Φε(b̃) such
that B ⊆

⋃
b̃∈[B]ε

Φε(b̃), where [B]ε denotes a finite set of
representative points picked from those partition sets.

B. Universal Co-Büchi Automaton

Here, in accordance with the definition outlined in [9],
we first introduce a variation of a deterministic universal co-
Büchi automaton, whose acceptance criterion encompasses
an atmost ℓ visitation to the accepting states for some ℓ ∈ N.

Definition 2.1: Given ℓ ∈ N, a deterministic ℓ-
Universal Co-Büchi Automaton (ℓ-UCA) A is a tuple
(Q,∆, ϱ,Q0, QF ), where: Q is a finite set of states, ∆ is
a finite alphabet, ϱ : Q×∆ → Q is a transition map, where
Cd(ϱ(q, ς)) ≤ 1 ∀q ∈ Q and ∀ς ∈ ∆, and Q0, QF ⊆ Q,
respectively, denotes the initial and final (accepting) set of
states, where the acceptance condition is that QF is visited at
most ℓ times. Consider a word v = ⟨ςi⟩∞i=0 ∈ ∆ω . A run of
A over v is an infinite sequence of states, q = ⟨qi⟩∞i=0 ∈ Qω ,
where q0 ∈ Q0 and qi+1 = ϱ(qi, ςi) ∀i ∈ N. Therefore, we
say the word v ∈ ∆ω is accepted by A if for every run
q of A over v, it holds that Cd({qi ∈ Q | q = ⟨qi⟩∞i=0 ∈
Qω} ∩ QF ) ≤ ℓ. In essence, every run of A over v visits
some accepting states at most ℓ times. We define the language
of a ℓ-UCA A, denoted by L(A), as the collection of words
accepted by it.

Note that to consider non-deterministic ℓ-UCA, one re-
quires to deal with deterministic Rabin or Streett automata
[17]. Due to space limitations, we focuses on deterministic
ℓ-UCA here.

C. Discrete-Time Control Systems

In this paper, we define the underlying model as discrete-
time control systems.

Definition 2.2: A discrete-time control system (dt-CS) Ξ
is represented as a tuple (X,X0, U, f), where:

• X ⊆ Rn is the state set and X0 ⊆ X denotes the set
of initial states;

• U = {ui ∈ Rm | i ∈ [1;M ]} with M ∈ N≥1, is the
finite input set;

• f : X ×U → X is the transition function, whereby for
an input signal ν : N → U , the state evolves as

x(t+ 1) = f(x(t), ν(t)), ∀t ∈ N. (1)
Furthermore, we denote the state trajectory of dt-CS Ξ,
under the input trajectory ν(·), and starting from x0 ∈ X0

by xx0,ν = ⟨xt⟩∞t=0 ∈ Xω , such that xx0,ν(t) = xt and
xt+1 = f(xt, ν(t)), ∀t ∈ N. We introduce a labeling
function, denoted as L : X → ∆, which assigns a sym-
bol from a finite alphabet ∆ to each state of the dt-CS.
This concept naturally extends to sequences, allowing us to
map a sequence ⟨xt⟩∞t=0 ∈ Xω to a sequence of symbols
⟨L(xt)⟩∞t=0 ∈ ∆ω . Consequently, we have the flexibility to
assign different labels from ∆ to regions within X .

We assume that the map f in (1) is unknown throughout
this work. Our primary objective is to synthesize controllers
for a dt-CS with unknown f to guarantee that it adheres to a
property defined by a given ℓ-UCA. We will formalize this
objective in the next subsection.

D. Co-Büchi Control Barrier Certificates

Consider a dt-CS Ξ = (X,X0, U, f) and an ℓ-UCA A =
(Q,∆, ϱ,Q0, QF ) as in Definitions 2.2 and 2.1, respectively.
Let L : X → ∆ be a labeling function. A state sequence
x = ⟨xi⟩∞i=0 ∈ Xω of Ξ is accepted by the ℓ-UCA A if the
augmented state sequence x̂ = ⟨(xi, qi)⟩∞i=0 ∈ (X×Q)ω has
at most ℓ-states in X × QF , where (x0, q0) ∈ X0 × Q0. If



so, we say that dt-CS Ξ satisfies A. To establish this, we
employ the notion of co-Büchi barrier certificate [8], which
is defined next. Here, a counter variable is appended to the
state space, which tracks the number of times an augmented
state (x, q) ∈ X ×Q has appeared in X ×QF .

Definition 2.3: Consider a dt-CS Ξ and an ℓ-UCA A as in
Definitions 2.2 and 2.1, respectively, with L : X → ∆ being
a labeling function. For any (q, r) ∈ Q × N, characterized
function Bq,r : X → R is a co-Büchi barrier certificate
(CBC) for Ξ over the property specified by A if there exists
λ, γ ∈ R such that λ > γ and

Bq,0(x) ≤ γ, ∀x ∈ X0, q ∈ Q0 \QF , (2)
Bq,1(x) ≤ γ, ∀x ∈ X0, q ∈ Q0 ∩QF , (3)

Bq,ℓ+1(x) > λ, ∀x ∈ X, q ∈ QF , (4)

and for all states x ∈ X , q ∈ Q, counter values r ∈ [0; ℓ],
one has

min
u∈U

{
Bq′,r′(f(x, u))

}
≤ Bq,r(x), (5)

where q′ = ϱ(q, L(x)) and r′ =

{
r if q′ /∈ QF

r + 1 otherwise,
(6)

Note that for any (q, r) ∈ Q × [0; ℓ], one can develop a
set-valued controller κq,r : X ⇒ U built on the CBC Bq,r

as follows:

κq,r(x) =
{
u ∈ U | Bq′,r′(f(x, u)) ≤ Bq,r(x)

}
, (7)

where q′ and r′ are defined as in (6).
Remark 2.4: Given equation (7), the controller is enforc-

ing the specifications outlined by an ℓ-UCA over a dt-CS
and operates within the augmented space X × Q × [0; ℓ].
This controller is history-dependent, relying on the state of
the dt-CS, ℓ-UCA, and the counter variable.

Although the underlying dynamics of dt-CS are deemed
unknown, its trajectories are accessible. For a suitable grid
parameter ε > 0, these trajectories are sampled as N × M
data points in a set

DN,ε =
{
(x̃i, uj , f(x̃i, uj)) | x̃i ∈ [X]ε and uj ∈ U,

∀i ∈ [1;N ], j ∈ [1;M ]
}
.

(8)

Noted that f(x̃i, uj) in (8) is the one time step transition of
the unknown dt-CS starting from x̃i under input uj .

In Section III, we elaborate on how the controller κq,r

is designed relying on the data set DN,ε for any (q, r) ∈
Q× [0; ℓ]. Next, we proceed to formalize the major problem
that we aim to address in this paper.

Problem 2.5: Suppose Ξ is a dt-CS with map f being
unknown and let A be an ℓ-UCA as in Definition 2.2 and
2.1, respectively. Given a labeling function L, develop a
data-driven approach based on the data set DN,ε to design
a controller κ, so that for all state trajectory ⟨xt⟩∞t=0 of
Ξ, we have ⟨L(xt)⟩∞t=0 ∈ L(A).

In this paper, we derive a controller to address Problem 2.5
by utilizing the concept of CBCs. Inspired by [8, Theorem 6],
the following theorem illustrates the effectiveness of CBCs,
as outlined in Definition 2.3, in meeting the specifications
set forth by an ℓ-UCA.

Theorem 2.6: Consider a dt-CS Ξ and an ℓ-UCA A with a
given labeling map L. For any (q, r) ∈ Q×[0; ℓ+1], suppose
that Bq,r is a CBC for Ξ and A as in Definition 2.3. Then the
augmented state sequence ⟨(xi, qi)⟩∞i=0 ∈ (X × Q)ω visits
X ×QF at most ℓ times.

Proof: We establish the proof by contradiction. Suppose
there exists an augmented state sequence x̂ = ⟨(xi, qi)⟩∞i=0 ∈
(X × Q)ω that visits X × QF more than ℓ times, where
xt+1 = f(xt, ν(t)) and qt+1 = ϱ(qt, L(xt)), ∀t ∈ N. Let
t′ ∈ N≥1 be the first index when x̂ visits X × QF for
the (ℓ + 1)th time. Based on this assumption, we can infer
that for every trajectory xx0,ν(s) of Ξ, where s < t′ and
ν(s) ∈ κ(x(s)), it visits X×QF at most ℓs ≤ ℓ times. Thus,
proceeding inductively on s results in (2) or (3) achieving
Bqs,ℓs(xs) ≤ γ. Now, we apply (5) for xt′ and xt′−1, to
recursively show that Bqt′ ,ℓ+1(xt′) ≤ Bqt′−1,ℓ(xt′−1) ≤ γ.
Therefore, condition (4) yields λ < Bqt′ ,ℓ+1(xt′) ≤ γ, which
contradicts condition γ < λ and thus ends the proof.

III. DATA-DRIVEN CONSTRUCTION OF CBC

Here, our focus is on constructing CBC using data ac-
quired from the trajectories of the system, as in (8). Within
our data-driven framework and for any (q, r) ∈ Q×[0; ℓ+1],
we fix the CBC structure as Bq,r(c, x) =

∑k
j=1 c

j
q,rφ

j(x)

with user-defined (possibly nonlinear) basis functions φj(x)
and p := k×Cd(Q)×(ℓ+1) unknown coefficients, which are
stacked in a vector c ∈ Rp. It is noteworthy that the basis
functions φj can assume any arbitrary form. For instance,
they can take the form of monomials over x if a polynomial-
type CBC is desired.

Designing a controller that solves Problem 2.5 involves
simply constructing a CBC as in Definition 2.3. Therefore,
to achieve this objective, we frame the search for the CBC
as the next robust optimization program (ROP):

min
d

η,

s.t. max{γ − λ, gs(x, d)} ≤ η, ∀s ∈ [1; 3] and
∀x ∈ X, ∀q ∈ Q, ∀r ∈ [0; ℓ]

with q′ and r′ defined in (6),

min
u∈U

{
Bq′,r′(c, f(x, u))

}
− Bq,r(c, x) ≤ η,

c ∈ Rp and d = [η; γ;λ; c] ∈ Rp+3,

(9a)

(9b)

where ∀x ∈ X , ∀q ∈ Q:

g1(x, d) = (Bq,0(c, x)− γ)1X0
(x)1Q0\QF

(q),

g2(x, d) = (Bq,1(c, x)− γ)1X0
(x)1Q0∩QF

(q),

g3(x, d) = (−Bq,ℓ+1(c, x) + λ)1QF
(q).

(10)

It is evident that if η ≤ 0, a solution to the ROP in (9)
guarantees the fulfillment of conditions (2)-(5) as outlined
in Definition 2.3. However, solving the ROP presents two
significant challenges. Firstly, the ROP involves infinitely
many constraints due to the continuous state set of the
discrete-time control system (dt-CS), where x ∈ X ⊆ Rn.
Secondly, solving the ROP requires knowledge of the map
f , which remains unknown in our work. To overcome these
challenges, we propose a data-driven approach to construct



CBCs without directly solving the ROP. Utilizing the sam-
pled data in (8), we introduce a subsequent optimization
problem associated with the ROP, which is called scenario
optimization program (SOP):

min
d

η,

s.t. max{γ − λ, gs(x̃i, d)} ≤ η, ∀s ∈ [1; 3] and
∀i ∈ [1;N ], ∀q ∈ Q, ∀r ∈ [0; ℓ]

with q′ and r′ defined in (6),

min
u∈U

{
Bq′,r′(c, f(x̃i, u))

}
− Bq,r(c, x̃i) ≤ η,

c ∈ Rp and d = [η; γ;λ; c] ∈ Rp+3,

(11a)

(11b)

where g1, g2, and g3 are the functions defined in (10).
Note that conditions (11a) can be reformulated as max-min
constraints:

max
i∈[1;N ],
q∈Q\QF ,
r∈[0;ℓ]

[
min
u∈U

{
Bq′,r′(c, f(x̃i, u))

}
− Bq,r(c, x̃i)

]
≤ η.

(12)

Typically, an optimization problem with max-min con-
straints can be equivalently represented as a series of opti-
mization problems with inequality constraints. Handling such
a problem may pose computational challenges due to the ex-
tensive collection involved. Therefore, we adopt the strategy
proposed in [18], converting this condition into a nonlinear
programming problem. The condition is then expressed as a
single inequality constraint, defined as follows, for all q ∈ Q,
i ∈ [1;N ], and r ∈ [0; ℓ]:

M∑
j=1

ρj
(
Bq′,r′(c, f(x̃i, uj))− Bq,r(c, x̃i)

)
≤ η, (13)

where
∑M

j=1 ρj = 1 such that ρj ∈ R≥0. One can employ
[18, Proposition 2.1] to demonstrate the equivalence between
the conditions in (13) and the max-min constraints in (12).
Consequently, the vector of decision variables of SOP (11)
as in (11b) becomes d = [η; γ;λ; c; ρ1; . . . ; ρM ] ∈ RM+p+3.
One can readily utilize available software tools to solve
the resulting optimization problem. In the next section, we
establish a formal relation between a feasible solution of SOP
in (11) and that of ROP in (9).

IV. SATISFACTION GUARANTEE

In this section, we unveil a result, which establishes that a
solution to the SOP in (11) constructs a CBC for an unknown
dt-CS, and accordingly provides a controller that enforces the
satisfaction of the specification expressed by a given ℓ-UCA
over an unknown dt-CS. To achieve this, we first introduce
the ensuing assumption.

Assumption 1: Suppose that for all (q, r) ∈ Q × [0; ℓ],
Bq′,r′(c, f(x, u)) − Bq,r(c, x) and Bq,r(c, x) are Lipschitz
continous with respect to x with Lipschitz constants La and
Lb, respectively, for any input u ∈ U where q′ and r′ are
defined in (6).

Remark 4.1: Note that the methods proposed in [19],
particularly [16, Algorithm 1], offer a technique for esti-
mating the Lipschitz constants La and Lb utilizing a finite

dataset from an unknown system. However, for the scope
of this work, we assume that accurate upper bounds for
these constants are known. Additionally, we presume that
the data sampled from system trajectories are noise-free.
Consequently, we are able to present our main results (cf.
Theorem 4.3) with a 100% correctness guarantee.

Remark 4.2: To gather data points in (8) for a given
parameter ε, the number of samples N can be determined
by the relation: Vol(X) = Nεn, where Vol(·) denotes
the volume of a set. Consequently, the required number
of samples grows exponentially with the dimension of the
system. Moreover, selecting a smaller ε results in more
sampled data, thus increasing the number of constraints in
the SOP, and extending the time required to solve the SOP.
It is also worth noting that the number of constraints in SOP
(11) using (13) are at most of the order of N , for a fixed
number of CBC basis functions. Therefore, the complexity
of solving the problem is polynomial in NℓCd(Q)Cd(∆).

In accordance with Assumption 1, the following result
introduces a data-driven approach for constructing a CBC
with a 100% correctness guarantee.

Theorem 4.3: Given an unknown dt-CS as in (1), an ℓ-
UCA A as in Definition 2.1 and let Assumption 1 hold.
Suppose that SOP (11) is solved using the data set DN,ε in
(8), resulting in an optimal solution d∗ = [η∗S ; γ

∗;λ∗; c∗] in
(11b). If

L ε+ η∗S ≤ 0, (14)

with L = max{La,Lb}, then for all (q, r) ∈ Q × [0; ℓ],
functions Bq,r constructed by solving SOP in (11) are CBC
for the unknown dt-CS.

Proof: We show that under condition (14), the con-
structed Bq,r via solving SOP in (11) ensures that dt-CS
satisfies the property expressed by ℓ-UCA A, in the sense
of Theorem 2.6. One can easily verify that (14) implies
η∗S ≤ 0. Therefore, condition γ∗ < λ∗ is always satisfied.
Note that for every x ∈ X , there is a data point x̃i such that
x ∈ Φε(x̃i). Thus, ∀i ∈ [1;N ], ∀x ∈ X0 and ∀q ∈ Q0 \QF ,
one gets

Bq,0(c
∗, x)− γ∗ = Bq,0(c

∗, x)− Bq,0(c
∗, x̃i) + Bq,0(c

∗, x̃i)

− γ∗ ≤ Lb∥x− x̃i∥+ η∗S ≤ L ε+ η∗S ≤ 0.

The same line of reasoning as described above can be
employed to establish that

Bq,1(c
∗, x)− γ∗ ≤ 0 ∀x ∈ X0, q ∈ Q0 ∩QF and

−Bq,ℓ+1(c
∗, x) + λ∗ ≤ 0 ∀x ∈ X, q ∈ QF .

Furthermore, it can be readily observed from (11a), that for
all x̃i, i ∈ [1;N ], there is a u ∈ U , denoted as u∗, such
that ∀(q, r) ∈ Q× [0; ℓ] with q′ = ϱ(q, L(xi)), the following
conditions hold:

• if q′ /∈ QF then Bq′,r(c
∗, f(x̃i, u

∗)) ≤ Bq,r(c
∗, x̃i);

• if q′ ∈ QF then Bq′,r+1(c
∗, f(x̃i, u

∗)) ≤ Bq,r(c
∗, x̃i).



Therefore, for all x ∈ X and ∀i ∈ [1;N ], one has:

Bq′,r(c
∗, f(x, u∗))− Bq,r(c

∗, x) = Bq′,r(c
∗, f(x, u∗))−

Bq,r(c
∗, x)−

(
Bq′,r(c

∗, f(x̃i, u
∗))− Bq,r(c

∗, x̃i)
)
+(

Bq′,r(c
∗, f(x̃i, u

∗))− Bq,r(c
∗, x̃i)

)
≤ La∥x− x̃i∥+ η∗S

≤ L ε+ η∗S ≤ 0 if q′ /∈ QF .

Similarly, the above argument can be leveraged to show that

Bq′,r+1(c
∗, f(x, u∗))− Bq,r(c

∗, x) ≤ 0 whenever q ∈ QF .

Therefore, for any (q, r) ∈ Q × [0; ℓ], the function Bq,r

derived by solving SOP in (11) serves as a CBC for unknown
dt-CS in (1), thereby concluding the proof.

Whenever condition (14) of Theorem 4.3 holds, there is a
set-valued controller κq,r as defined in (7), guaranteeing the
fulfillment of the ℓ-UCA property by the unknown dt-CS as
in Theorem 2.6. Specifically, we mold the set-valued map
κq,r for any (q, r) ∈ Q × [0; ℓ], and any x ∈ X , i ∈ [1;N ]
with q′ and r′ defined in (6), as follows:

κq,r(x) :=
{
u ∈ U | Bq′,r′(f(x̃i, u))− Bq,r(x̃i)

≤ η∗S , such that x ∈ Φε(x̃i)
}
.

(15)

It is worth noting that the non-emptiness of data set (8)
and the solvability of SOP in (11) imply that the set-valued
controller κq,r is also not empty.

Remark 4.4: Note that nearly all data-driven approaches
aimed at validating the satisfaction of properties by unknown
systems with a formal correctness guarantee (e.g., [14]–
[16]), similar to our method, encounter a sample complexity
bottleneck-i.e., the required data volume to provide guaran-
tees grows exponentially with the system’s dimension. This
challenge was also evident in our work.

Remark 4.5: We assume the labeling map L is such that
there always exists a choice of ε where L(x) = L(xi)
whenever x ∈ Φε(xi) for all i ∈ [1;N ]. This ensures the
satisfaction of Assumption 1 when Bq,r and f are Lipschitz
continuous. Furthermore, in an effort to potentially reduce
the required number of samples, one might consider initiating
sample collection with a larger value of ε when addressing
the SOP in (11). If the condition (14) is not satisfied with
the chosen (possibly larger) ε, it becomes necessary to opt
for a smaller ε and re-address the SOP.

The set-valued map κq,r in (15), which enforces the ℓ-
UCA property, can be utilized during runtime as follows:
for any state measurement x ∈ X , one can identify the ε-
closest data point x̃i, where i ∈ [1;N ], such that x ∈ Φε(x̃i).
Consequently, control inputs valid for x̃i are also valid for
x.

V. CASE STUDY

Here, the effectiveness of our data-driven results is demon-
strated on applying them to a three-tank model whose
dynamics is assumed to be unknown, with respect to the
properties outlined by an ℓ-UCA. We consider ℓ-UCA A =
(Q,∆, ϱ,Q0, QF ) as in Definition 2.1, where Q = {q0, q1},
∆ = {a, b}, and Q0 = QF = {q0}. The transitions between
states are specified by the edges of the graph depicted in

q0 q1

a, b

a

b

Fig. 1: This ℓ-UCA specifies that the system to be in a state with
label a only finitely often.

Fig. 1, which define the transition function ϱ. We consider a
three-tank system arranged in a cascade configuration, with
its model adopted from [20]. The system is discretized with
a sampling time τ = 10s and is modeled by a dt-CS, where
the state evolves as follows:

x1(t+ 1) =

[√(τ
2

)2

+ x1(t) + τν(t)− τ

2

]2

xi(t+ 1) =

[√(τ
2

)2

+ xi(t) + τ
√

xi−1(t+ 1)− τ

2

]2

,

(16)

where i ∈ {2, 3}. For any i ∈ [1; 3], the state xi(t) and√
xi(t) denote, respectively, the level of fluid and the outflow

rate of the i-th tank at time t ∈ N. The inflow rate ν(t)
into the first tank takes values from the set of control inputs
U = {0, 1.5, 4.5, 7.5, 9}. We consider the set of states X =
[0, 100]3, initial states X0 = [0, 6]2× [60, 66], and a labelling
function L : X → ∆ defined as:
L(x) = b ∀x ∈ (10, 60)3 and L(x) = a ∀x ∈ X\(10, 60)3.

(17)
Based on the ℓ-UCA depicted in Fig. 1, our objective

is to systematically develop a data-driven CBC and its
corresponding controller. Our aim is to regulate the fluid
levels in the tanks, ensuring that as they evolve from a point
in X0, they reach the region labeled a finitely often. This
approach could be practically beneficial for preventing both
the emptying and overflowing of the tanks simultaneously.
We consider the model in (16) to be unknown to us. However,
we employ the model solely to collect samples as in (8), with
the number of samples N = 64000 and the discretization
parameter ε = 2.5. Our primary objective is to construct a
CBC by solving SOP in (11) while synthesizing a controller
κq,r for any (q, r) ∈ Q× [0; ℓ] in which the unknown dt-CS
satisfies the specification expressed by the ℓ-UCA A in Fig.
2. We select ℓ = 10; therefore, we aim for a controller κq,r

that ensures that (16) visits the region with label a at most
10 times as it evolves. We fix the CBC structure as piece-
wise quadratic functions Bq,r(x) =

∑10
j=1 c

j
q,rφ

j(x) ∀x ∈
X, ∀q ∈ Q and ∀r ∈ [0; ℓ + 1], where basis functions
⟨φj(x)⟩10j=1 = ⟨1, x1, x2, x3, x

2
1, x1x2, x1x3, x2x3, x

2
2, x

2
3⟩.

We solve SOP in (11) using the acquired data set D64000,5

and compute the CBC coefficients together with other deci-
sion variables in the SOP, which are presented as follows:
λ∗ = 3.301, γ∗ = −10, η∗S = −13.2995, and

cjq,r =



0.1 if (q, r, j) ∈ Ω1,

−0.1 if (q, r, j) ∈ Ω2,

0.07797 if (q, r, j) ∈ {q1} × {1, 3, 6} × {5},
0.0838 if (q, r, j) ∈ {q1} × {2} × {9},
0.0829 if (q, r, j) ∈ {q1} × {7} × {9},



Fig. 2: A closed-loop state trajectory from initial state
[x1(0);x2(0);x3(0)] = [0; 0; 66] for unknown three-tank system
(16).

Fig. 3: An input trajectory synthesized for the unknown three-tank
system during 140 time steps using (15).

where Ω1 =
(
{q0} × [0; 11] × [1; 10]

)
∪

(
{q1} ×

{0, 4, 5, 8, 9, 10} × [2; 10]
)
∪
(
{q1} × {1, 3, 6} × ([2; 10] \

{5})
)
∪
(
{q1}× {2, 7}× ([2; 10] \ {9})

)
and Ω2 =

(
{q1}×

[0; 10]×{1}
)
∪
(
{q1}×{11}× [1; 10]

)
. Due to the structure

of the CBC, we use [15, Lemma 5.4] to obtain L = 5.315.
Since L ε+η∗S = −1211.64×10−5 < 0, in accordance with
Theorem 4.3, it is assured that a controller κq,r exists for any
(q, r) ∈ Q × [0; ℓ] that enforces the specification expressed
by A over the system in (16).

Fig. 2 illustrates the closed-loop trajectory of the unknown
three-tank system regulated by the synthesized controller. It
also demonstrates that the CBC constructed from the data
satisfies the conditions highlighted in Definition 2.3. It can
be observed that none of the three tanks visits the region
with label a more than 10 times. The synthesized controller
is constructed according to (15), which is then applied to the
unknown dt-CS as depicted in Fig. 3. The implementation for
constructing the data-driven CBC has been carried out using
the GUROBI solver [21] under Python on a 64GB RAM
(3.2 GHz) MacBook Pro. The whole computation took 2.2
minutes.

VI. CONCLUSION

In this paper, the primary goal was to develop a data-
driven approach to construct CBC using available data. The
aim is to ensure the satisfaction of an ℓ-UCA property by
a discrete-time control system with unknown dynamics. To
achieve this goal, we leveraged data collected from the
trajectories of unknown systems to implement a scenario
optimization program (SOP). The successful solution of the
SOP enabled us to establish a CBC along with its respective

controller, which enforces an ℓ-UCA property with formal
guarantees. The effectiveness of our data-driven approach
was demonstrated using a three-tank system. However, the
scalability challenge posed in this work is outlined in Remark
4.4. Possible strategies to alleviate this computational burden
include employing compositional approaches such as divide
and conquer tactics or adapting parallelization across SOP.
These methods remain areas for future exploration.
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