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Abstract— We consider a generalization of the widely studied
discrete influence maximization problem. We consider that
instead of marketers using a budget to send free products to a
few influencers, they can provide discounts to partly incentivize
a larger set of influencers with the same budget. We show
that this problem is an instance of maximizing the multilinear
extension of a monotone submodular set function subject to an
L1 constraint. We propose and analyze an efficient (1− 1/e)-
approximation algorithm. We run experiments on a real-world
social network to show the performance of our method in
contrast to methods proposed for other generalizations of
influence maximization.

I. INTRODUCTION

With increasing numbers of users spending time on social
media platforms, and engaging with family, friends, and in-
fluencers within communities of interest (such as in fashion,
cooking, gaming, etc.), there are significant opportunities
for marketing firms to leverage word-of-mouth advertising
on these platforms. In particular, marketing firms can select
sets of influencers within a relevant community to sponsor,
namely by providing free samples of a product to those
influencers so that they will discuss and promote the product
on their social media accounts.

The question of which set of influencers to sponsor is
known as influence maximization (IM) [1]. Under standard
diffusion models, this discrete optimization problem is NP-
hard [2]. Since it exhibits a diminishing returns property (the
objective function is submodular) a simple greedy algorithm
[3] achieves a (1− 1/e) approximation [2].

Influence maximization has been widely studied. One
important limitation of the associated optimization problem
as a model for viral marketing is the binary nature of
influencer sponsorships—either an influencer is provided a
free product or not. Especially for expensive products, this
can be restrictive, as the marketer may only be able to
provide a few influencers with the product. Influencers have
an incentive to try products in order to post regularly and
engage their audiences. Thus, a marketer with a limited
budget could provide discounts to a much larger set of
influencers than they could send free products to. Influencers
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who receive a small discount may be less likely to try and
discuss the product than influencers who receive a large
discount. Nonetheless, this gives the marketer more options
and for the same budget could potentially improve sales
beyond what could have been done with free products alone.

We consider this continuous optimization problem model-
ing influence maximization, where the marketer can choose
to provide discounts instead of only free samples (i.e. few,
full discounts). We characterize the problem and show that
not only is it no more challenging to approximate than the
widely-studied discrete problem, but near-optimal approxi-
mations to the continuous problem can be constructed from
near-optimal approximations for the discrete problem, for
which there are many off-the-shelf methods available.

Furthermore, the method we propose, which uses a sub-
routine to solve the discrete problem, is more efficient
than methods for general classes of continuous submodular
optimization problems and, using a value oracle for the
discrete problem, does not use random sampling to simulate
a value or gradient oracle for the continuous objective.

A. Our Contributions

The main contributions of the paper are
1) We propose and analyze a procedurally simple and

efficient (1 − 1/e) approximation algorithm for the
problem of maximizing the multilinear extension of
a monotone submodular set function subject to an L1

constraint. That class of problems includes an impor-
tant generalization of discrete influence maximization.
Our algorithm only requires access to a value oracle for
the discrete problem and achieves similar influence as
standard methods for more general classes of problems,
while using orders of magnitude less computation.

2) With minimal additional overhead, our method can
identify a continuous path of near-optimal solutions
up to the specified budget, allowing the marketer to
evaluate cost/benefit tradeoffs over a range of budgets.

We empirically demonstrate the performance of our pro-
posed method, in terms of solution quality and efficiency.

B. Literature Review

There is a large literature on maximizing submodular set
functions and continuous analogs such as DR-submodular
functions. Due to space limitations, we only discuss a few
works that are most closely related to ours. Here we simply
note that there are works in submodular optimization that
solve a discrete problem using a continuous relaxation (we
instead solve a continuous problem) and that there are other
works that maximize continuous submodular functions using
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oracle access for a related discrete problem, but those works
use many oracle queries (random sampling) to construct esti-
mates of the continuous function or its gradient. Our method
instead constructs near-optimal solutions to the continuous
problem directly from solutions for the discrete problem.

We next discuss works in the influence maximization
literature. Kempe et al. [2] proposed using a greedy algorithm
from [3] for discrete IM (DIM), where the decision maker
chooses a subset of users to seed the diffusion. They also
considered a much more general setting where instead of se-
lecting users to seed the diffusion, the decision maker selects
how much to invest in different “marketing strategies” that
in turn influence users to different extents. They proposed a
continuous greedy algorithm for solving this problem.

Yang et al. [4] considered a special case of Kempe et
al. [2]’s general marketing problem, known as continuous
influence maximization (CIM), where each marketing strat-
egy only directly affects a single user. Yang et al. [4] then
proposed a heuristic procedure based on coordinate descent.
We focus on an important special case of CIM where the
incentives are proportional to the users becoming seeds.
(The case we consider still generalizes the widely studied
discrete IM problem.) We propose a procedurally simple and
computationally efficient algorithm and then prove it yields
a (1−1/e) approximation guarantee. We further discuss how
the problem we consider relates to CIM in Section III-B.

Chen et al. [5] considered another special case of Kempe
et al. [2]’s generalization, known as lattice influence maxi-
mization (LIM), where they focused on discretized marketing
strategies with some granularity parameter. They proposed a
continuous greedy algorithm using reverse influence sam-
pling [6], [7], [8]. It is an adaptation of gradient methods
for DR-submodular maximization for influence maximiza-
tion. Demaine et al. [9] also proposed an influence model
considering strategies that affect the peer-to-peer influences
(i.e. edge weights in the independent cascade model).

C. Organization

The rest of the paper is organized as follows. In Section II,
we review background material. In Section III, we introduce
the fractional influence maximization problem we study. In
Section IV, we propose a greedy algorithm. In Section V,
we analyze the algorithm. In Section VI, we provide exper-
iments. In Section VII, we conclude the paper.

II. BACKGROUND

In Section II-A, we review submodular optimization. In
Section II-B, we review influence maximization.

A. Submodular Optimization

We first review submodular optimization. See [2], [10]
for more details. Let Ω denote the ground set of n elements.
Let 2Ω denote the set of all subsets of Ω. A set function
f : 2Ω → R is said to be submodular if it satisfies a
natural “diminishing returns” property: the marginal gain
from adding an element v to a set S ⊆ Ω is at least as high
as the marginal gain from adding the same element v to a

superset S′ ⊆ Ω of S. Formally, for any sets S ⊆ S′ ⊆ Ω,
f satisfies f(S ∪ {v}) − f(S) ≥ f(S′ ∪ {v}) − f(S′).
A set function f is said to be monotone (non-decreasing)
if for any S ⊆ S′ ⊆ Ω, f satisfies f(S) ≤ f(S′). Let
[0, 1]n denote the unit hypercube. The multilinear extension
F : [0, 1]n → R of the set function f : 2Ω → R is
defined as F (x) =

∑
S⊆Ω f(S)

∏
i∈S xi

∏
i/∈S(1 − xi). At

the corners x ∈ {0, 1}n of the hypercube [0, 1]n, the multi-
linear extension F (x) is equal to the set function f(S), with
S = {i | i ∈ {1, . . . , n}, xi = 1}. F is the expected value
F (x) = E[f(x̂)], where x̂ is a random vector where each
element i is distributed as Bernoulli(xi) and is independent
of other elements [10]. This relationship is the basis for the
widely used strategy of estimating a multilinear extension F
by averaging f over randomly sampled subsets.

B. Influence Maximization

Diffusion models describe how information and content
spread over a social network. For the purpose of our research,
we focus on the widely used independent cascade model
[11], [12]. Given a graph G = (V,E), the process starts at
time 0 with an initial set of active nodes S, called the seed
set. When a node v ∈ S first becomes active at time t, it will
be given a single chance to activate each currently inactive
neighbor w, it succeeds with a probability pv,w (independent
of the history thus far). If w has multiple newly activated
neighbors, their attempts are sequenced in an arbitrary order.
If v succeeds, then w will be active at time t+1. Let y(v)t ∈
{0, 1} denote whether v was activated or not by time t.

The influence σ(S) of a seed set S is the expected number
of active nodes at the end of the cascade (denoted by time
T ), given that the users in S seed the diffusion, σ(S) =

E[
∑

v∈V y
(v)
T | seed set S], where y

(v)
0 = 1 if v ∈ S and

0 otherwise. Kempe et al. [2] showed that under the inde-
pendent cascade model, σ(S) is a monotone submodular set
function. They proposed the discrete influence maximization
(DIM) problem under a budget k as

Problem 1 (Discrete Influence Maximization (DIM)):

max
S⊆V : |S|≤k

σ(S).

III. PROBLEM FORMULATION

A. Social Influence Maximization Under Partial Incentives

We are interested in solving a generalization of Problem 1
we refer to as fractional influence maximization (FIM) where
the decision maker can partially incentivize users to seed the
diffusion through discounts, in contrast to Problem 1 where
users are either fully incentivized to seed the diffusion (if
they receive a free product) or are not incentivized at all.

Let d ∈ [0, 1]n denote the vector of normalized user
discounts, such that user i becomes influenced by the in-
centive at time 0 with probability di. Analogous to the
set function σ(S), we consider the influence σ̃(d) of a
vector of incentives d ∈ [0, 1]n as the expected number of
active nodes at the end of the cascade (denoted by time T ),
σ̃(d) = E[

∑
v∈V y

(v)
T | incentives d].
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Lemma 0.1: The expected influence function σ̃
for the relaxation Problem 2 of Problem 1 is the
multilinear extension of the monotone submodular
set function σ in Problem 1, specifically, σ̃(d) =∑

S⊆V σ(S)
∏

i:vi∈S di
∏

i:vi /∈S (1− di) .
The proof is straightforward using properties of expectation.

B. Problem Statement

We now formally state the problem of fractional influence
maximization (FIM) we consider. FIM generalizes the widely
studied DIM by allowing for fractional incentives and we
show is much more tractable to solve than more general
model classes. Let G be a weighted directed social network
and k ∈ (0, n) the budget.

Problem 2 (Fractional Influence Maximization (FIM)):

max
d∈[0,1]n: ⟨1,d⟩≤k

σ̃(d). (1)

FIM is a subclass of the problem of maximizing the
multilinear extension of a monotone submodular set function
subject to an L1 constraint. It is also a special case of CIM
[4]. CIM permits the probability of node i being a seed to
be a non-linear function of the discount di, though like in
FIM users are fully incentivized with one unit of budget (i.e.
discounts di = 0 and di = 1 result in y(i)0 = 0 and y(i)0 = 1
respectively). The objective function for CIM [4] is not a
multilinear function and is more challenging to optimize.

IV. MAIN RESULTS - APPROXIMATION ALGORITHM

In this section, we present a greedy
(
1− 1

e

)
-

approximation algorithm, Multilinear Extension Greedy
(MLE-Greedy), for Problem 2. It is procedurally simple.
Unlike other methods, our method does not need a value
oracle for the multilinear function, a gradient oracle, nor
to estimate gradients with random sampling from a value
oracle for the corresponding set function. Our method also
does not require discretization or a step size to be chosen
by the user. We also extend the proposed method to produce
a continuous path of solutions that are near-optimal for all
budgets from 0 up to k, with negligible overhead.

A. Multilinear Extension Greedy—Approximation Algorithm

Algorithm 1 calls a subroutine Oracle-DIM to obtain a
sequence of nested solutions with increasing cardinality. We
will discuss Oracle-DIM in Section IV-B. For a budget k ∈
R+, denote the floor as ⌊k⌋, so k−⌊k⌋ is the factional part.
Let x (⌊k⌋) and x (⌊k⌋+ 1) denote the approximate solutions
to the discrete problem Problem 1 for integer budgets ⌊k⌋
and ⌊k⌋ + 1 respectively, corresponding to nested subsets,
with x (⌊k⌋) ≤ x (⌊k⌋+ 1) (element-wise) so they differ in
a single coordinate.

We construct the solution to Problem 2 as

x (k) := x(⌊k⌋) + (k − ⌊k⌋)(x(⌊k⌋+ 1)− x(⌊k⌋)). (2)

Despite this method’s simplicity, both in computation and in
selecting a vector on the boundary of [0, 1]n, we will show
that (2) is nonetheless near-optimal.

Algorithm 1 MLE-Greedy

1: Input budget k, access to Oracle-DIM
2: {. . . , x (⌊k⌋) , x (⌊k⌋+1)} ← Oracle-DIM (⌊k⌋+1).
3: Return x(⌊k⌋) + (k−⌊k⌋)(x(⌊k⌋+1)− x(⌊k⌋))

Algorithm 2 Oracle-DIM (version [3])

1: Input integer budget k′, access to value oracle for σ
2: S0 ← ∅
3: for i ∈ {1, . . . , k′} do
4: ei ← argmaxe∈V \Si−1

σ(Si−1 ∪ {e})− σ(Si−1)
5: Si ← Si−1 ∪ {ei}
6: end for
7: Return {S1, . . . , Sk′}

B. DIM Subroutine

We now discuss the subroutine Oracle-DIM. In [3], the
authors proposed a well-known greedy algorithm for max-
imizing a monotone submodular function (of which Prob-
lem 1 is a special case) that returns such a nested sequence
with an approximation ratio (1 − 1/e) in O(nk) time. The
pseudo-code is shown as Algorithm 2. Lazy evaluations can
improve the empirical run-time of Algorithm 2, though its
worst case complexity is still O(nk). For the application of
social influence maximization, more efficient greedy methods
have been proposed, such as CELF [13], CELF++ [14],
Community-IM [15], [16], and reverse influence sampling
(RIS) based methods [6], [7], [8], [17]. Any of these or
other (1 − 1/e)-approximation algorithms could be used
as Oracle-DIM, provided they return a nested sequence of
solutions (each subset an (1 − 1/e) approximation for the
respective cardinality).

Also, faster algorithms with weaker guarantees, such as
the linear time randomized greedy method proposed in [18],
could be used as subroutines and their weaker approximation
guarantees would carry over to our proposed MLE-Greedy.

C. MLE-Greedy Performance

We next state properties of our proposed procedure Al-
gorithm 1, namely that it efficiently provides a near-optimal
solution to Problem 2. Since Algorithm 1 is applicable not
just for the FIM problem, but more generally for optimizing
a multilinear extension F (x) (of a monotone submodular
set function f(S)), in the following we will use the more
generic notation “F (x)” instead of the FIM specific “σ̃(d).”
Let x∗(k) denote an optimal solution to Problem 2.

Theorem 1: Algorithm 1 is an
(
1− 1

e

)
-factor approxi-

mation algorithm for Problem 2. Equivalently, (2) satisfies
F (x(k)) ≥

(
1− 1

e

)
F (x∗(k)) .

Theorem 1 will follow immediately from Theorem 2 below.
The computational complexity of Algorithm 1 is domi-

nated by calling Oracle-DIM which has computational com-
plexity O(nk). We next discuss how a slight extension allows
us to recover a continuous path of near-optimal solutions for
any budget, allowing the user to make a cost-benefit analysis
for how much budget to use.
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D. Continuous Near-Optimal Path Construction

We can extend (2) to a continuous path for any budget
t ∈ [0, n] such that each point along the path is near optimal
for its respective L1 norm. We begin by fixing x(t) for
integer values of t, t ∈ {0, 1, . . . , n}. Let {St}nt=0 denote
the sequence of nested subsets produced by Algorithm 2
for budget n, each subset being an (1 − 1/e)-approximate
solution for its respective cardinality. For integer values of
t, set x(t) to match St (xi(t) = 1 if i ∈ St). For non-integer
values, set x(t) as

x(t) = x(⌊t⌋) + (t− ⌊t⌋)(x(⌊t⌋+ 1)− x(⌊t⌋)). (3)

By construction, the coordinates of x(⌊t⌋) are binary valued
and differ with those of x(⌊t⌋ + 1) in a single coordinate,
namely the element j that gets added to S⌊t⌋ to form S⌊t⌋+1.
Let x∗(t) denote an optimal solution for a budget t.

Theorem 2: For all t ∈ [0, n], the continuous path x(t) is
feasible for Problem 2 for budget t and near optimal, with
F (x(t)) ≥

(
1− 1

e

)
F (x∗(t)).

We defer the proof to Section V-B. With effectively the
same computational expense of identifying a near-optimal
solution for the (maximum) budget, and armed only with
access to a value oracle for a set function, the decision maker
can identify near-optimal solutions for any budget up to the
maximum. This gives the decision-maker greater flexibility.

Remark 1: The continuous path we construct is on the
hyper-cube boundary and efficiently constructed using so-
lutions (subsets) to the discrete problem DIM. There are
several other algorithms that optimize continuous analogs
of submodular set functions, such as [10], [19], [20], [5],
which construct a “continuous greedy” path inside the unit
hypercube in iterative steps beginning at x = 0. Those
procedures typically require discretization or a step size
parameter. They also require a value oracle for the continuous
function or its gradients, else they use random samples from
a value oracle for the set function to estimate those.

E. Problem 2 Characterization

We next identify a property of Problem 2 that motivates the
design of our proposed Algorithm 1 and path construction.

Theorem 3: For Problem 2 with any budget 0 < t <
n, there is an optimal solution x∗(t) that is the convex
combination of just two, nested, and not necessarily optimal,
solutions to Problem 1 for integer budgets, one for budget
⌊t⌋ and one for budget ⌊t⌋+ 1.
The proof of Theorem 3 will follow directly from
Lemma 3.2, which we defer to Section V-A.

We next explore discontinuity of x∗(t) in an experiment.

F. Synthetic experiment to show discontinuity of x∗(t)

We ran influence maximization experiments using the in-
dependent cascade model on the network shown in Figure 1.

Experiment Details. We exhaustively evaluated F (x) for
all x ∈ {0, 1}n with ⟨1, x⟩ ≤ 3. Each evaluation entailed
running 1000 Monte-Carlo simulations and averaging.

Results and Discussion. We found that the optimal so-
lutions to Problem 1 for budgets k ∈ {1, 2, 3} were not
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Fig. 1: Network. Fig. 2: F (x∗(k)), k ∈ [0, 3].

fully nested. Namely, with index relabeling for simplicity,
the optimal set for budget k = 1 was S1 = {1}, for k = 2
was S2 = {2, 3}, and for k = 3 was S3 = {1, 2, 3}. We then
searched over pairs of nested solutions with integer-valued
L1 norms where one was optimal (for a budget of value equal
to its L1 norm). With this, we identified a discontinuous path
that is near-optimal, though we did not exhaustively check if
that path was indeed optimal. The values F (x) for a sequence
of solutions we identified are plotted in Figure 2. The blue
segments (for k ∈ [0, 1] ∪ [2, 3]) are optimal values. Over
k ∈ [2, 3], the set of optimal solutions is discontinuous in k
and the optimal value function is piece-wise linear with at
least two parts (max over orange and green segments).

V. MAIN RESULTS - ANALYSIS

We next characterize properties of (near)-optimal solutions
to Problem 2 which will then be used to prove Theorem 1.

We first state important properties of multilinear functions.
We then use those properties to show that there is an optimal
solution that is an extreme point (i.e. a corner) of the polytope
formed by the intersection of the hyperplane ⟨1, x⟩ = k and
the hypercube [0, 1]n. From there we bound the value of
the optimal solution for any non-integer budget k using the
values of the optimal solutions for budgets ⌊k⌋ and ⌊k⌋+1,
which are also optimal solutions to the discrete Problem 1.

A. Properties of Multilinear Extensions

Let ei denote the basis vector for the dimension i. For a
vector d, the inequality d ≥ 0 denotes element-wise non-
negativity. Let Pk = {x

∣∣ 0 ≤ x ≤ 1, ⟨1, x⟩ = k} denote
the polytope formed by the intersection of the hypercube
[0, 1]n and the hyperplane ⟨1, x⟩ = k.

Lemma 3.1 ([10], [21]): The multilinear extension F of a
monotone non-decreasing submodular set function f satisfies
the following properties everywhere in [0, 1]n:

• F is non-decreasing along any line of direction d ≥ 0,
• F is concave along any line of direction d ≥ 0, and
• F is convex along any line of direction ei − ej .
Corollary 3.1: There is an optimal solution x∗ to Prob-

lem 2 satisfying ⟨1, x∗⟩ = k.
Proof: This follows directly from Lemma 3.1.

By Corollary 3.1, we can restrict our attention to Pk. By
the third property of Lemma 3.1, we will be able to further
restrict our attention to the extreme points of Pk, namely
those x ∈ Pk with at most one integer-valued coordinate.

4330



Lemma 3.2: For Problem 2, there is an optimal solution
x∗ with at most one coordinate that is not integer-valued.

Proof: By Corollary 3.1, there is an optimal solution
x∗ ∈ Pk. Without loss of generality, suppose x∗ has non-
integer coordinates for dimensions 1 and 2. Let x̃(t) =
x∗ + t(e1 − e2), tmin = −min{x1, 1 − x2}, and tmax =
min{1 − x1, x2}. By construction, x̃(t) ∈ Pk for t ∈
[tmin, tmax] (for other t it is outside the unit hypercube) and
both x̃(tmin) and x̃(tmax) have one more integer-valued coor-
dinate than x∗ does. F (x̃(t)) is convex in t by Lemma 3.1, so
F (x∗) ≤ max{F (x̃(tmin)), F (x̃(tmax))}. Replace x∗ with
the argmax and repeat.

For the special case of an integer budget k, this further
means that there is an optimal solution to FIM with integer-
valued coordinates, which necessarily is optimal for DIM.

Corollary 3.2: For an integer-valued k, there is an optimal
solution to Problem 1 that is also optimal for Problem 2.

Proof: This follows from Lemma 3.2.
As noted in Section IV-E, Theorem 3 follows from

Lemma 3.2. That result characterizing solutions (motivating
the algorithm design) leads to the following result on func-
tion values (which leads to the near-optimality guarantees).

Corollary 3.3: The optimal value F (x∗(t)) for Problem 2
over [0, n] is a piece-wise linear, continuous function of the
budget t. Between successive integer values, t′ ∈ [⌊t⌋, ⌊t⌋+
1], F (x∗(t′)) is convex.

Proof: Let Et denote the subset of points in Pt that
have at most one non-integer valued coordinate (of value
t − ⌊t⌋). For non-integer t, these are extreme points of Pt.
By Theorem 3, for a budget t there is an optimal solution
x∗ ∈ Et to Problem 2 that can be expressed as a convex
combination x∗ = x′ + θ(x′′− x′) of nested solutions (x′ ≤
x′′) to Problem 1, where θ = t− ⌊t⌋.

Let Ẽ⌊t⌋ denote the set of nested pairs of solutions to
Problem 1 for budgets ⌊t⌋ and ⌊t⌋+1, with the first element
x′ an extreme point x′ ∈ E⌊t⌋ of the polytope P⌊t⌋ for integer
budget ⌊t⌋ and the second an extreme point for budget ⌊t⌋+1,
with just one coordinate differing in value,

Ẽ⌊t⌋ = {(x′, x′′) | x′ ∈ E⌊t⌋, x′′ ∈ E⌊t⌋+1, x
′ ≤ x′′}. (4)

For each pair (x′, x′′) ∈ Ẽ⌊t⌋, we can consider the function
ψ(x′,x′′)(θ) = F (x′+θ(x′′−x′)). F is linear along any unit
direction (i.e. all but one coordinate fixed), so ψ is a linear
function, ψ(x′,x′′)(θ) = F (x′) + (F (x′′)− F (x′))θ.

Thus, we can express the optimal value as

F (x∗) = max
(x′,x′′)∈Ẽ⌊t⌋

ψ(x′,x′′)(θ). (5)

Since (5) is a maximization over the same finite set of
linear functions for any θ ∈ [0, 1] (with ⌊t⌋ fixed), the op-
timal objective value is a piece-wise linear, continuous, and
convex function of θ. Each pair (x′, x′′) ∈ Ẽ⌊t⌋ that achieves
the maximum value ψ(x′,x′′)(θ) for some θ does so for either
a single point or a single interval of [0, 1]. We can form
(possibly discontinuous) piece-wise linear paths x(θ) and we
can restrict ourselves to (possibly discontinuous) piece-wise
linear paths with the minimal number of segments.

B. Proof of Theorem 2

Proof: Continuity and feasibility of the path (in par-
ticular x(t) ∈ Pt) follow by construction. We now show
near-optimality. Writing t′ = t− ⌊t⌋ and x∗t for x∗(t),

F (x(t))= f(S⌊t⌋) + t′(f(S⌊t⌋+1)− f(S⌊t⌋)) (6)

≥(1− 1

e
)
(
f(S∗

⌊t⌋) + t′(f(S∗
⌊t⌋+1)− f(S

∗
⌊t⌋))

)
(7)

=(1− 1

e
)
(
F (x∗⌊t⌋) + t′(F (x∗⌊t⌋+1)− F (x

∗
⌊t⌋))

)
(8)

≥ (1− 1

e
)F (x∗(t)), (9)

where (6) uses linearity of multilinear extensions along unit
directions and construction of x(t), (7) uses near-optimality
of the output of Algorithm 2 for the discrete problem,
Problem 1 [3]; (8) follows by construction; (9) follows from
the piecewise-linearity of F (x∗(t))—the value in (8) is a
convex combination of F for integer valued budgets that
upper bounds F (x(t)) and equality is achieved only if there
are a pair of nested optimal solutions to Problem 1 for
budgets ⌊t⌋ and ⌊t⌋+1 (i.e. S∗

⌊t⌋ ⊂ S
∗
⌊t⌋+1 and consequently

(element-wise) x∗(⌊t⌋) ≤ x∗(⌊t⌋+ 1)).

VI. EXPERIMENTS

We ran experiments to evaluate our greedy approximation
algorithm on a large real-world social network.

Network Data. We used an undirected Facebook [22]
network with 4,039 nodes and 88,234 edges from [23]. Each
edge in this undirected network was replaced by two directed
edges. For edge weights, we used the weighted cascade
model [2] with weights set as one over the in-degrees.

Algorithms. We instantiated Oracle-DIM with a state-of-
the-art IM specific greedy algorithm [17] based on reverse
influence sampling (RIS). We use the following baselines.

1) Floor-Greedy – for any budget k, calculate
Oracle-DIM(F, ⌊k⌋), i.e. ignore the fractional budget.

2) LIM-Greedy [5] – a state-of-the-art, RIS-based adap-
tation of gradient methods for DR-submodular maxi-
mization for the problem of IM.

Experimental Details. For LIM-Greedy [5], we set the
discretization parameter, δ = 0.1 and approximation param-
eter, ϵ = 0.5 as suggested by the authors. For state-of-the-
art RIS-based greedy, we set the approximation parameter,
ϵ = 0.01 as suggested by the authors. For our experiments,
we compared our proposed Algorithm 1 and the baselines in
terms of the influence of the output partial incentive vector
and empirical run times. We ran the methods for all budgets
k ∈ {0.2, 0.4, . . . , 20}. After the methods finished, to com-
pare their solutions, we separately evaluated the outputted
solutions using 1000 Monte Carlo simulations each. The
experiments were carried out on a computer with a 2.3 GHz
2-core Intel Core i5 processor and 8 GB of memory. We used
Python for our implementation. The source codes of RIS-
based greedy algorithm [17] and LIM-Greedy [5] provided
by their authors are written in C++.
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Fig. 3: Results for the Facebook network.

Results. Figure 3a shows the influence (on the y-axis)
achieved by different algorithms as a function of the bud-
get (on the x-axis). For each algorithm, the approximate
solutions are obtained using a single run for budget 20.
Approximate solutions for budgets lower than 20 are then
obtained as subsets of the approximate solution for budget
20, as our method and the baseline obtain sequences of
solutions up to the input budget. The influence values in the
plots are the expected numbers calculated using 1000 Monte
Carlo simulations. Figure 3b depicts the run-time in seconds
(on the y-axis) using different algorithms for different values
of the budget (on the x-axis). We use a log scale for plotting
as actual run-time values for MLE-Greedy are much smaller
(fractions of a second) than those for LIM-Greedy. The run
times for MLE-Greedy are averaged over 10 runs.

Discussion. From Figure 3a, we note that in terms of
influence, the proposed MLE-Greedy algorithm outperforms
the Floor-Greedy algorithm for non-integer budgets. The
influence values are almost the same for MLE-Greedy and
LIM-Greedy algorithms except for high values of the budget
(k > 15), where LIM-Greedy performs slightly better. From
Figure 3b, we note that our proposed MLE-Greedy takes
orders of magnitude less time than LIM-Greedy. The run-
time savings due to MLE-Greedy compared to LIM-Greedy
increase as the budget increases.

VII. CONCLUSION

For an important fractional generalization of the widely
studied discrete influence maximization problem, we pro-
posed an efficient (1 − 1/e)-approximation algorithm. Our
algorithm interpolates the solutions to the discrete problem
and is significantly more tractable than other generalizations
that adopt a continuous greedy strategy. Furthermore, we
demonstrated the performance of our algorithm using ex-
perimental evaluations.
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