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Abstract— We adopt a Bayesian perspective to identify the
unknown parameters of linear stochastic systems with possibly
non-Gaussian disturbance distributions. The key idea of our
algorithm is to alternately execute L randomly selected linear
state-feedback controllers and keep track of a maximum a
posteriori estimator. The proposed algorithm asymptotically
achieves the concentration of posterior distributions around the
true system parameters. We also derive probabilistic bounds for
the concentration based on the classical results regarding the
asymptotic properties of posterior distributions. An empirical
demonstration is provided as well.

I. INTRODUCTION

System identification is a fundamental problem in the
analysis and design of control systems [1]. Various classical
methods have been extensively studied and have contributed
to many practical domains including engineering, economics,
finance, and biology. With advances in the intersection of
machine learning and control theory, new perspectives, anal-
yses, and algorithmic ideas have been emerging in terms of
concentration bounds and sample complexity, among others.

A rich body of literature focuses on identifying a pair
of unknown parameters, (A,B), of stochastic linear time-
invariant (LTI) systems xt+1 = Axt+But+wt. Most of the
recent works consider the least square estimation exploiting
its various benefits in theoretical analyses [2]–[10].

For a marginally stable uncontrolled system (B = 0
and ρ(A) ≤ 1 where ρ denotes the spectral radius), [2]
provides a non-asymptotic high-probability upper bound for
the error using a single trajectory. Moreover, [3] carries
out provable guarantees for both controlled and uncontrolled
systems. Other notable works are [4], [5], which show that
it is effective to estimate the system parameter first and
then utilize the standard bootstrap argument; however, their
methods are limited to the Gaussian noise case.

There are several works [6], [7], [9], [10] in which an
extension to non-Gaussian noise is considered using a single
trajectory. In [6], uncontrolled systems with sub-Weibull
disturbance distributions are considered, and probabilistic
guarantees are obtained using the standard mixing time argu-
ment [11]. However, the theoretical guarantees are valid only
when the geometric multiplicity of eigenvalues is greater than
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unity is one. In parallel, [7] provides sharp error bounds for
the case 1−C/T ≤ ρ(A) ≤ 1+C/T based on Mendelson’s
small-ball. A subsequent work, [10], handles error bounds
for systems satisfying ρ(A) ≥ 1+C/T under isotropic sub-
Gaussian disturbance. However, the concentration bounds
derived in the aforementioned literature require the evalu-
ation of an unverifiable criterion or the knowledge of true
system parameters. In [7], the concentration bound requires
that (k,Γsb, p)-small ball condition. We also note that the
bound provided in [10] relies on the true system parameters.
Furthermore, it also has been acknowledged in the same
paper that least squares estimation is statistically inconsistent
under certain conditions.

Attempts have also been made to derive sample complex-
ity using multiple trajectories. Notably, [4] presents concen-
tration bound for least squares estimation using multiple full
trajectories based on the bootstrap argument. The result holds
regardless of the stabilizability but explicit dependence on the
time horizon and rollouts is unavailable. More recently, [12]
provides concentration bounds for least squares estimation
using full trajectories under a certain assumption on the
system parameters, k-controllability.

In this paper, we consider a fairly general class of LTI
systems with inputs (B ̸= 0) and non-Gaussian distur-
bances. From the Bayesian perspective, we propose a sim-
ple posterior update algorithm and analyze its asymptotic
concentration properties that are valid regardless of the
stabilizability of (A,B). Bayesian system identification also
has an extensive body of literature (see e.g., [1], [13]–[15]
and the references therein). The works most relevant to
ours are [13], [16], where the posterior mean is used as an
estimator with data from a very short period. They introduce
a novel Markov Chain Monte Carlo (MCMC) algorithm
and provide its convergence rate. However, MCMC methods
usually require considerable computational resources; only
a one-dimensional experiment is conducted using a simple
piecewise-constant control input in [13].

Departing from these approaches, we devise a simple
novel algorithm to obtain a maximum a posteriori (MAP)
estimator, which can be computed efficiently for unimodal
posterior distributions. The key idea of our algorithm is to
alternatively execute a certain number of randomly selected
linear state-feedback controllers satisfying a mild excitation
condition, and update the posterior of unknown parameters
(A,B). Leveraging the classical results on the asymptotic
properties of posterior distributions [17], [18], we establish
asymptotic concentration bounds for the MAP estimator
around the true system parameter in terms of the time horizon
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under the mild structural assumptions on the disturbance
distribution, namely, the log-concavity of the probability
density function (pdf). In this case, computational tractability
is enhanced since the posterior pdf is unimodal. The perfor-
mance of our method is numerically demonstrated through
problems with non-Gaussian disturbance distributions in both
stabilizable and unstabilizable cases.

II. PRELIMINARIES

A. Linear Systems with Non-Gaussian Disturbances

Consider a linear stochastic system of the form

xt+1 = Axt +But + wt, t = 1, 2, . . . , (1)

where xt ∈ Rn is the system input, and ut ∈ Rm is the
control input. The disturbance wt ∈ Rn is an independent
and identically distributed (i.i.d.) zero-mean random vector
with covariance matrix W . Throughout the paper, the d× d
identity matrix is denoted by Id.

Assumption 1: For every t = 1, 2, . . ., the random distur-
bance vector wt satisfies the following properties:

1) The probability density function (pdf) of noise pw(·)
is known and twice differentiable. Additionally, pw is
strongly log-concave, i.e.,

−∇2
wt

log pw(wt) ⪰ mIn

for some m > 0;
2) E[wt] = 0 and E[wtw

⊤
t ] = W , where W is positive

definite.
Remark 1: This assumption allows us to consider more

general classes of disturbances beyond Gaussian. One exam-
ple of noise that we use for the experiment is the Gaussian
mixture distribution. Another class is an asymmetric noise
whose last coordinate is assumed to be asymmetric while the
others follow Gaussian. Please see Section IV for details.

Let d := n +m and Θ ∈ Rd×n be the system parameter
matrix defined by

Θ :=
[
Θ(1) · · · Θ(n)

]
:=

[
A B

]⊤
,

where Θ(i) ∈ Rd denotes the ith column of Θ. We also let

θ := vec(Θ) := (Θ(1),Θ(2), . . . ,Θ(n)) ∈ Rdn

denote the vectorized version of Θ and often refer to θ as
the parameter vector.

Let ht := (x1, u1, . . . , xt−1, ut−1, xt) be the history of
observations made up to time t, and let Ht denote the
collection of such histories at stage t.

B. Posterior Update

In this paper, we consider the Bayesian setting, where the
prior of the true system parameter θ∗ is given. The posterior
update process is described using Bayes’ rule inductively.
Let the state-input pair be denoted by

zt := (xt, ut) ∈ Rd.

Then, the linear system (1) is expressed as xt+1 −Θ⊤zt =
wt ∼ pw, and therefore,

p(xt+1|zt, θ) = pw(xt+1 −Θ⊤zt),

which is strongly log-concave in θ under Assumption 1. On
the other hand, we have

p(θ|ht+1)p(xt+1|zt, ht) = p(θ|xt+1, zt, ht)p(xt+1|zt, ht)

= p(xt+1|zt, ht, θ)p(θ|zt, ht)

= p(xt+1|zt, θ)p(θ|ht),

where the second equality follows from Bayes’ rule. Thus,
the posterior at stage t is given by

p(θ|ht+1) ∝ p(xt+1|zt, θ)p(θ|ht)

= pw(xt+1 −Θ⊤zt)p(θ|ht).
(2)

Hence, if p(θ|ht) is strongly log-concave, then so is
p(θ|ht+1). Using mathematical induction, it is straightfor-
ward to show that the posterior pdf at any stage is strongly
log-concave since strong log-concavity is preserved through
the posterior update.

III. SYSTEM IDENTIFICATION VIA POSTERIOR UPDATE

In this section, we propose an algorithm for estimating the
posterior pdf of θ∗ by applying only L randomly selected
linear state-feedback controllers. Randomizing controllers
seems to provide useful information for estimating system
parameters, as discussed in the literature (e.g., [4], [6], [7]).
Departing from the existing approaches, we simply adopt
L randomly generated control gain matrices satisfying a
mild excitation condition. Specifically, given L ∈ N which
is determined by the dimension of the state and control
input m and n, we introduce L control gain matrices
K1, ...,KL ∈ Rn×m and apply state-feedback controllers
ut = Kixt when t ≡ i (mod L) up to time T to collect
the sequence of state-input pairs (zs)

T
s=1 for N independent

rollouts, which is denoted by (z
(ℓ)
s )Ts=1 for ℓ = 1, . . . , N . We

emphasize that the initial state x1 is always set to 0 after each
rollout. In the last part of this section, we rigorously show
that the posterior distribution obtained using the collected
data is asymptotically concentrated around the true system
parameter θ∗.

A. Main Algorithm

Our algorithm is designed to compute the posterior pdf of
θ that concentrates around θ = θ∗, given ht. One can then
estimate θ∗ as argminθ{− log p(·|ht)} = argminθ{Ut(·)},
where Ut is the potential of the posterior pdf at time t, that
is, p(θ|ht) ∝ e−Ut(θ).

We begin by specifying the control gain matrices used
in our algorithm. The matrices are chosen to satisfy the
following mild assumption need for excitation:

Assumption 2: For any m,n ∈ N, let L be the smallest
integer such that m+ n ≤ Ln. We assume that

λmin

( L∑
s=1

[
In
Ks

]
W

[
In
Ks

]⊤ )
> 0.
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Algorithm 1 System identification via posterior update

1: Input: λ > 0, N ∈ N, and L control gain matrices
K1,K2, . . . ,KL satisfying Assumption 2;

2: t← 1, x1 ← 0, D ← ∅;
3: for ℓ = 1, 2, . . . , N do
4: for t = 1, 2, . . . , T − 1 do
5: if t ≡ i (mod L) then
6: Execute u

(ℓ)
t = Kix

(ℓ)
t ;

7: end if
8: Observe new state x

(ℓ)
t+1;

9: Update D ← D ∪ {(z(ℓ)t , x
(ℓ)
t+1)};

10: t← t+ 1;
11: end for
12: end for
13: Compute Ũ as (3);
14: θ̃ = argmin Ũ(·)

Remark 2: It is intuitively clear that this condition is
satisfied with a high probability if the L matrices (or one
of the L matrices) are randomly selected. We empirically
verified the condition for n = m = 3 and 5 by simply
choosing K1 = − 3

2In and K2 to be a random matrix whose
entries are sampled from the standard Gaussian distribution.
Among 10,000 pairs of randomly generated matrices, none
violate the condition.

Our Bayesian system identification algorithm is presented
in Algorithm 1. Here, we simply assume that the prior
distribution of the true system parameter follows N (0, 1

λIdn)
for some λ > 0. Applying the control gain matrices Ki

alternatively up to T , the data are collected. We then invoke
Bayes’ rule to obtain the potential of the posterior distribu-
tion of θ with N rollouts as follows:

Ũ(θ) =
λ

2
|θ|2 −

N∑
ℓ=1

T−1∑
s=1

log pw(x
(ℓ)
s+1 −Θ⊤z(ℓ)s ), (3)

which consists of the prior and likelihood parts. Note that Ũ
is strongly convex for any λ > 0 since pw is log-concave.
It is worth noting that θ̃ ∈ argminθ Ũ(·) is indeed an MAP
estimator, and it can be computed using existing convex
optimization algorithms.

To analyze the potential, we introduce the following useful
quantity:

P̂
(ℓ)
t :=

t−1∑
s=1

blkdiag{z(ℓ)s z(ℓ)s

⊤
}ni=1, (4)

where blkdiag{Ai}ni=1 ∈ Rdn×dn denotes the block di-
agonal matrix consisting of Ai ∈ Rd×d for i = 1, ..., n
in the diagonal. The next lemma describes the geometric
relationship between P̂

(ℓ)
t and the potential for the likelihood

Û
(ℓ)
t (θ) := −

t−1∑
s=1

log pw(x
(ℓ)
s+1 −Θ⊤z(ℓ)s ). (5)

Lemma 1: Let ℓ ∈ {1, . . . , N}. Under Assumption 1, the
following inequality holds

∇2Û
(ℓ)
t (θ) ⪰ mP̂

(ℓ)
t

for any t and any θ, where m is the constant specified in
Assumption 1.

Proof: To avoid clutter, we suppress the superscript ℓ.
By direct calculation, the following equality holds:

∇2
θ log pw(xs+1 −Θ⊤zs)

= ∇2
ws

log pw(xs+1 −Θ⊤zs)⊗ zsz
⊤
s ,

where ⊗ denotes the Kronecker product. Then, the Hessian
of Ût can be written as

∇2
θÛt = −

t−1∑
s=1

∇2
ws

log pw(xs+1 −Θ⊤zs)⊗ zsz
⊤
s .

By Assumption 1, for any state-input pair zs = (xs, us), we
have

−∇2
ws

log pw(xs+1 −Θ⊤zs)⊗ zsz
⊤
s

⪰ mblkdiag({zsz⊤s }ni=1),

and

∇2
θÛt ⪰ m

t−1∑
s=1

blkdiag({zsz⊤s }ni=1).

Therefore, the result follows.
Using this lemma, we further compare the Hessian of the

expected potential U := E[Û (ℓ)
T (θ)] and P := E[P̂ (ℓ)

T ] as

∇2
θU(θ) = ∇2

θE[Û
(ℓ)
T (θ)]

= E[∇2
θÛ

(ℓ)
T (θ)] ⪰ mE[P̂ (ℓ)

T ] = mP.
(6)

Now we verify that λmin(∇2
θU(θ)) grows at least linearly

in the time horizon T .
Theorem 1: Suppose that T > L. Let (z

(ℓ)
s )Ts=1 be the

data collected from Algorithm 1 and P := E[P̂ (ℓ)
T ]. Then,

we have

λmin(∇2
θU(θ)) ≥ λmin(P ) >

(
T

L
− 1

)
λ̃min

for any T > 1, where λ̃min represents the minimum eigen-
value of

L∑
i=1

[
In
Ki

]
W

[
In
Ki

]⊤
.

Proof: We again suppress the superscript ℓ for simplic-
ity. For each t ≥ 1, we have that E[xtx

⊤
t ] = W where the

expectation is taken with respect to w1, ..., wt.
By the definition of zt, we have

T−1∑
s=1

E[zsz⊤s ] ⪰
(
T

L
− 1

) L∑
s=1

[
In
Ks

]
E[xix

⊤
i ]

[
In
Ks

]⊤
⪰

(
T

L
− 1

) L∑
s=1

[
In
Ks

]
W

[
In
Ks

]⊤
,

and the result follows.
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It follows from Theorem 1 that λmin(∇2
θ(U(θ))→∞ as

T → ∞, which can be understood in the following way.
The growth of λmin(∇2

θU(θ)) implies that the curvature of
the potential U(θ) increases, which allows us to measure the
concentration rate in terms of T .

B. Concentration Property

The classical result by Doob [17] asserts that the posterior
distributions converge weakly (convergence in distribution)
to the Dirac measure centered at the true parameter as
the number of data N grows to infinity. The quantitative
property of the potential investigated in the previous section
allows us to analyze further beyond the weak convergence.
Our focus is to reveal how the regularity of the potential
contributes to establishing the probabilistic guarantee of
system identification in the Bayesian framework.

In this section, we impose the following assumption on
the {Pθ} which represents the natural parametric family of
probability distributions for the system parameter θ in our
problem.1

Assumption 3: The parameter family {Pθ} is identifiable,
i.e., θ1 ̸= θ2 implies Pθ1 ̸= Pθ2 .

We denote the i.i.d samples from Pθ∗ by (X1, ..., XN ),
where Xℓ represents a single trajectory (x

(ℓ)
s , z

(ℓ)
s )Ts=1.

Throughout the paper, we let Br(θ) = {x : |x − θ| ≤ r}
and denote the complement of this ball by Bc

r(θ).
According to the Bernstein–von Mises theorem [18], the

posterior distribution asymptotically follows the Gaussian
distribution centered around the maximum likelihood esti-
mator (MLE) denoted by θ̂, that is,

θ̂ ∈ argmax
θ

p(X1, ..., XN |θ).

Lemma 2 (Bernstein Von Mises Theorem [18]): Under
Assumption 3, we have
√
N(θ − θ̂)|(X1, ..., XN )

d−→ N (0, (∇2
θU(θ∗))

−1),

where θ follows the posterior distribution associated with the
data (X1, ..., XN ).

Recall that θ̃ is the MAP estimator, obtained as

θ̃ ∈ argmin
θ

Ũ(θ)

in Algorithm 1. When the potential is strongly convex, the
following inequality holds.

Lemma 3: [Lemma 10 in [19]] For a random variable
θ ∈ Rdn whose potential is a strongly convex function U(θ)
satisfying λmin(∇2

θU(θ)) ≥ ℓ, we have

E[|θ − θ̃|p] ≤ 5p
(
dnp

ℓ

)p/2

, p > 0,

where the expectation is taken with respect to Pθ.
Finally, we claim the following result on the concentration

of θ̃ around θ∗ as the number of rollouts N grows to infinity.

1Precisely, for a single trajectory (xs, zs)Ts=1 generated by the algorithm,
the parametric family of probability distributions is given by Pθ ∼
p(θ)ΠT−1

t=1 pw(xt+1 −Θ⊤zt).

Theorem 2: Suppose that Assumptions 1–3 hold. Fix ar-
bitrary δ > 0 and r > 0 and let T0 := η−1( δ

2C ), where
C = 2−dn/2

Γ(dn/2+1) and η(T ) :=
∫∞√

T/C1
e−r2rdn−1dr with

constants C1 = L(L+1)

mλ̃min
and λ̃min from Theorem 1. Then,

for any T ≥ T0 in Algorithm 1, we have

lim sup
N→∞

Pr(θ ∈ Bc
r(θ∗)) ≤ δ, (7)

and
lim sup
N→∞

Pr(θ̃ ∈ Bc
2r(θ∗)) ≤ δ, (8)

where θ follows the posterior distribution obtained in Algo-
rithm 1.

Proof: Fix δ > 0 and r > 0. First, to show the
concentration bound (7), we observe that

Pr(|θ − θ∗| ≥ r) ≤ Pr
(
|θ − θ̂| ≥ r

2

)
+ Pr

(
|θ̂ − θ∗| ≥

r

2

)
.

In what follows, we bound the two terms on the right-hand
side separately.

By Lemma 2, we have

lim
N→∞

Pr(θ ∈ Bc
1/

√
N
(θ̂)|X) = Pr(|Y | ≥ 1),

where Y ∼ N (0, (∇2
θU(θ∗))

−1). Note that Y follows a
zero-mean multivariate Gaussian distribution with covariance
(∇2

θU(θ∗))
−1. By the choice of C1 and Theorem 1, we have

λmin(∇2
θU(θ∗)) ≥ m

(
T

L
− 1

)
λ̃min ≥

T

C1
.

Thus, we deduce that

Pr(|Y | ≥ 1)

= (2π)−dn/2|det(∇2
θU(θ∗))|−1/2

∫
|y|≥1

e−y⊤∇2
θU(θ∗)ydy

≤ (2π)−dn/2

∫
λmax(∇2

θU(θ∗)−1)|z|2≥1

e−|z|2dz

≤ (2π)−dn/2

∫
|z|≥
√

T/C1

e−|z|2dz

≤ 2−dn/2

Γ(dn/2 + 1)

∫ ∞

√
T/C1

e−r2rdn−1dr.

By the definition of C and η(T ), the inequality above can
be expressed as

lim
N→∞

Pr(θ ∈ Bc
1/

√
N
(θ̂)|X) ≤ Cη(T ).

Hence,

lim sup
N→∞

Pr(θ ∈ Bc
r/2(θ̂))

= lim sup
N→∞

∫
Pr(θ ∈ Bc

r/2(θ̂)|X)dPX

≤ lim sup
N→∞

∫
Pr(θ ∈ Bc

1/
√
N
(θ̂)|X)dPX

≤ Cη(T ).

Let T0 = η−1( δ
2C ). Then, for any T ≥ T0, we have

C
(
1− erf

(√
T/C1

))
≤ δ

2
,
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which implies that

lim sup
N→∞

Pr
(
|θ − θ̂| ≥ r

2

)
≤ δ

2
. (9)

Now, recall the asymptotic property of MLE, i.e.,
√
N(θ̂ − θ∗)

d−→ N (0,∇2
θU(θ∗)

−1) as N →∞.

Following the same argument as above, we have

lim sup
N→∞

Pr
(
|θ̂ − θ∗| ≥

r

2

)
≤ lim

N→∞
Pr

(
|θ̂ − θ∗| ≥

1√
N

)
= Pr(|Y | ≥ 1) ≤ δ

2

for T ≥ T0. Combining this bound with (9) yields the first
concentration bound (7).

To show the second concentration bound (8), we first
observe that

Pr(|θ̃ − θ∗| ≥ 2r) ≤ Pr(|θ − θ̃| ≥ r) + Pr(|θ − θ∗| ≥ r).

The first term on the right-hand side is bounded as

Pr(|θ − θ̃| ≥ r) =

∫
Pr(|θ − θ̃| ≥ r | X)dPX

≤ 1

r2

∫
E[|θ − θ̃|2 | X]dPX

≤ C0

r2

∫
1

λ+mλmin(
∑N

ℓ=1 P̂
(ℓ)
T )

dPX

=
C0

r2

∫
1

λ+mNλmin(
∑N

ℓ=1 P̂
(ℓ)
T

N )
dPX

for some positive constant C0, where the first inequality
holds due to Markov’s inequality and the second inequality
follows from Lemma 3 with the property λmin(∇2

θŨ(θ)) ≥
λ + mλmin(

∑T
ℓ=1 P̂

(ℓ)
t ). Thus, by the strong law of large

numbers, we have

lim sup
N→∞

Pr(|θ − θ̃| ≥ r) = 0.

Combining this with the first concentration bound (7) yields
limN→∞ Pr(|θ̃ − θ∗| ≥ 2r) ≤ δ for T ≥ T0.

Example 1: For t = 1, . . . , T − 1, ℓ ∈ {1, . . . , N}, and
λ = 0, consider the system x

(ℓ)
t+1 = a∗x

(ℓ)
t + u

(ℓ)
t + w

(ℓ)
t ,

where x
(ℓ)
t , u

(ℓ)
t ∈ R and w

(ℓ)
t ∼ N (0, 1). Choosing

u
(ℓ)
t = x

(ℓ)
t , the MAP estimator a is written as a = a∗ +∑N

ℓ=1

∑T−1
s=1 x(ℓ)

s w(ℓ)
s∑N

ℓ=1

∑T−1
s=1 x

(ℓ)
s

2 . By Markov’s inequality,

Pr(|a− a∗| > r) ≤ 1

r2
E
[∑N

ℓ=1

∑T−1
s=1 x

(ℓ)
s w

(ℓ)
s∑N

ℓ=1

∑T−1
s=1 x

(ℓ)
s

2

]
.

Roughly, the denominator scales in O(N) while the numer-
ator scales in O(

√
N) with high probability as shown in [5].

Our result provides a probabilistic bound of this complicated
term from the Bayesian perspective.

The technique used in our analysis has distinguishing
features compared to other works. In particular, [9], [10],
[20] leverage martingale properties to handle the correlation
between states and obtain a finite time sample complexity

using a single trajectory. Our result is weaker in the sense
that we derive asymptotic sample complexity by taking the
number of rollouts N to infinity. However, we provide a
simple and elegant approach from a Bayesian perspective by
focusing solely on the geometric property of the potential,
namely ∇2

θU(θ) ≥
(
T
L − 1

)
λ̃min.

IV. EXPERIMENTS

We test the performance of our algorithm using three types
of disturbance distributions: (i) Gaussian, (ii) Gaussian
mixture, and (iii) asymmetric.2 Furthermore, we consider
both stabilizable and unstabilizable cases.3 We compare the
performance of our algorithm with that of [4] which takes
the ordinary least squares estimation (LSE) approach using
the full trajectory of N rollouts.4

The prior distribution of the true parameter is assumed
to follow the standard Gaussian distribution and therefore
λ = 1. The dimension of the state and input spaces is
chosen as n = m = 3 and 5. We repeated the experiment
10 times for each case. Additional problem data and our
implementation of the method are available online.5 We use
L = 2 control gain matrices, K1 = − 3

2In and K2 whose
components are independently sampled from the standard
Gaussian distribution.

1) Stabilizable Case : In the first set of experiments, the
true system is chosen to be stabilizable and we set
N = 200. The results are shown in Fig. 1 (a)–(c). For
all three types of disturbances, our algorithm shows
a comparable performance to the LSE method [4] in
both three- and five-dimensional cases.

2) Unstabilizable Case : In the second set of experiments,
we identify the parameters of unstabilizable systems
with N = 100. As shown in Fig. 1 (d)–(f), our MAP
method still performs well in both three- and five-
dimensional problems even though only two different
controllers are applied alternatively.

In conclusion, we observe the decay of the relative error
as T increases, which is consistent with Theorem 2. Our
MAP method supports that using only a limited number of
state-feedback controllers is as efficient as the standard LSE
method with random control inputs.

2For the Gaussian case, we use the standard Gaussian distribution.
For the Gaussian mixture case, the pdf of wt is chosen as p(wt) =

1
2
√
2π

(e−|wt−a|2/2 + e−|wt+a|2/2), where a = 1
4
1m. For the asym-

metric case, we let all entries of wt except for the last element wt[n]
be independent and follow the standard Gaussian distribution. For the last
element, we set − ∂2 log p(wt)

∂wt[n]2
= k if wt[n] < α, − ∂2 log p(wt)

∂wt[n]2
=

K−k
β−α

wt[n] + k − (K−k)α
β−α

if α ≤ wt[n] < β, and − ∂2 log p(wt)

∂wt[n]2
= K

if β ≤ wt[n], where α = 0, β = 40, k = 1 and K = 10.
3For the former case, we randomly choose the system parameter

(A,B) which is stabilizable. For the latter, we consider the case
rank

[
A− λI B

]
< n for some λ > 0.

4Precisely, for the trajectories (z
(ℓ)
s )Ts=1 obtained via executing random

controllers u
(ℓ)
t ∼ N (0, Im), one can achieve the ordinary least squares

estimation as θ̃ ∈ argminθ
∑N

ℓ=1

∑T−1
s=1 |x(ℓ)

s+1 −Θ⊤z
(ℓ)
s |2.

5https://github.com/yeoneung/bayesian_system_id
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(a) stabilizable Gaussian (b) stabilizable Gaussian mixture (c) stabilizable asymmetric

(d) unstabilizable Gaussian (e) unstabilizable Gaussian mixture (f) unstabilizable asymmetric

Fig. 1: Relative estimation error |θ̃−θ∗|/|θ∗| under various disturbance distributions for stabilizable θ∗ (top) and unstabilizable
θ∗ (bottom).

V. CONCLUSIONS

We have proposed a Bayesian approach to identifying
unknown parameters of linear non-Gaussian systems via
alternative executions of L randomly selected linear state-
feedback controllers. The performance of our MAP estima-
tor is characterized through rigorous concentration analyses
that hold regardless of stabilizability. We believe that this
work can be extended in some promising future research
directions, including (i) concentration bounds for similar
Bayesian system identification using a single trajectory, and
(ii) understanding the geometry of random control gain
matrices that lead to efficient system identification.
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