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Abstract— Applying regularization in reproducing kernel
Hilbert spaces has been successful in linear system identification
using stable kernel designs. From a Gaussian process perspec-
tive, it automatically provides probabilistic error bounds for the
identified models from the posterior covariance, which are use-
ful in robust and stochastic control. However, the error bounds
require knowledge of the true hyperparameters in the kernel
design. They can be inaccurate with estimated hyperparameters
for lightly damped systems or in the presence of high noise. In
this work, we provide reliable quantification of the estimation
error when the hyperparameters are unknown. The bounds are
obtained by first constructing a high-probability set for the true
hyperparameters from the marginal likelihood function. Then
the worst-case posterior covariance is found within the set. The
proposed bound is proven to contain the true model with a
high probability and its validity is demonstrated in numerical
simulation.

I. INTRODUCTION

System identification estimates models of dynamical sys-
tems from input-output data. Under the assumption that
a low-dimensional model structure is known a priori, the
model parameters can be estimated by maximum likelihood
estimation, of which one example is the prediction error
method (PEM) [1]. This framework, despite some numerical
difficulties, has been very successful in various applications
[2].

However, as more complex and large-scale systems are
emerging, low-dimensional model structures become less
accessible. Following the seminal work [3], system identi-
fication can be reformulated as a non-parametric function
learning problem, and solved using, among other approaches,
the kernel-based method [4], [5], [6]. The kernel-based
method can be interpreted as function learning in a reproduc-
ing kernel Hilbert space (RKHS), Gaussian process (GP) re-
gression, or ridge regression with basis expansions. In linear
system identification, a truncated impulse response model is
identified with a weighted l2 regularization term, with a class
of stable kernels designed to identify stable linear systems
effectively [3], [7], [8]. The GP interpretation provides the
kernel-based method with one of its main advantages: it
obtains Gaussian stochastic models and thus high-probability
error bounds simultaneously with the nominal model [9].
This enables its application in robust and stochastic control.

However, one often-neglected aspect of kernel-based iden-
tification is that the results, including the error bounds, are
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conditioned on correct hyperparameter selection, in the same
way as PEM is conditioned on the correct model structure.
The hyperparameters in the kernel-based method are usually
selected separately using the maximum marginal likelihood
method or cross-validation, and used in identification empir-
ically with certainty equivalence. This makes the GP-based
error bounds unreliable when the estimated hyperparameters
are inaccurate, and thus detrimental to use in safety-critical
applications. This phenomenon has been observed in ma-
chine learning literature [10]. In linear system identification,
it is demonstrated in this paper that the error bound derived
from estimated hyperparameters can be inaccurate, especially
for lightly damped systems and in low signal-to-noise ratio
scenarios.

Therefore, error bounds for the kernel-based methods
are needed in the case of unknown hyperparameters. In
kernel-based linear system identification, [11] establishes
non-asymptotic bounds for all stable systems with bounded
pole magnitudes. However, the bounds are too conservative
and thus only useful for sample complexity analysis. Error
bounds are also widely studied in GP literature, e.g., [12],
[13], which are usually obtained by scaling posterior standard
deviations. Such bounds are derived under the assumptions
that the prior covariance function is exact and/or an upper
bound of the RKHS-induced norm is known. However, both
assumptions are impractical in general. Several works pro-
vide modified bounds considering the discrepancy between
the applied and the true kernel functions [14], [15], [16],
[17]. These results depend on knowledge of the magnitude
of the discrepancy, which is usually not known a priori. Such
information is estimated from data in [14] by investigating
the maximum marginal likelihood problem in hyperparam-
eter estimation. Unfortunately, these works all consider an
identity regressor which is not common in system identifica-
tion and often consider kernel classes that do not contain the
typical stable kernels used in linear system identification.
Sampling-based approaches have also been proposed. The
sign-perturbed sums approach is used in [18] by perturbing
the sign of model residuals randomly. The Markov chain
Monte Carlo approach is used in [19] to approximate the
full posterior distribution. However, such bounds are based
on sampling and thus do not admit an easy-to-use analytic
form.

In this work, we provide probabilistic error bounds for
kernel-based linear system identification with no prior knowl-
edge of the hyperparameters by extending [14] to general
regression problems and stable kernels. The proof in [14]
is also simplified with an improved constant. Our approach
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assumes the correct kernel structure and a known hyperprior
that describes the distribution of the hyperparameters. A
high-probability set is first estimated for the hyperparameters
from the marginal likelihood function. Then, the upper bound
of the posterior covariance is found within the range of
hyperparameters. A uniform bound is obtained for diagonal
and tuned/correlated kernels. For general kernels, element-
wise bounds can be found by optimization. Finally, proba-
bilistic error bounds are established by scaling the worst-
case posterior standard deviations. Optimization problems
to obtain the tightest error bounds are discussed as well.
Numerical simulations demonstrate that the proposed error
bounds are able to provide high-probability bounds of the
estimation error in practice.

Notation. A Gaussian distribution with mean µ and co-
variance Σ is indicated by N (µ,Σ). The expectation and
the covariance of a random vector x are denoted by E(x)
and cov(x), respectively. The notation A ≼ B means (B−A)

is positive semidefinite. The symbol
p
≤ indicates less than

or equal to with probability p. For a vector x, the weighted
l2-norm (x⊤Px)

1
2 is denoted by ∥x∥P. The (i, j)-th element

and the trace of a matrix A are denoted by Ai, j and tr(A),
respectively.

II. THE KERNEL-BASED METHOD IN LINEAR SYSTEM
IDENTIFICATION

A. Problem Statement

Consider a causal and stable linear time-invariant single-
input single-output discrete-time system yt = G(q)ut + vt ,
where ut , yt , vt are the inputs, outputs, and additive noise
respectively, and q is the shift operator. The additive noise
is assumed to be zero-mean i.i.d. Gaussian with a variance
of σ2. We are interested in identifying the transfer function
G(q). In this work, we consider the finite impulse response
model of G(q): G(q) = ∑

ng−1
l=0 glq−l , i.e., yt = ∑

ng−1
l=0 glut−l +

vt .
For this purpose, an input-output sequence of the system

u =
[
u2−ng u3−ng . . . uN

]⊤
, y = [y1 y2 . . . yN ]

⊤ (1)

has been collected. This leads to the data equation:
y1
y2
...

yN

=


u1 u0 · · · u2−ng

u2 u1 · · · u3−ng
...

...
. . .

...
uN uN−1 · · · uN−ng+1


︸ ︷︷ ︸

Φ


g0
g1
...

gng−1


︸ ︷︷ ︸

g

+


v1
v2
...

vN

 .

(2)

B. The Kernel-Based Method

If no prior knowledge is assumed for G(q), the maximum
likelihood estimator of g is given by the least-squares solu-
tion

ĝLS = argmin
g

∥y−Φg∥2
2 =

(
Φ

⊤
Φ

)−1
Φ

⊤y, (3)

where Φ and g are defined in (2). It is well known that the
estimation error is also Gaussian with covariance cov(g) =

σ2
(
Φ⊤Φ

)−1
=: ΣLS. Element-wise stochastic error bounds

can be obtained for ĝLS as

P
(∣∣∣ĝLS

l −gl

∣∣∣≤ µδ

√
ΣLS

l,l

)
≥ 1−δ , (4)

where µδ is the two-tailed quantile function of the Gaussian
distribution, given by

FN (µδ )≥ 1−δ/2, (5)

FN (·) is the cumulative distribution function of the Gaussian
distribution.

Note that the impulse response of the stable system G(q)
is typically smooth and exponentially converges to zero. This
prior knowledge can be encoded as either a prior distribution
in GP regression or an RKHS in kernel regression. In both
cases, the nominal estimate of g is given by the ridge-
regularized least-squares solution

ĝ = argmin
g

∥y−Φg∥2
2 +σ

2 g⊤K−1g (6)

=
(

Φ
⊤

Φ+σ
2K−1

)−1
Φ

⊤y, (7)

with K having different interpretations.
In the GP regression interpretation, K is the covariance of

the prior distribution of g: g ∼ N (0,K). Then y and g are
jointly Gaussian:[

g
y

]
∼ N

(
0,
[

K KΦ⊤

ΦK ΦKΦ⊤+σ2I

])
. (8)

The distribution of g given y is also Gaussian: g|y ∼
N (ĝ,Σ), where the posterior mean is the estimate ĝ and
Σ = σ2

(
Φ⊤Φ+σ2K−1

)−1 is the posterior covariance [9].
From the posterior covariance, the associated element-wise
stochastic error bounds are

P
(
|ĝl −gl | ≤ µδ

√
Σl,l

)
≥ 1−δ , (9)

conditioned on the identification data. The bounds assume
that the prior distribution of g is correct.

In the kernel regression interpretation [20, Chapter 3], the
continuous-time impulse response function g(t) : [0,+∞)→
R, g(l) = gl , l = 0, . . . ,ng − 1 is identified by solving the
regularized function learning problem within an RKHS H
associated with a kernel function k(·, ·) : [0,+∞)× [0,+∞)→
R:

g⋆(·) = arg min
g(·)∈H

∥y−Φg∥2
2 +σ

2 ∥g(·)∥2
H

s.t. g =
[
g(0) . . . g(ng −1)

]⊤
,

(10)

where ∥g(·)∥H is the induced norm of g(·) in H . From
the representer theorem [21], the optimal continuous-time
impulse response function for (10) is given by g⋆(x) =
kx

(
Φ⊤ΦK +σ2I

)−1
Φ⊤y, where K evaluates the kernel

function associated with the RKHS H at l = 0, . . . ,ng − 1,
i.e., Kl,l = k(l, l), and kx = [k(x,0) . . . k(x,ng −1)]. The cor-
responding optimal discrete-time impulse response vector is
g⋆ = ĝ. The induced norm of g⋆ is calculated as ∥g⋆(·)∥2

H =
ĝ⊤K−1ĝ.
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C. Kernel Design and Hyperparameter Selection

The matrix K is critical to the performance of the kernel-
based method. Extensive studies have been conducted to
obtain appropriate structures of K that promote impulse
response estimates that are both smooth and exponentially
converge to zero [8]. These structures parameterize the kernel
with hyperparameters η : K = K(η). The most commonly
used kernels in linear system identification include:

1) diagonal (DI): KDI
i,i (η) = cλ i, KDI

i, j (η) = 0 for i ̸= j,
2) tuned/correlated (TC): KTC

i, j (η) = cλ max(i, j),
3) stable spline (SS):

KSS
i, j (η) = cλ

2max(i, j)
(

λ min(i, j)

2 − λ max(i, j)

6

)
,

where η = [c λ ]⊤ ∈
{
[c λ ]⊤

∣∣c ≥ 0,0 ≤ λ ≤ 1
}
=: H are

the hyperparameters. These kernel designs have been shown
effective both theoretically and numerically [6].

The hyperparameters need to be selected before apply-
ing the estimator (7). The most widely-used approach to
hyperparameter selection is the maximum marginal likeli-
hood method. It uses the GP regression interpretation and
maximizes the probability of observing y given the inputs
u and the hyperparameters η : η̂ = argmin

η
− log p(y|u,η),

where

p(y|u,η) = exp
(
− 1

2 logdet Ψ(η)− 1
2 y⊤Ψ−1(η)y+ const.

)
(11)

and Ψ = σ2I+ΦK(η)Φ⊤. If the prior distribution of the
hyperparameters p(η), known as the hyperprior, is available,
η can also be estimated using a maximum a posterior ap-
proach: η̂ = argmin

η
− log p(y|u,η)p(η) [22]. The estimated

hyperparameters η̂ are used, with certainty equivalence, to
construct K (η̂) and then to obtain the estimate ĝ.

III. ERROR BOUNDS WITH UNKNOWN
HYPERPARAMETERS

A. Pitfalls with Error Bounds from Posterior Covariances

The kernel-based method has shown remarkable perfor-
mance in linear system identification, in terms of the nominal
estimate (7). However, the stochastic error bound (9) is
only rigorously valid when we consider a random impulse
response model subject to an exact prior distribution with
exact hyperparameters. On the other hand, in practical system
identification applications, a fixed plant is usually considered,
and hyperparameters are estimated as the most probable ones
if the impulse response is drawn from the prior distribution
with the assumed structure. When the estimated hyperparam-
eters η̂ are used, directly using (9) to provide a stochastic
model for a fixed plant can be problematic.

To demonstrate this issue, consider two second-order sys-
tems

G1(q) =
0.4888

q2 −1.8q+0.92 , G2(q) =
0.0616

q2 −q+0.92 ,

with two different noise levels σ2 = 0.1 and 0.5. Both
systems have two poles of magnitude 0.9: G1(q) has two
real poles at 0.9; G2(q) has a pair of complex poles with a

real part of 0.5. The systems have been normalized to have
an H2-norm of 1.

Stochastic models given by the error bound (9) with η̂ are
analyzed by 1000 Monte Carlo simulations with TC kernels.
Different unit Gaussian inputs are used to generate the
identification data in each run. Table I shows the empirical
probabilities of violating the elementwise bounds with δ =
0.1 and identification parameters N = 200 and ng = 50. It
can be seen that except for the case of G1(q) with low noise,
the magnitudes of the errors are significantly underestimated
in the other three cases, with bound violation probabilities
much larger than the target value of δ = 0.1. This indicates
that the error bounds based on estimated hyperparameters are
not reliable in cases where the impulse response is lightly
damped and/or the signal-to-noise ratio is poor.

TABLE I
EMPIRICAL PROBABILITY OF BOUND VIOLATIONS AND STANDARD

DEVIATIONS OF HYPERPARAMETER ESTIMATION

δ = 0.1 % bound violations STD(ĉ) STD(λ̂ )

(a) G1,σ
2 = 0.1 13.2% 0.0052 0.0069

(b) G2,σ
2 = 0.1 29.8% 0.2191 0.0204

(c) G1,σ
2 = 0.5 24.6% 0.0010 0.0313

(d) G2,σ
2 = 0.5 60.1% 0.0242 0.0373

To investigate the reason why the error bounds are inac-
curate under these cases, Table I also shows the standard
deviations of the estimated hyperparameters, and Figure 1
plots the marginal probability density (11) with respect to
the hyperparameters in one representative simulation. It can
be seen that in cases (b), (c), and (d), where the error
bounds based on estimated hyperparameters are inaccurate,
the variances of the estimated hyperparameters are larger
than those in case (a), and the marginal probability density
is not strongly localized. This suggests that the estimated
hyperparameters can be inaccurate, which leads to the mis-
specification of the error bounds.

B. Worst-Case Posterior Variances

To solve the problem of quantifying error bounds with
unknown hyperparameters, we first bound the true hyperpa-
rameters using the measured data. In this work, we consider
the following two assumptions.

Assumption 1: The kernel structure K(η) is assumed to
be correct with unknown true hyperparameters η0.

Assumption 2: The hyperprior p(η) is known.
The hyperprior p(η) can be selected as a uniform distribution
if no additional knowledge about the hyperparameters is
available. The distribution of hyperparameters conditioned
on the measured data is given by

p(η |u,y) = p(y|u,η)p(η)∫
η∈H p(y|u,η)p(η)dη

, (12)

where p(y|u,η) is given in (11). This leads to

P(η0 ∈ [η1,η2]) =

∫
η∈[η1,η2]

p(y|u,η)p(η)dη∫
η∈H p(y|u,η)p(η)dη

=: 1−δ
′,

(13)
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Fig. 1. Marginal probability density with respect to hyperparameters. (a)
G1,σ

2 = 0.1, (b) G2,σ
2 = 0.1, (c) G1,σ

2 = 0.5, (d) G2,σ
2 = 0.5. Yellow:

higher value, blue: lower value.

where ηi = [ci λi]
⊤, i = 1,2 and

[η1,η2] =
{

η = [c λ ]⊤ |c1 ≤ c ≤ c2,λ1 ≤ λ ≤ λ2

}
is a rectangular set. By choosing a small δ ′, (13) establishes
a high-probability set for the true hyperparameters.

Then, we investigate the effect of hyperparameters on the
stochastic model, to find the worst-case posterior variances
Σl,l within the set [η1,η2]. For DI and TC kernels, a uniform
bound is derived analytically using the following lemma.

Lemma 1: The matrix inequality Σ(η1) ≼ Σ(η2) is satis-
fied when

(
λ2
λ1

)γ

c1 ≤ c2, λ1 ≤ λ2, with γ = 0 for DI kernels
and γ =−1/ lnλ2 −1 for TC kernels.

Proof: See Appendix I.
From Lemma 1, we have

Σ(η0)
1−δ ′

≼ σ
2
(

Φ
⊤

Φ+σ
2
(

λ1

λ2

)γ

K−1(η2)

)−1

=: Σ̄. (14)

So the posterior variances with true hyperparameters η0 can
be uniformly bounded by

Σl,l(η0)
1−δ ′

≤ Σ̄l,l =: σ
2
l . (15)

For a general kernel structure, the bound can be computed
element-wise by directly solving the optimization problem:

σ
2
l = max

η∈[η1,η2]
Σl,l(η). (16)

C. Stochastic Error Bounds

We are now ready to present the main result of the paper.
Theorem 1: The impulse response estimate (7) with es-

timated hyperparameters η̂ admits the following stochastic
element-wise error bound:

P(|ĝl(η̂)−gl | ≤ µ̄σl)≥ (1−δ )(1−δ
′), (17)

where µ̄ = µδ + 2
σ
∥y∥S and S = Φ

(
Φ⊤Φ

)−1
Φ⊤, if η̂ ∈

[η1,η2].
Proof: The estimation error is decomposed as

|ĝl(η̂)−gl | ≤ |ĝl(η̂)− ĝl(η0)|+ |ĝl(η0)−gl | (18)
1−δ

≤ |ĝl(η̂)− ĝl(η0)|+µδ

√
Σl,l(η0), (19)

where the two terms are due to misspecified hyperparameters
and measurement noise respectively.

Define the posterior kernel

kp
η(x,x′) = kη(x,x′)−kx(η)

(
K(η)+σ2

(
Φ⊤Φ

)−1
)−1

kx(η)⊤.

Note that kp
η(i, j) = Σi, j(η). The associated RKHS is denoted

as H p
η . It is easy to see that g⋆η(·) ∈H p

η and
∥∥g⋆η(·)

∥∥2
H p

η

=

ĝ⊤(η)Σ−1(η)ĝ(η). Note the reproducing property of the
RKHS g⋆η(x) = ⟨g⋆η(·),k

p
η(·,x)⟩H p

η
, where ⟨·, ·⟩H p

η
denotes

the inner product in H p
η . From the Cauchy–Schwarz in-

equality, we have
∣∣g⋆η(x)∣∣≤ kp

η(x,x)
1
2
∥∥g⋆η(·)

∥∥
H p

η

. This leads
to

|ĝl(η)|2 ≤ Σl,l(η)ĝ⊤(η)Σ−1(η)ĝ(η)

=
1

σ2 Σl,l(η)y⊤Φ

(
Φ

⊤
Φ+σ

2K−1(η)
)−1

Φ
⊤y

≤ Σl,l(η)∥y∥2
S /σ

2.

(20)

Since η̂ ∈ [η1,η2], we have Σl,l(η̂) ≤ σ2
l . This leads to

|ĝl(η̂)|2 ≤ σ2
l

σ2 ∥y∥2
S and |ĝl(η0)|2

1−δ ′

≤ σ2
l

σ2 ∥y∥2
S. Then,

|ĝl(η̂)− ĝl(η0)| ≤ |ĝl(η̂)|+ |ĝl(η0)|
1−δ ′

≤ 2σl

σ
∥y∥S . (21)

From (13), (15), (16), we have µδ

√
Σl,l(η0)

1−δ ′

≤ µδ σl .
This, together with (19) and (21), proves Theorem 1.

Remark 1: For DI and TC kernels, by modifying the last
inequality in (20), the bound in Theorem 1 can be tightened

by choosing S = Φ

(
Φ⊤Φ+σ2

(
λ1
λ2

)γ

K−1(η2)
)−1

Φ⊤.
Remark 2: Theorem 1 still holds when more hyperparam-

eters are involved with minor modifications to Lemma 1
if needed. So the proposed approach can be extended to
consider unknown noise levels and ARX models with an
additional kernel on the autoregressive output terms.

Remark 3: Although Theorem 1 improves the bounds in
[14], the constant µ̄ is still quite conservative, mainly due to
the triangle equality in (21). Such conservativeness is often
observed in GP error bounds, so a much smaller scaling
factor is often selected in practical applications [14], [23],
[24], despite that this invalidates the theoretical guarantees.
As will be seen in Section IV, µ̄ = µδ is used in numerical
simulation.

D. Selecting the Set of Hyperparameters

Theorem 1 holds for any choices of η1,η2 that satisfy (13)
and η̂ ∈ [η1,η2]. To obtain the tightest bound, η1,η2 can be
selected by optimization. For DI and TC kernels, the total
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magnitude of the bounds ∑
ng−1
l=0 µ̄σl can be minimized. From

(14) and (15), this is equivalent to solving

min
η1,η2

(
λ2
λ1

)γ

tr(K(η2)) (22a)

s.t.

∫
η∈[η1,η2]

p(y|u,η)p(η)dη∫
η∈H p(y|u,η)p(η)dη

≥ 1−δ
′, η̂ ∈ [η1,η2]

(22b)

For a general kernel structure with element-wise bound (16),
η1,η2 can be selected individually for each l by solving the
minimax problem:

σ
2
l = min

η1,η2
max

η∈[η1,η2]
Σl,l(η) s.t. (22b). (23)

The algorithm to obtain the error bounds with unknown
hyperparameters is summarized as follows.

1: Estimate η̂ and obtain ĝ(η̂) from (7).
2: Calculate η1,η2 by solving (22) or (23).
3: Calculate σl , l = 0, . . . ,ng −1 from (15) or (16).
4: Obtain the elementwise error bounds from (17).

IV. NUMERICAL RESULTS

The proposed bound is applied numerically by considering
the same examples as in Section III-A. Again, the practical
scenario with fixed impulse responses is considered. The
error bound (9) with estimated hyperparameters analyzed in
Section III-A is termed the vanilla kernel bound, whereas the
proposed bound in Section III-C is called the robust kernel
bound. The least-squares bound (4) is also compared.

For computational efficiency, the optimization problems
to find η1,η2 are solved by discretizing η . The nominal
estimate and the estimated hyperparameters are obtained by
impulseest in MATLAB. The inner problem in (23) is
solved by fmincon in MATLAB. For the robust kernel
bound, we select δ ′ = 0.1 and µ̄ = µδ .

Figure 2 presents a comparison of the performance of
different error bounds with a TC kernel design. For each
example, the left figure shows representative identification
results in one simulation, whereas the right figure shows
the empirical probability of error bounds containing the
true parameters from 1000 Monte Carlo simulations. The
results show that the proposed robust kernel bounds are
more conservative compared to the vanilla kernel bounds,
especially under high noise, but they are much more reliable
with much higher empirical probabilities of containing the
true parameters. On the other hand, the robust kernel bounds
are still much tighter than the least-squares bounds.

Figure 3 shows the empirical probability with a SS kernel
design. The robust kernel bounds are derived by selecting σl
from (23). Similar results to the TC kernel case are obtained,
where the robust kernel bounds are much more reliable than
the vanilla kernel bounds.

V. CONCLUSIONS

In this work, we investigate the problem of quantifying the
estimation error in kernel-based linear system identification
with unknown hyperparameters. First, it is illustrated that

the certainty equivalence principle does not work here: error
bounds constructed using the estimated hyperparameters are
too optimistic in multiple examples. Instead, a rectangular
set of hyperparameters is constructed to contain the true ones
with high probability. The error bounds can then be obtained
by scaling the worst-case posterior variances within the set. It
is shown both theoretically and numerically that the proposed
bound is accurate in specifying the estimation error.

This work provides a practical approach to obtaining a re-
liable stochastic model centered around the nominal estimate
of kernel-based system identification. Further research direc-
tions include deriving uniform posterior covariance bounds
for other kernel structures and improving the constant µ̄ in
Theorem 1.

APPENDIX I
PROOF OF LEMMA 1

The result is trivial for DI kernels. For TC kernels, define
M(mn) ∈ Rn×n, mn = [m1 m2 . . . mn]

⊤ with Mi, j(mn) =
mmax(i, j). We first prove that

det M(mn) = mn

n−1

∏
i=1

(mi −mi+1) (24)

by induction, the detail of which is omitted due to space
constraints.

Using Sylvester’s criterion, M(mn) is positive semidefinite
iff det M(ml)≥ 0,∀ l = 1, . . . ,n. This requires

mi −mi+1 ≥ 0,∀ i = 1, . . . ,n−1. (25)

Define η ′
2 =

[(
λ2
λ1

)γ

c1 λ2

]⊤
. Since

(
λ2
λ1

)γ

c1 ≤ c2, we have
K(η2)≽ K(η ′

2). Define M(mng) = K(η ′
2)−K(η1) by choos-

ing mi =
(

λ2
λ1

)γ

c1λ i
2−c1λ i

1. So K(η ′
2)−K(η1)≽ 0 is equiv-

alent to

λ
1+γ

2 −λ
1+γ

1 ≥ λ
2+γ

2 −λ
2+γ

1 ≥ ·· · ≥ λ
ng+γ

2 −λ
ng+γ

1 . (26)

Note that f (x) = λ x
2 −λ x

1 is monotonically non-increasing for
x ≥−1/ lnλ2, ∀λ2 ≥ λ1. This indicates that (26) is satisfied
for γ ≥−1/ lnλ2−1. Therefore, K(η2)≽K(η ′

2)≽K(η1) for
γ =−1/ lnλ2 −1, which leads to(

Φ
⊤

Φ+σ
2K−1(η2)

)−1
≽

(
Φ

⊤
Φ+σ

2K−1(η1)
)−1

.

This directly proves Lemma 1.
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