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Abstract— While power systems research relies on the avail-
ability of real-world network datasets, data owners (e.g., system
operators) are hesitant to share data due to privacy risks. To
control these risks, we develop privacy-preserving algorithms
for synthetic generation of optimization and machine learning
datasets. Taking a real-world dataset as input, the algorithms
output its noisy, synthetic version, which preserves the accuracy
of the real data on a specific downstream model or even a
large population of those. We control the privacy loss using
Laplace and Exponential mechanisms of differential privacy
and preserve data accuracy using a post-processing convex
(or mixed-integer) optimization. We apply the algorithms to
generate synthetic network parameters and wind power data.

I. INTRODUCTION

Power system datasets are instrumental for enhancing
solutions to many problems, including optimal power flow
(OPF) and wind power forecasting. Releasing real data,
however, is challenging due to security and privacy concerns.
Indeed, detailed network datasets inform cyberattacks on
SCADA systems and can be used by strategic market players
to maximize profits at the expense of deteriorating social wel-
fare. These concerns motivate producing synthetic datasets
– a sanitized version of private datasets that approximately
preserve accuracy of data for power system applications.

Differential privacy (DP) is an algorithmic notion of
privacy preservation that enables trade-offs between data
privacy and accuracy in statistics [1], optimization [2] and
machine learning [3]. It has also found applications in the
context of privacy-preserving OPF computations, e.g., in
distributed control algorithms [4] and centralized solvers for
distribution and high-voltage grids [5], [6], as well as in
machine learning problems specific to power systems [7].
Models in [4]–[7], however, only control data leakages in
computations and do not provide synthetic data per se.

Producing synthetic datasets in a DP way is achieved
by corrupting data with privacy-preserving noise [8], [9].
However, applications of the standard noise-additive DP
mechanisms in power systems, such as the Laplace mech-
anism, may no longer admit a meaningful result. Indeed,
adding noise to data may fundamentally alter important
statistics and trends in machine learning datasets [10]. In
the OPF context, [11] and [12] showed that the Laplacian
perturbation of network data almost surely violates feasibility
on a broad range of power system benchmarks. As a remedy,
they proposed an optimization-based post-processing which

Vladimir Dvorkin and Audun Botterud are with the Laboratory for
Information & Decision Systems, Massachusetts Institute of Technology
(MIT), Cambridge, MA 02139, USA. Vladimir Dvorkin is also with the
MIT Energy Initiative. The work is supported by the MSCA-COFUND
Postdoctoral Program, Grant Agreement No. 101034297 – project Learning
ORDER. E-mail: {dvorkin,audunb}@mit.edu

restores the accuracy of synthetic OPF datasets without
altering the privacy guarantee. The proposed restoration,
however, renders the synthetic dataset feasible only for a
particular OPF model. Repeated applications of the Laplace
mechanism to restore accuracy on many OPF models (e.g.,
for different instances of variable renewable production) may
not be possible, as noise must be drastically scaled respecting
the number of repetitions, as per composition of DP [1].

In this letter, we introduce private synthetic dataset genera-
tion algorithms for power systems, which ensure the accuracy
of synthetic datasets for downstream models. They enjoy
known DP mechanisms and convex (or mixed-integer) post-
processing optimization of data. Specifically, we develop:

1) Wind power obfuscation (WPO) algorithm which pri-
vately generates wind power measurements, while guar-
anteeing DP of the real data and ensuring accuracy in
terms of the outcomes of a regression analysis.

2) Transmission capacity obfuscation (TCO) algorithm,
which generates synthetic line parameters, while ensur-
ing their feasibility and cost-consistency on a population
of OPF models. Here, we use both Laplace and Expo-
nential mechanisms of DP to substantially reduce the
noise compared to using the Laplace mechanism alone.

Next section reviews the basic DP results. In Sections III
and IV we present the two algorithms and their theoretical
properties. Section V provides numerical experiments, and
Section VI concludes. Proofs are relegated to the Appendix.

Notation: I is an identity matrix, ei is the basis vector
with element 1 at position i. Schur product is denoted by ◦.
By ∥·∥1 and ∥·∥ we denote L1 and L2 norms, respectively.

II. PRELIMINARIES ON DIFFERENTIAL PRIVACY

This section reviews basic DP mechanisms used as build-
ing blocks for our synthetic dataset generation algorithms.

Consider a vector y ∈ Y ⊆ Rn, with n private records
from universe Y , and a query Q : Y 7→ R as a mapping from
universe Y to range R. Queries of interest include simple
numerical queries, i.e., identity Q(y) = y, and optimization
and ML queries, such as OPF or regression models. The goal
is to make adjacent vectors y, y′ ∈ Y of private records,
statistically indistinguishable in query answers.

Definition 1 (Adjacency [13]): Vectors y, y′ ∈ Y are said
to be α−adjacent, denoted as y ∼α y

′, if ∃i ∈ 1, . . . , n, s.t.
yj = y′j ,∀j ∈ {1, . . . , n}\i, and |yi − y′i| ⩽ α for α > 0.

A statistical similarity of α−adjacent datasets in query
answers is captured by the notion of differential privacy,
attained through randomization.

Definition 2 (ε−differential privacy [1]): Random query
Q̃ : Y 7→ R is ε−DP if, for any output r ⊆ R and any
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α−adjacent vectors y, y′ ∈ Y , the following ratio holds
Pr[Q̃(y′) = r]

Pr[Q̃(y′) = r]
⩽ exp(ε). (1)

where probability is with respect to the randomness of Q̃.
Privacy parameter ε > 0 is termed privacy loss: smaller

ε provides stronger privacy protection, i.e., for small ε we
have exp(ε) ≈ 1 + ε, thereby making two adjacent datasets
y and y′ statistically similar in the random query answer.

Theorem 1 (Composition [1]): A series Q̃1(y), ..., Q̃k(y)
of εi−DP queries on dataset y satisfies

∑k
i=1 εi−DP.

Theorem 2 (Post-processing immunity [1]): If query Q̃
satisfies ε-DP, then g◦Q̃(y), where g is any data-independent
post-processing of the query answer, also satisfies ε-DP.

The former bounds the privacy loss over multiple queries,
and the latter states that any data-independent transformation
of a DP query answer preserves the privacy guarantee.

A numerical query is made DP by adding random noise to
its output. The noise magnitude depends on the worst-case
sensitivity δQ of query Q to adjacent datasets, i.e.,

δQ = maxy∼αy′ ∥Q(y)−Q(y′)∥1 .
Let Lap(λ)k be a sample from the k−dimensional Laplace
distribution with zero mean and scale parameter λ. DP of a
numerical query is then achieved with the following result.

Theorem 3 (Laplace mechanism [14]): Let Q be a query
that maps datasets to Rk. Then, the Laplace mechanism
which outputs Q(y) + Lap(δQ/ε)k achieves ε−DP.

We also like to limit privacy losses when answering non-
numerical queries. For example, given a population Q of
queries, we would like to answer the question: which query
Q ∈ Q gives the maximum value on a private dataset y?
The Exponential mechanism answers this question privately.

Theorem 4 (Exponential mechanism [15]): For a query
population Q and a score function u : Y × Q 7→ R with
sensitivity δu, the Exponential mechanism, which outputs
query Q ∈ Q proportionally to exp

(
εu(y,Q)

2δu

)
, attains ε−DP.

For discrete populations, i.e., Q = Q1, . . . , Qm, we can
adopt the report-noisy-max algorithm [1, §3.3] – an efficient
implementation of the exponential mechanism for finite Q.

Next, we leverage these results to design DP algorithms for
synthetic dataset generation as applicable to power systems.

III. PRIVACY-PRESERVING WIND POWER DATA RELEASE

Consider the problem of a wind turbine operator (data
owner) who wants to release synthetic wind power records
in a differentially private way. The real dataset D =
{(x1, y1), . . . , (xm, ym)} consists of m records, where each
record i includes some public weather data xi ∈ Rn and
a private power measurement yi ∈ R subject to obfusca-
tion. The release of the synthetic dataset takes the form
D̃ = {(x1, ỹ1), . . . , (xm, ỹm)}, where ỹi is a synthetic
measurement. To provide formal privacy guarantees in this
release, we could perturb each real record yi with the Laplace
mechanism of Theorem 3. However, the application of the
Laplace mechanism alone is ignorant of the accuracy of the
resulting dataset in the downstream analysis, and such a
release may not be useful. We discuss the dataset accuracy in

Algorithm 1: Differentially private WPO
Input : WP records D = {(x1, y1), . . . , (xm, ym)};

DP param. ε1, ε2, α; regularization param. γβ , γy

Output: Synthetic WP records D̃ = {(x1, ỹ1), . . . , (xm, ỹm)}
1 Initialize synthetic measurements ỹ0 = y + Lap (α/ε1)m

2 Laplace mechanism to privately compute regression results
ℓ = ℓ(y) + Lap (δℓ/ε2) β = β(y) + Lap (δβ/ε2)

3 Post-processing optimization of ỹ0:
ỹ ∈ argmin

ỹ

∥∥ℓ− ℓ
∥∥+ γβ

∥∥β − β
∥∥+ γy

∥∥ỹ0 − ỹ
∥∥ (3a)

subject to 0 ⩽ ỹ ⩽ 1, (3b)
β ∈ argmin

β
∥Xβ − ỹ∥+ λ ∥β∥ (3c)

return: synthetic wind power measurements ỹ

terms of the outcomes of a regression (downstream) problem
minimize

β
∥Xβ − y∥+ λ ∥β∥ , (2)

which minimizes the loss function by optimally choosing
regression weights β ∈ Rp, given some small regularization
parameter λ to prevent overfitting. Here, matrix Xm×p

collects weather features; we do not require p = n, as model
(2) may not include all meteorological data from D and may
also enjoy certain feature transformations (e.g., squared wind
speeds). The goal is thus to release a synthetic dataset D̃
whose regression loss and weights are consistent with those
on the real dataset. On a particular vector of measurements y,
we denote the regression loss and weights by ℓ(y) and β(y),
respectively. To estimate them on the real dataset privately,
we need to bound their sensitivities to adjacent datasets.

Lemma 1 (Regression sensitivity bounds): For any two α-
adjacent vectors of power measurements y, y′ ∈ Rm, the
worst-case sensitivity of regression weights is bounded as
δβ = maxy∼αy′ ∥β(y)− β(y′)∥1 ⩽

∥∥(X⊤X + λI)−1X⊤∥∥
1
α,

and the worst-case sensitivity of the regression loss
δℓ = maxy∼αy′ ∥ℓ(y)− ℓ(y′)∥1

is bounded by the solution of the following problem:
δℓ ⩽ maximize

i=1,...,m

∥∥(X(X⊤X + λI)−1X⊤ − I)(ei ◦ α)
∥∥ .

Importantly, the two bounds only depend on public data,
i.e., features, regularization and adjacency parameters, and
completely independent from private measurements y.

A. Differentially Private WPO Algorithm

We now introduce the privacy-preserving wind power
obfuscation (WPO) Algorithm 1. The algorithm takes the
real dataset, privacy and regularization parameters as in-
puts, and produces a consistent synthetic dataset of wind
power records. It relies on Lemma 1 to privately reveal
regression results on a real dataset, and then leverages them
to restore the consistency of the synthetic dataset using
a post-processing optimization. Specifically, at Step 1, the
algorithm initializes the synthetic datasets using the Laplace
mechanism. Then, at Step 2, it computes the approximate
regression loss and weights using the Laplace mechanism
twice. At the last Step 3, the synthetic dataset is subject to
the post-processing optimization to ensure the consistency of
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regression results on the synthetic and real datasets.
The post-processing is based on the hierarchical optimiza-

tion (3), where the upper-level problem (3a)–(3b) optimizes
the synthetic dataset ỹ in response to the outcomes of the
embedded lower-level regression problem (3c). In the upper-
level objective, the first term improves the consistency in
terms of regression loss, while the second and third terms are
used for regularizing the synthetic dataset. Indeed, the losses
l and l can be matched with infinitely many assignments
of β and ỹ. Thus, by setting a small parameter γβ > 0,
the matching is achieved with a close approximation of the
regression weights on the real data. Similarly, by setting a
small parameter γy > 0, we regularize the new data points
according to the perturbation of real data points at Step 1.
Finally, the upper-level constraint (3b) guarantees that the
synthetic dataset respects the nominal power limits.

While the hierarchical optimization (3) is originally in-
tractable, we arrive at its tractable convex reformulation by
substituting the lower-level problem (3c) with

β = (X⊤X + λI)−1X⊤ỹ, (4a)
∥Xβ − ỹ∥ ⩽ ℓ, (4b)

where the linear constraint (4a) is the closed-form solution
to regression weights on vector ỹ, and the conic constraint
(4b) is used to compute the loss on the same vector and
weights. This reformulation results in a convex quadratic
program with polynomial-time complexity [16].

We now state the ε−DP guarantee of this algorithm.
Theorem 5 (DP of the WPO Algorithm): Setting ε1 =

ε/2 and ε2 = ε/4 renders Algorithm 1 ε−DP for α−adjacent
wind power datasets.

IV. PRIVACY-PRESERVING DC-OPF DATA RELEASE

We now consider a problem of releasing a synthetic
network dataset in a differentially private way. The goal is to
guarantee not only privacy but also accuracy with respect to
possible downstream computations on the synthetic dataset.
We consider the DC-OPF problem as the main computa-
tional task. Although we specifically focus on the release of
transmission capacity data, other network parameters, such
as electrical loads, can be released similarly.

The OPF problem on a network with n buses and e trans-
mission lines computes the least-cost generation dispatch
p ∈ Rn while satisfying electric loads d ∈ Rn

+. Generators
produce at linear costs c ∈ Rn

+ within the technical limits,
encoded in set P = {p | p ⩽ p ⩽ p}. The DC power flows
are modeled using the power transfer distribution matrix
F ∈ Re×n, and resulting power flows φ = F (p − d) ∈ Re

are limited by line capacities f ∈ Re
+.

Suppose that there is a set 1, . . . ,m of OPF models,
where each model i includes a specific cost vector ci,
generation limits in set Pi, and electric loads di. The
transmission data, i.e., topology encoded in F and capacity
f , remain the same. Each OPF model i is then described
by a tuple ⟨ci, di,Pi, F, f⟩. Given the real OPF dataset
⟨ci, di,Pi, F, f⟩mi=1, the goal is to produce its synthetic
version ⟨ci, di,Pi, F, φ⟩mi=1 with an obfuscated transmission

capacity vector φ, which permits feasible and cost-consistent
– with respect to real data – OPF outcomes across m models.

Towards the goal, we formulate a DC-OPF problem pa-
rameterized by the synthetic transmission capacity φ:

Ci(φ) = minimize
p∈Pi

c⊤i p (5a)

subject to 1⊤(p− di) = 0, (5b)
∥F (p− di)∥1 ⩽ φ, (5c)

where function (5a) is to minimize the OPF costs, denoted
by Ci(φ), subject to power balance (5b), flow and generation
limits in (5c) and Pi, respectively; all specific to a particular
model i. We make two assumptions on problem (5).

Assumption 1 (Feasibility): Ci(f) exists ∀i = 1, . . . ,m.
Assumption 2 (Sensitivity): For any two φ1 ∼α φ2 capac-

ity vectors, ∥Ci(φ1)− Ci(φ2)∥1 ⩽ cα,∀i = 1, . . . ,m, where
c is the maximum cost coefficient.

The former requires OPF feasibility of the real data across
historical records, and the latter bounds the change in OPF
costs to the cost of the most expensive unit.

As a perturbed capacity vector may not be OPF feasible,
we additionally introduce the relaxed OPF problem to give
a numerical value to infeasibility of a particular vector φ:

CR
i (φ) = minimize

p∈Pi,v⩾0
c⊤i p+ ψ1⊤v (6a)

subject to 1⊤(p− di) = 0, (6b)
∥F (p− di)∥1 ⩽ φ+ v, (6c)

where the slack variable v ∈ Re renders the OPF solution
feasible for any assignment φ using penalty scalar ψ ≫ c.

A. Differentially Private TCO Algorithm

We now introduce the privacy-preserving transmission ca-
pacity obfuscation (TCO) Algorithm 2 for DC-OPF datasets,
where Step 1 initializes synthetic dataset φ0 by perturbing
real data using the Laplace mechanism, and the remaining
steps post-process the synthetic dataset. Step 2 runs the
report-noisy-max algorithm, a discrete version of the Ex-
ponential mechanism [1], to privately identify the worst-
case OPF model. Here, the score function ∆C is the L1

norm measuring the distance between OPF costs on real
and synthetic data. Step 3 uses the Laplace mechanism
to estimate the cost of the worst-case OPF model on the
real data. Step 4 post-processes the synthetic dataset using
optimization in (7), where Ckτ (φ) is the OPF costs obtained
from the embedded DC-OPF problem (5) for some fixed
vector φ. By embedding the OPF problem as a constraint,
we require feasibility and cost-consistency of φ with respect
to the worst-case OPF models identified at previous steps. In
addition, with the last term in (7a), we regularize the solution
φ to make sure that the changes in synthetic capacities are
only guided by feasibility and cost-consistency requirements.

The major difference between WPO and TCO algorithms
is in repeating Steps 2 to 4 T times. The OPF feasibility for
one model does not guarantee feasibility across the whole
population of models. By increasing T , the TCO algorithm
finds more worst-case OPF models with the largest cost CR

i

of violations, thereby improving the accuracy (feasibility) of
the synthetic dataset across the population.
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Algorithm 2: Differentially private TCO for DC-OPF

Input : OPF dataset ⟨ci, di,Pi, F, f⟩mi=1; DP parameters
ε1, ε2, α; iteration limit T

Output: Synthetic OPF data ⟨ci, di,Pi, F, φ⟩mi=1

1 Step 1: Initialize synthetic dataset φ0 = f + Lap (α/ε1)e

2 for t ∈ 1, . . . , T do
3 Step 2: Exponential mech. to find the worst-case OPF:
4 for i ∈ 1, . . . ,m do
5 ∆Ci =

∥∥Ci(f)− CRi (φt−1)
∥∥
1
+ Lap (cα/ε2)

6 end
7 return: index kt=argmaxi∆Ci of the worst-case OPF

8 Step 3: Laplace mech. to compute the worst-case cost:
Ct = Ckt(f) + Lap (cα/ε2)

9 Step 4: Post-processing optimization of synthetic data:
φt ∈ argmin

φ

∑t
τ=1

∥∥Cτ − Ckτ (φ)
∥∥+

∥∥φ− φt−1
∥∥

(7a)
subject to DC-OPF problem (5) on φ,∀τ (7b)

10 end
11 return: synthetic line capacity φ← φT

To solve the bilevel problem in (7), we first obtain its
single-level equivalent by substituting the embedded OPF
problems with their Karush–Kuhn–Tucker (KKT) conditions
[17, §6]. The complementarity slackness, i.e., a non-convex
subset of KKT conditions, is addressed using Special Or-
dered Set of Type 1 (integer) variables, allowing for a
global solution to this problem. We refer to the online
repository (see the link below) for details. Although the
resulting mixed-integer problem renders the entire algorithm
NP-hard, we use practical optimization heuristics, such as
a mixed-integer solver Gurobi, making the TCO algorithm
more practical than its worst-case complexity would imply.
Notably, problem (7) only relies on obfuscated data. Hence,
by Theorem 2, it does not induce any privacy loss. We now
state the ε−DP guarantee of the entire algorithm.

Theorem 6 (DP of the TCO Algorithm): Setting ε1 =
ε/2 and ε2 = ε/(4T ) renders Algorithm 2 ε−DP for
α−adjacent DC-OPF datasets.

Remark 1 (Relation to prior work): When m = T = 1,
Step 2 of TCO algorithm becomes redundant, and the
algorithm replicates the Laplace-based PLO mechanism in
[11], when applied to the capacity obfuscation in the DC-
OPF setting. The difference between the two algorithms
reveals when the synthetic dataset must be accurate, i.e.,
feasible and cost consistent, on a population of OPF models,
i.e., m ≫ 1. Indeed, the worst-case OPF model and cost
can also be estimated using Laplace perturbations, but the
induced privacy loss will reach mTε2. The combination of
the Exponential and Laplace mechanisms in Steps 2 and 3
in Algorithm 2, however, reduces the privacy loss to 2Tε2.

V. NUMERICAL EXPERIMENTS

In our experiments, we fix the privacy loss ε = 1 and vary
adjacency α, hence increasing the range of adjacent datasets,
which are required to be statistically indistinguishable. All
data, codes, and additional experiments are available online:

https://github.com/wdvorkin/SyntheticData

A. Synthetic Wind Power Records Generation

We first demonstrate the WPO Algorithm 1 for a privacy-
preserving release of wind power records. We use the theo-
retical wind power curve of the General Electric GE-2.75.103
turbine from [18], considering a medium range of wind
speeds between 2.5 and 12.5 m/s, where the power output is
most sensitive to speed. We then perturb each power output
with a Gaussian noise N (0, 0.1) to introduce some variation
among the records; the dataset is thus not completely real,
but resembles real-life datasets which we hope to eventually
release with our algorithm. In the dataset, we have m =
1, 000 normalized power measurements y ∈ [0, 1]m and
corresponding wind speeds x.

To specify regression (2), we transform the wind speed
records using p = 5 Gaussian radial basis functions:

φj(x) = e−(
1
2∥x−µj∥)

2

,∀j = 1, . . . , p,

positioned at µ = {2.5, 5, 7.5, 10, 12.5} m/s. Each feature
in X is obtained as Xij = φj(xi), ∀i = 1, . . . ,m, ∀j =
1, . . . , p, and the regularization parameter is set to λ = 10−3.

We use the standard Laplace mechanism for the reference,
which perturbs power records as ỹ = y + Lap(α/ε)m,
and projects them onto feasible range [0, 1]m. The resulting
synthetic records satisfy ε−DP for α−adjacent datasets, as
per Theorems 2 and 3. In the WPO algorithm, we set ε1
and ε2 according to Theorem 5. We also set regularization
parameters γy, γβ = 10−5 for post-processing in (3).

Figure 1 demonstrates some examples of synthetic wind
power dataset releases. Here, we measure adjacency α in %
of the nominal capacity of the wind turbine. Observe, that
with increasing α, the regression-agnostic Laplace mecha-
nism yields a larger deviation of the synthetic records from
the real data. While the WPO algorithm introduces even
more noise, i.e., ×3 more noise at Step 1 and more noise at
Step 2 due to sensitivities δℓ and δβ growing in α, the post-
processing of the noisy records at Step 3 results in a better
accuracy of the synthetic dataset. Figure 2 demonstrates the
statistical significance of this observation by plotting the loss
on synthetic datasets under the two methods. With increasing
α, the Laplace mechanism demonstrates a notable deviation
from the loss on real data. The WPO algorithm, on the other
hand, converges to the real loss on average and does not
deviate significantly. Moreover, with the WPO algorithm,
the regression model on synthetic data remains substantially
closer to the model on real data, as further shown in Fig. 1.

B. Synthetic Transmission Data Generation

We apply the TCO algorithm to a network data release
from the IEEE 73-Bus Reliability Test System. To make the
case more challenging, we reduce the transmission capacity
to 60% of the nominal level to increase network congestion.
We generate m = 103 feasible DC-OPF datasets by sampling
demand and generation limits from uniform distributions
with bounds ±12.5% of their nominal values. The cost data
is sampled from a uniform distribution U(80, 100) $/MWh,
and we set penalty ψ = 3 · 103 in (6a) for flow limit
violations. The privacy loss ε is split according to Theorem
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Fig. 1. Wind power records obfuscation using the Laplace mechanism (top row) and the WPO algorithm (bottom row) for varying adjacency. The green
lines depict the regression model on the real data (black marks), while the dashed red lines depict the regression model on synthetic data (round marks).

Fig. 2. The mean and 90% confidence band of regression losses on
synthetic data for 300 runs of the Laplace mechanism and WPO algorithm.

Fig. 3. Distributions of obfuscation outcomes for line #40 across 300 runs
of the TCO algorithm for varying adjacency α and iteration limit T .

6. Finally, we vary adjacency parameter α from 5 to 30 MW
and iteration limit T from 1 to 10. Each iteration of the TCO
algorithm does not take more than 30 seconds of CPU time.

By increasing α, we increase the noise magnitude at Step
1 of the TCO algorithm, resulting in a broader distribution
of synthetic dataset outcomes, as depicted by box plots in
Fig. 3 for one selected transmission line. However, as noise
increases, the probability of obtaining an infeasible synthetic
dataset also increases. We thus increase the iteration limit T
to improve the accuracy of the synthetic dataset. By setting
T , we require feasibility and cost-consistency with respect to
the set of T worst-case OPF models and outcomes, provided
at Steps 2 and 3, respectively. Such deeper post-processing
results in distributional shifts, as further shown in Fig. 3 for
increasing T . The virtue of these shifts is revealed in Fig.
4, where the top row demonstrates how the probability of
infeasible OPF outcomes on synthetic datasets reduces as the

Fig. 4. Infeasibility and sub-optimality of synthetic DC-OPF datasets.
Top row: percentage of infeasible OPF solutions across a population of
OPF models. Bottom row: the mean sub-optimality ∆C of OPF costs on
synthetic data. The mean values are provided with 90% confidence bands.

iteration limit increases. For smaller adjacency, it takes fewer
iterations to restore the feasibility of the synthetic dataset.
For example, for α = 5MW, it is enough to leverage 6 worst-
case OPF models in the post-processing optimization at Step
4 to restore feasibility across the entire population of 1, 000
OPF models. For larger adjacency parameters, it takes as
much as 10 iterations on average. The bottom row in Fig.
4 depicts the mean sub-optimality of OPF models on the
synthetic dataset, computed as:

∆C =
1

m

m∑
i=1

∥∥Ci(f)− CR
i (φT )

∥∥
Ci(f)

× 100%. (8)

The sub-optimality of synthetic datasets increases in adja-
cency parameter α, as more noise corrupts the real data.
However, as we increase T , the OPF cost on synthetic data
gets closer to that on the real data. Eventually, the sub-
optimality is kept very close to zero without violating the
privacy of the real dataset.

VI. CONCLUSIONS

We developed two algorithms for privacy-preserving re-
leases of synthetic power system datasets that enjoy both
Laplace and Exponential DP mechanisms to guarantee pri-
vacy and leverage optimization-based post-processing to en-
sure data accuracy for downstream optimization and machine
learning problems. Although the proposed algorithms focus
on wind power and transmission capacity data releases, other
network parameters can be released similarly; we refer to
the online repository accompanying this letter for additional
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experiments. Finally, we note that related privacy notions,
such as (ε, δ)−DP with similar composition properties, may
also apply for synthetic generation of power system datasets.

APPENDIX

A. Proof of Lemma 1

The worst-case sensitivity of weights is bounded as:
δβ = maximize

y∼αy′
∥β(y)− β(y′)∥1 (9a)

= maximize
y∼αy′

∥∥(X⊤X + λI)−1X⊤(y − y′)
∥∥
1

(9b)

⩽
∥∥(X⊤X + λI)−1X⊤∥∥

1
· maximize

y∼αy′
∥y − y′∥1 (9c)

⩽
∥∥(X⊤X + λI)−1X⊤∥∥

1
· α (9d)

where equality (9b) is from the closed-form solution to
weights, inequality (9c) is due to the Hölders inequality, and
inequality (9d) is due to Definition 1 of adjacent datasets.

The sensitivity of regression loss ℓ is bounded as:
δℓ = maximize

y∼αy′
∥ℓ(y)− ℓ(y′)∥1 (10a)

=maximize
y∼αy′

∥∥Xβ − y∥ − ∥Xβ − y′∥∥1 (10b)

⩽maximize
y∼αy′

∥X(β(y)− β(y′))− (y − y′)∥ (10c)

=maximize
y∼αy′

∥∥(X(X⊤X + λI)−1X⊤ − I)(y − y′)
∥∥ (10d)

=maximize
i=1,...,m

∥∥(X(X⊤X + λI)−1X⊤ − I)(ei ◦ α)
∥∥ (10e)

where (10c) is due to the reverse triangle inequality, (10d) is
from the closed-form solution to regression weights. Equality
(10e) originates from Definition 1 of adjacent datasets, i.e.,
different in one element by at most α. It is thus enough to
find index i of that element which maximizes the norm.

B. Proof of Theorem 5

The WPO algorithm queries real data in the interest of the
following computations:

1) Dataset initialization at Step 1 using the Laplace mech-
anism with parameters α/ε1. Since the worst-case sen-
sitivity of identity queries is α [13], this computation is
ε1-DP by Theorem 3.

2) Estimation of the regression loss on the real data at Step
2 using the Laplace mechanism with parameters δℓ/ε2.
By Lemma 1 and Theorem 3, this estimation is ε2−DP.

3) Estimation of regression weights on the real data at Step
2 using the Laplace mechanism with parameters δβ/ε2.
By Lemma 1 and Theorem 3, this estimation is ε2−DP.

Note, that the post-processing optimization at Step 3 only
uses obfuscated data. Hence, it does not induce any privacy
loss per Theorem 2. Per Theorem 1, the total privacy loss
becomes ε1 + 2ε2, yielding ε when setting parameters ε1 =
ε/2 and ε2 = ε/4.

C. Proof of Theorem 6

Algorithm 2 queries private transmission capacity vector
f for the following computations:

1) Initial dataset φ0: the algorithm uses a private identity
query with privacy budget α/ε1. Since the sensitivity

of identity queries on α−adjacent datasets is α [13], by
Theorem 3 this computation is ε1−DP.

2) Worst-case OPF index: found by the discrete variant
of the Exponential mechanism with privacy budget
cα/ε2. Since the sensitivity of the score function ∆Ci
is the same as that of Ci, by Theorems 2 and 4 and
Assumption 2, this is ε2−DP.

3) Worst-case OPF cost: Step 3 uses a private identity
query of the worst-case OPF cost using privacy budget
cα/ε2. Per Assumption 2 and Theorem 3, this compu-
tation is ε2−DP.

Let ε be the total privacy loss accumulated by the algorithm.
Step 1 accumulates privacy loss of ε1. Since Steps 2 and 3
repeat T times, per Theorem 1, they accumulate the privacy
loss of 2Tε2. The total loss is then ε = ε1 + 2Tε2, which
amounts to ε when setting DP parameters ε1 = ε/2 and
ε2 = ε/(4T ).
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