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Abstract— The absolute stability of a Lurye system with
a monotone nonlinearity is guaranteed by the existence of a
suitable O’Shea-Zames-Falb (OZF) multiplier. A numerically
tractable phase condition has recently been proposed under
which there can be no suitable OZF multiplier for the transfer
function of a given continuous-time plant. The condition has
been derived via the so-called duality approach. Here we show
that the condition may also be derived from an established fre-
quency interval approach providing an important link between
the two hitherto distinct approaches. We show that it leads
to significantly improved results compared with the frequency
interval approach on a benchmark example.

I. INTRODUCTION

The continuous-time OZF (O’Shea-Zames-Falb) multipli-
ers were discovered by O’Shea [1] and formalised by Zames
and Falb [2]. They preserve the positivity of monotone
memoryless nonlinearities. Hence they can be used, via loop
transformation, to establish the absolute stability of the feed-
back interconnection between a linear time invariant (LTI)
system and any slope-restricted memoryless nonlinearity. An
overview is given in [3].

Recent interest is largely driven by their compatability
with the integral quadratic constraint (IQC) framework of
Megretski and Rantzer [4] and the availability of compu-
tational searches [5], [6], [7], [8], [9], [10], [11], [12]. A
modification of the search proposed in [8] is used in the
Matlab IQC toolbox [13] and analysed in [14].

No single search method outperforms the others, and often
a hand-tailored search outperforms an automated search [12].
This motivates the analysis of conditions where a multiplier
cannot exist, and hence where any search would be fruitless.

Recently we have developed a simple condition [15],
derived from an earlier result [16] which is a particular case
of a more general analysis based on duality in an optimiztion
framework [17], [18], [19]. In [15] we show that the new
condition gives better results for the benchmark example in
[16], largely because it can be applied systematically. Here
we show that the same result may also be derived from
the frequency interval approach of [20], [21], providing a
first link between the two approaches. Although the two
approaches use different mathematical formulations they lead
to exactly the same result. We apply the condition to a classic
benchmark example [1], [3] and show that it leads to better
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results than those reported in [21], once again because it can
be applied systematically.

II. PRELIMINARIES

A. Multiplier theory

We are concerned with the input-output stability of the
Lurye system (Fig 1) given by

y1 = Gu1, y2 = φu2, u1 = r1−y2 and u2 = y1+r2. (1)

Let L2 be the space of finite energy Lebesgue integrable
signals and let L2e be the corresponding extended space (see
for example [22]). The Lurye system is said to be stable if
r1, r2 ∈ L2 implies u1, u2, y1, y2 ∈ L2.

The Lurye system (1) is assumed to be well-posed with
G : L2e → L2e linear time invariant (LTI) causal and stable,
and with φ : L2e → L2e memoryless and time-invariant. We
will use G to denote the transfer function corresponding to
G. Where appropriate we will consider either G : jR →
C (i.e. G(jω)) or G : C̄+ → C (i.e. G(s)) where C̄+ =
{s ∈ C : Re(s) ≥ 0}. The nonlinearity φ is assumed to
be montone in the sense that (φu)(t1) ≥ (φu)(t2) for all
u(t1) ≥ u(t2). It is also assumed to be bounded in the sense
that there exists a C ≥ 0 such that |(φu)(t)| ≤ C|u(t)| for
all u(t) ∈ R. We say φ is slope-restricted on [0, k] if 0 ≤
(φu)(t1) − (φu)(t2))/(u(t1) − u(t2)) ≤ k for all u(t1) 6=
u(t2). We say φ is odd if (φu)(t1) = −(φu)(t2) whenever
u(t1) = −u(t2).

Definition 1: Let M : jR → C and let G : jR → C We
say M is suitable for G if there exists ε > 0 such that

Re {M(jω)G(jω)} > ε for all ω ∈ R. (2)
Remark 1: Suppose M is suitable for G and ∠G(jω) ≤

−90o − θ for some ω and θ. Then ∠M(jω) > θ. Similarly
if ∠G(jω) ≥ 90o + θ then ∠M(jω) < −θ.

Definition 2a: Let M be the class of transfer functions
M : jR→ C whose (possibly non-causal) impulse response
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Fig. 1. Lurye system.
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is given by

m(t) = m0δ(t)− h(t)−
∞∑
i=1

hiδ(t− ti), (3)

with

h(t) ≥ 0 for all t, hi ≥ 0 and ti 6= 0 for all i,

and ‖h‖1 +

∞∑
i=1

hi ≤ m0.
(4)

We say M is an OZF multiplier if M ∈M.
Definition 2b: LetModd be the class of transfer functions

M : jR→ C whose (possibly non-causal) impulse response
is given by (3) with

‖h‖1 +

∞∑
i=1

|hi| ≤ m0. (5)

We say M is an OZF multiplier for odd nonlinearities if
M ∈Modd.

The Lurye system (1) is said to be absolutely stable for
a particular G if it is stable for all φ in some class Φ.
In particular, if there is an M ∈ M suitable for G then
it is absolutely stable for the class of memoryless time-
invariant monotone bounded nonlinearities; if there is an
M ∈Modd suitable for G then it is absolutely stable for the
class of memoryless time-invariant odd monotone bounded
nonlinearities. Furthermore, if there is an M ∈ M suitable
for 1/k + G then it is absolutely stable for the class of
memoryless time-invariant slope-restricted nonlinearities in
[0, k]; if there is an M ∈Modd suitable for 1/k+G then it
is absolutely stable for the class of memoryless time-invariant
odd slope-restricted nonlinearities [2], [3].

B. Phase limitations: frequency interval approach

In the frequency interval approach [20], [21] a condition
is given on the phase of G such that if it is sufficiently high
over one interval and sufficiently low over another then there
is no OZF multiplier suitable for G. In [21] we presented
the following phase limitation for the frequency intervals
[α, β] and [γ, δ] (see Fig 2). NB here we follow [20] in our
treatment of strict and nonstrict inequalities.

Theorem 1a ([21]): Let 0 < α < β < γ < δ and define

ρ = sup
t>0

|ψ(t)|
φ(t)

, (6)

with

ψ(t) =
λ cos(αt)

t
− λ cos(βt)

t
− µ cos(γt)

t
+
µ cos(δt)

t
,

φ(t) = λ(β − α) + κµ(δ − γ) + φ1(t),

φ1(t) =
λ sin(αt)

t
− λ sin(βt)

t
+
κµ sin(γt)

t
− κµ sin(δt)

t
,

(7)

and with λ > 0 and µ > 0 satisfying

λ

µ
=
δ2 − γ2

β2 − α2
, (8)

Fig. 2. Illustration of Theorems 1a and 1b. If ρ is sufficiently large then
no multiplier can have phase greater than arcsin ρ on interval [α, β] and
phase less than − arcsinκρ on interval [γ, δ].

and κ > 0 sufficiently large to ensure φ(t) ≥ 0 for all t > 0.
Then there is no M ∈M with

Im(M(jω)) > ρRe(M(jω)) for all ω ∈ [α, β], (9)

and

Im(M(jω)) < −κρRe(M(jω)) for all ω ∈ [γ, δ]. (10)

The result also holds if we replace (9) and (10) with

Im(M(jω)) < −ρRe(M(jω)) for all ω ∈ [α, β], (11)

and

Im(M(jω)) > κρRe(M(jω)) for all ω ∈ [γ, δ]. (12)
Theorem 1b ([21]): Suppose, with the conditions of The-

orem 1a, that we define instead

ρ = sup
t>0

max

{
|ψ(t)|
φ(t)

,
|ψ(t)|
φ̃(t)

}
, (13)

with
φ̃(t) = λ(β − α) + κµ(δ − γ)− |φ1(t)|, (14)

and κ is sufficiently large to ensure φ̃(t) ≥ 0 for all t > 0.
Then there is no M ∈Modd with (9) and (10) (or with (11)
and (12)).

Remark 2: In [21] the ratio κ is restricted to be positive
which is sufficient to ensure φ(t) ≥ 0 (or φ̃ ≥ 0). Here we
allow a slight generalisation but the proof is similar.

C. Phase limitations at harmonics

In [15] the following frequency conditions are derived
from the duality approach [16], [17], [18], [19]. They can
be tested in a systematic manner and are shown to give
improved results over those reported in [16].

Theorem 2a ([15]): Let a, b ∈ Z+ be coprime and let
M ∈M. Then∣∣∣∣b∠M(ajω)− a∠M(bjω)

a/2 + b/2− p

∣∣∣∣ ≤ 180o (15)

for all ω ∈ R with p = 1.
Theorem 2b ([15]): Let a, b ∈ Z+ be coprime and let

M ∈ Modd. Then inequality (15) holds for all ω ∈ R with
p = 1 when both a and b are odd, but with p = 1/2 when
either a or b are even.
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Fig. 3. Illustration of Corollaries 1a and 1b. If ρ is sufficiently large then
no multiplier can have phase greater than arcsin ρ at frequency a and phase
less than − arcsinκρ at frequency b. Compare Fig 2.

D. Other notation

In our discussion of the example (Section IV) phase
is expressed in degrees. In the technical proofs (i.e. the
Appendix) phase is expressed in radians.

III. RELATION TO THE FREQUENCY INTERVAL APPROACH

In this Section we show that Theorems 2a and 2b can
be derived from Theorems 1a and 1b. Theorems 2a and 2b
concern the phase of M(jω) at two frequencies, aω and bω,
where the ratio a/b is rational, whereas Theorems 1a and 1b
concern the phase of M(jω) over two frequency intervals
[α, β] and [γ, δ]. Let us begin by considering Theorems 1a
and 1b in the limit as the length of the intervals becomes zero
and where the ratio of the limiting frequencies is rational
(Fig 3).

Corollary 1a: For 0 < t < 2π, define

q+(t) =
b sin(at)− a sin(bt)

b+ κa− b cos(at)− κa cos(bt)
, (16)

where a, b ∈ Z+ are coprime and κ > −1/max(a, b) and
κ > 0 if either a = 1 or b = 1. Define also

ρ = sup
t∈(0,2π)

|q+(t)|. (17)

Then given any ω0 ∈ R there is no M ∈M that satisfies

∠M(ajω0) > arctan ρ, (18)

and
∠M(bjω0) < − arctanκρ. (19)

Corollary 1b: Suppose, with the conditions of Corol-
lary 1a and κ > 0, we define instead

ρ = sup
t∈(0,2π)

max (|q+(t)|, |q−(t)|) , (20)

where

q−(t) =
b sin(at)− a sin(bt)

b+ κa+ b cos(at) + κa cos(bt)
. (21)

Then given any ω0 ∈ R there is no M ∈Modd that satisfies
(18) and (19).

Proof: See Appendix.
It turns out that this is equivalent to the phase condition

derived via the duality approach in [15]. The inequality
boundaries ∠M(ajω0) = arctan ρ and ∠M(bjω0) =

Fig. 4. Phase vs phase plot illustrating Theorem 2a with a = 2, b = 3.
If M ∈M then the pink regions are forbidden. Also shown are the points
(arctan ρ,− arctanκρ) when a = 2 and b = 3, when κ takes the values
0.2, 1 and 5 and when ρ is defined as in Corollary 1a.

− arctanκρ are the same as those for Theorem 2a (or 2b),
as illustrated in Fig 4. Specifically we may say:

Theorem 3a: Corollary 1a and Theorem 2a are equivalent
results.

Theorem 3b: Corollary 1b and Theorem 2b are equivalent
results.

Proof: See Appendix.

IV. EXAMPLE

Consider the plant

G(s) =
s2

(s2 + 2ξs+ 1)2
with ξ > 0. (22)

O’Shea [1] shows that there is a suitable multiplier in M
for 1/k + G when ξ > 1/2 and k > 0. By contrast in
[21] we showed that there is no suitable multiplier in M
when ξ = 0.25 and k is sufficiently large. Specifically
the phase of G(jω) is above 177.98o on the interval ω ∈
[0.02249, 0.03511] and below −177.98o on the interval ω ∈
[1/0.03511, 1/0.02249]. A line search yields that the same
condition is true for the phase of 1/k + G(jω) with k ≥
269, 336.3 (see Fig 5). Hence there is no suitable multipler
M ∈ M for 1/k + G with k ≥ 269, 336.3. However, in
[21] we conclude that the most insightful choice of interval
remains open.

By contrast, Theorem 2a with a = 4 and b = 1 yields
there is no suitable multipler M ∈ M for 1/k + G with
k ≥ 32.61. Specifically the phase (4∠(1/k + G(jω)) −
∠(1/k + G(4jω)))/4 exceeds 180o when k ≥ 32.61 (see
Figs 6 and 7). Similarly, Theorem 2b with a = 3 and b = 1
yields there is no suitable multipler M ∈Modd for 1/k+G
with k ≥ 39.93. Specifically the phase (3∠(1/k+G(jω))−
∠(1/k +G(3jω)))/3 exceeds 180o when k ≥ 32.61.

These results show a non-trivial improvement over those
in [21]. While it should be possible to achieve identical
results using either the condition of [16] or that of [21],
the conditions of Theorems 2a and 2b can be applied in a
systematic manner. For this example we test the criterion
for a finite number of coprime integers a and b, and for
all ω > 0; we also search over the slope restriction k.
Specifically we run a bisection algorithm for k and, for each
candidate value of k, a and b, check whether the condition is
satisfied for any ω > 0 by gridding. Fig 8 shows the bounds
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Fig. 5. O’Shea’s example with ζ = 0.25. Application of the condition in
[21] yields there to be no suitable multiplier M ∈M when k ≥ 270, 000.

Fig. 6. O’Shea’s example with ζ = 0.25. The phase differences
(4∠G(jω)−∠G(4jω))/4 and (4∠(1/k+G(jω))−∠(1/k+G(4jω)))/4
with k = 32.61 are shown. Application of Theorem 2a with a = 4 and
b = 1 yields there to be no suitable multiplier M ∈M when k ≥ 32.61.

Fig. 7. O’Shea’s example with ζ = 0.25. The phase of 1/k + G(jω)
with k = 32.61 is shown. The phase of 1/k + G(jωa) is 149.42o at
ωa = 0.3938 and the corresponding forbidden regions are shown. The
phase touches the bound at 4ωa.

for several other values of ζ while Fig 9 shows the value of
a yielding the lowest bound for each test (the value of b is
1 for each case).

V. CONCLUSION

In [15] we propose a phase condition that OZF multipliers
must satisfy, repeated here as Theorems 2a and 2b. The
condition is derived in [15] from the duality framework of
[16], [17], [18], [19]. It has the advantage that it can be
applied systematically and we show in [15] that it leads
to improved results for the benchmark example in [16].
Here we show the condition may also be derived from
the frequency interval approach of [21], [20], drawing an
important link between the two approaches. We show it leads
to significantly improved results over those reported in [21]
for the benchmark example of [1].

Fig. 8. Bounds on the slope above which Theorem 2a or 2b guarantee
there can be no suitable multiplier as damping ratio ζ varies.

Fig. 9. Values of a used to find the slope bounds shown in Fig 8. The
value of b is 1 for all shown results.

APPENDIX

A. Proofs of Corollaries 1a and 1b

Proof: [Corollary 1a] Without loss of generality let a <
b. The result follows by setting the intervals

[α, β] = [aω0 − ε, aω0 + ε],

and [γ, δ] = [bω0 − ε, bω0 + ε],
(23)

with ε > 0. We find

ψ(t) =
2λ

t
sin(aω0t) sin(εt)− 2µ

t
sin(bω0t) sin(εt),

φ(t) = 2ελ+ 2εκµ+ φ1(t),

φ1(t) = −2λ

t
cos(aω0t) sin(εt)− 2κµ

t
cos(bω0t) sin(εt),

(24)

with aλ = bµ. The result follows in the limit as ε→ 0.
Proof: [Corollary 1b] In addition

φ̃(t) = 2ελ+ 2εκµ− |φ1(t)|. (25)

Once again the result follows in the limit as ε→ 0.

B. Proof of Theorems 3a and 3b

Proof: [Theorem 3a] For 0 < t < 2π define

θ+(t) = b arctan q+(t) + a arctanκq+(t). (26)

We will show that for each κ all turning points of θ+(t)
are bounded by ±(a+ b− 2)π2 and that at least one turning
point touches the bounds. This is sufficient to establish the
equivalence between Corollary 1a and Theorem 2a.

The turning points of θ+(t) occur at the same values of t
as the turning points of q+(t). Specifically

d

dt
θ+(t) =

(
b

1 + q+(t)2
+

aκ

1 + κ2q+(t)2

)
d

dt
q+(t), (27)
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Fig. 10. Phase functions θ+ (blue), θ∗+ (red) and θ†+ (green) with a = 3
and b = 10. The turning points of θ+ where m+(t) = 0 take the value
(a+b−2λ)π/2 with λ an integer. The function θ∗+(·) is piecewise constant
and takes these same values. The turning points of θ+ where n+(t) = 0

take the values of θ†+, whose bounds are also shown.

where the derivative of q+(t) is given by

d

dt
q+(t) = ab

m+(t)n+(t)

d+(t)2
, (28)

with

m+(t) = sin
at

2
cos

bt

2
+ κ sin

bt

2
cos

at

2
,

n+(t) = a sin
bt

2
cos

at

2
− b sin

at

2
cos

bt

2
,

d+(t) = b sin2 at

2
+ κa sin2 bt

2
.

(29)

On the interval 0 < t < 2π the derivatives of both q+(t) and
θ+(t) are zero when either m+(t) = 0 or n+(t) = 0. We
consider the two cases separately. In both cases we use the
identity

q+(t) =
b tan at

2

(
1 + tan2 bt

2

)
− a tan bt

2

(
1 + tan2 at

2

)
b tan2 at

2

(
1 + tan2 bt

2

)
+ κa tan2 bt

2

(
1 + tan2 at

2

) .
(30)

Case 1: Suppose t1 satisfies m+(t1) = 0. At these values

q+(t1) = cot
at1
2
, (31)

and
κq+(t1) = − cot

bt1
2
. (32)

Hence if we define

θ∗+(t) = b

[
π

2
− at

2

]
[−π/2,π/2]

+ a

[
−π

2
+
bt

2

]
[−π/2,π/2]

,

(33)

for t ∈ [0, 2π] we find θ+(t1) = θ∗+(t1) for all t1 satisfying
m+(t1) = 0. The function θ∗+(·) is piecewise constant, taking
values (−a− b+2λ)π/2 with λ = 1, . . . , a+ b−1. On each
piecewise constant interval there is a t1 satisfying m+(t1) =
0. Hence these turning points of θ+(t) lie within the bounds
±(a+ b− 2)π2 with at least one on the bound.

Case 2: Suppose t2 satisfies n+(t2) = 0. Define

q†+(t) =
(b2 − a2) sin at

a2 + b2 + 2κab− (b2 − a2) cos at
, (34)

and
θ†+(t) = b arctan q†+(t) + a arctanκq†+(t). (35)

Then q+(t2) = q†+(t2) and θ+(t2) = θ†+(t2) for all t2
satisfying n+(t2) = 0. It follows that |θ+(t2)| ≤ |θ̄†| for
all such t2 where

θ̄† = b arctan q̄† + a arctanκq̄†, (36)

and

q̄† =
b2 − a2

2
√
ab(a+ κb)(b+ κa)

. (37)

With some abuse of notation write θ̄† = θ̄†(κ); i.e. consider
θ̄† as a function of κ and observe that θ̄†(κ)→ 0 as κ→ 0.
We find

d

dκ
θ̄†(κ) =

−(a+ bκ)(a2 − b2)2

(2ab+ (a2 + b2)κ)(2abκ+ a2 + b2)

×

√
ab

(a+ bκ)(aκ+ b)
,

≤0 for the given range of κ.

(38)

Without loss of generality assume b > a. If a > 1 the interval
is κ > 0 and

|θ̄†(κ)| ≤ θ̄†(0),

= b arctan

(
b2 − a2

2ab

)
,

< (a+ b− 2)
π

2
.

(39)

If a = 1 the interval is κ > −1/b and

|θ̄†(κ)| ≤ θ̄†(−1/b),

= (b− a)
π

2
,

= (a+ b− 2)
π

2
.

(40)

Proof: [Theorem 3b] The proof is similar to that for
Theorem 3a. We have already established appropriate bounds
for θ+(t). If we define

θ−(t) = b arctan q−(t) + a arctanκq−(t), (41)

then we need to show it is also bounded appropriately.
Similar to the previous case, the turning points of θ−(t) occur
at the same values of t as the turning points of q−(t). On
the interval t ∈ (0, 2π) the derivative of q−(t) is given by

d

dt
q−(t) = ab

m−(t)n−(t)

d−(t)2
, (42)

with

m−(t) = κ sin
at

2
cos

bt

2
+ sin

bt

2
cos

at

2
,

n−(t) = b sin
bt

2
cos

at

2
− a sin

at

2
cos

bt

2
,

d−(t) = b cos2
at

2
+ κa cos2

bt

2
.

(43)
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Fig. 11. Phase functions θ− (blue), θ∗− (red) and θ†− (green) with a =
3 and b = 10. The turning points of θ− where m−(t) = 0 take the
value (a + b + 1 − 2λ)π/2 with λ an integer. The function θ∗−(·) is
piecewise constant and takes these same values. The turning points of θ−
where n−(t) = 0 take the values of θ†−, whose bounds are also shown.

We will consider the cases m−(t) = 0 and n−(t) = 0
separately. This time we use the identity

q−(t) =
b tan at

2

(
1 + tan2 bt

2

)
− a tan bt

2

(
1 + tan2 at

2

)
b
(
1 + tan2 bt

2

)
+ κa

(
1 + tan2 at

2

) .

(44)

Case 1: Suppose t1 satisfies m−(t1) = 0. Then

q−(t1) = tan
at1
2
, (45)

and

κq−(t1) = − tan
bt1
2
. (46)

Hence if we define

θ∗−(t) = b

[
at

2

]
[−π/2,π/2]

− a
[
bt

2

]
[−π/2,π/2]

, (47)

for t ∈ [0, 2π] we find θ−(t1) = θ∗−(t1) for all t1 satisfying
m−(t1) = 0. The function θ∗−(·) is piecewise constant,
taking values (−a− b− 1 + 2λ)π/2 with λ = 1, . . . , a+ b
when either a or b are even, and values (−a − b + 2λ)π/2
with λ = 1, . . . , a+b−1 when a and b are both odd. On each
piecewise constant interval there is a t1 satisfying m−(t1) =
0. Hence these turning points of θ−(t) lie within the bounds
±(a+ b− 1)π2 (if either a or b even) or ±(a+ b− 2)π2 (if
a and b both odd) with at least one on the bound.

Case 2: Suppose t2 satisfies n−(t2) = 0. Define

q†−(t) =
(b2 − a2) sin at

a2 + b2 + 2κab+ (b2 − a2) cos at
, (48)

and

θ†−(t) = b arctan q†−(t) + a arctanκq†−(t). (49)

Then q−(t2) = q†−(t2) and θ−(t2) = θ†−(t2) for all t2
satisfying n−(t2) = 0. It follows that |θ−(t2)| ≤ |θ̄†| for
all such t2 where θ̄† is given by (36). This time we only
consider κ > 0 but the previous analysis establishes that
these turning points lie within the bounds.
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