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Abstract— This paper presents a time-invariant network flow
model capturing two-person ride-pooling that can be inte-
grated within design and planning frameworks for Mobility-on-
Demand systems. In these type of models, the arrival process of
travel requests is described by a Poisson process, meaning that
there is only statistical insight into request times, including the
probability that two requests may be pooled together. Taking
advantage of this feature, we devise a method to capture ride-
pooling from a stochastic mesoscopic perspective. This way,
we are able to transform the original set of requests into an
equivalent set including pooled ones which can be integrated
within standard network flow problems, which in turn can
be efficiently solved with off-the-shelf LP solvers for a given
ride-pooling request assignment. Thereby, to compute such
an assignment, we devise a polynomial-time algorithm that is
optimal w.r.t. an approximated version of the problem. Finally,
we perform a case study of Sioux Falls, USA, where we quantify
the effects that waiting time and experienced delay have on
the vehicle-hours traveled. Our results suggest that the higher
the demands per unit time, the lower the waiting time and
delay experienced by users. In addition, for a sufficiently large
number of demands per unit time, with a maximum waiting
time and experienced delay of 5 minutes, more than 90% of
the requests can be pooled.

I. INTRODUCTION

Ride-sharing is a service that is revolutionizing urban
transportation. Within this service, ride-pooling is the con-
cept of having multiple users traveling at the same time
on a single vehicle at lower costs, e.g., emissions, energy
consumption, fleet size, and also the cost of the ride charged
to the user. Nevertheless, these improvements come at the
expense of additional waiting time and delays caused by
detours. Ride-pooling is a difficult problem to deal with due
to its combinatorial nature. For this reason, the microscopic
nature of ride-pooling is, at first sight, incompatible with
an approach on a different scale. However, sometimes it is
enough to study a ride-sharing system from a macroscopic
point of view, especially when dealing with mobility plan-
ning or design [1], [2]. In this paper, we propose a framework
to deal with ride-pooling from a mesoscopic point of view
by moving from a deterministic to a stochastic approach.
We devise a framework to easily incorporate ride-pooling
into a linear time-invariant multi-commodity network flow
model, also known as traffic flow model, that is a mesoscopic
modeling framework usually used for mobility planning and
design.

Related Literature: This paper pertains to the research
streams of traffic flow models and ride-pooling, that we
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review in the following. One of the approaches to character-
ize and control ride-sharing systems is the multi-commodity
network flow model, that is suited for easy implementation
of many constraints of different nature and can be efficiently
solved with commercial solvers. This model has been used
for multiple design purposes such as minimizing fleet size
[3], [4], minimizing electricity costs [5], and joint opti-
mization with public transport [1] and the power grid [6]–
[8]. For example, in [2], [9] the authors proposed a joint
optimization framework for the siting and sizing of the
charging infrastructure for an electric ride-sharing system.
Yet in all these models the assumption of one person per
vehicle is made.

Ride-pooling has been extensively studied. Alonso-Mora
et al. [10] conceived the vehicle group assignment algorithm,
which optimally solves the ride-sharing problem with high
capacity vehicles in a microscopic setting. In [11], [12] the
benefits of vehicle pooling and the pricing and equilibrium in
on-demand ride-pooling markets were analyzed, respectively.
Fieldbaum et al. [13] studied ride-pooling considering that
users can be picked-up and dropped-off within a walkable
distance, while in [14] they examine how to split costs
between users that share the same ride. In [15] a time-
expanded network flow model is leveraged to compute the
optimal routes of a mobility system that allows for ride-
pooling. However, in all of these papers the ride-pooling
problem has been studied from a microscopic perspective,
whereby each request is considered individually. Recently,
in [16] an interesting step towards a mesoscopic stance has
been carried out from a stochastic matching perspective.

Statement of Contributions: The main contributions of this
paper are twofold. First, we propose a framework to capture
ride-pooling, a microscopic combinatorial phenomenon, in
a time-invariant network flow model, whereby the arrival
process is stochastic and the complexity of the problem is
independent from the number of requests. Second, within the
proposed framework, we devise a method to compute a ride-
pooling request assignment that is optimal w.r.t. a relaxed
version of the minimum overall travel time problem.

Organization: The remainder of this paper is structured as
follows: Section II introduces the multi-commodity traffic
flow problem and the framework to capture ride-pooling.
Section III details the case study of Sioux Falls. Last, in
Section IV, we draw the conclusions from our findings and
provide an outlook on future research endeavors.

Notation: We denote the vector of ones, of appropriate
dimensions, by 1. The ith component of a vector v is denoted
by vi and the entry (i, j) of a matrix A is denoted by Aij .
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The cardinality of set S is denoted by |S|.

II. RIDE-POOLING NETWORK FLOW MODEL

In this section, we introduce the network traffic flow
model [3]. Then, we extend it to take into account ride-
pooling, and finally present a brief discussion on the model.

A. Time-invariant Network Flow Model

We model the mobility system as a multi-commodity
network flow model, similar to the approaches of [1], [2], [5],
[9], [17]. The transportation network is a directed graph G =
(V,A). It consists of a set of vertices V := {1, 2, ..., |V|},
representing the location of intersections on the road net-
work, and a set of arcsA ⊆ V×V , representing the road links
between intersections. We indicate B ∈ {−1, 0, 1}|V|×|A| as
the incidence matrix [18] of the road network G. Consider
an arbitrary arc indexing of natural numbers {1, . . . , |A|},
then Bip = −1 if the arc indexed by p is directed towards
vertex i, Bip = 1 if the arc indexed by p leaves vertex i,
and Bip = 0 otherwise. We denote t as the vector whose
entries are the travel time ta required to traverse each arc
a ∈ A, ordered in accordance with the arc ordering of B,
which we assume to be constant. Similarly to [3], we define
travel requests as follows:

Definition II.1 (Requests). A travel request is defined as the
tuple r = (o, d, α) ∈ V×V×R>0, in which α is the number
of users traveling from the origin o to the destination d ̸= o
per unit time. Define the set of requests as R := {rm}m∈M,
where M = {1, . . . ,M}.

We assume, without any loss of generality, that the origin-
destination pairs of the requests rm ∈ R are distinct. In this
paper, we distinguish between active vehicle flows, which
correspond to the flows of vehicles serving users whether
they are ride-pooling or not, and rebalancing flows which
correspond to the flows of empty vehicles between the drop-
off and pick-up vertices of consecutive requests. We define
the active vehicle flow induced by all the requests that share
the same origin i ∈ V as vector xi, where element xi

a is
the flow on arc a ∈ A, ordered in accordance with the
arc ordering of B. The overall active vehicle flow is a
matrix X ∈ R|A|×|V| defined as X :=

[
x1 x2 . . . x|V|]. The

rebalancing flow across the arcs is denoted by xr ∈ R|A|. In
the following, we define the network flow problem.

Problem 1 (Multi-commodity Network Flow Problem).
Given a road graph G and a demand matrix D, the active
vehicle flows X and rebalancing flow xr that minimize the
cost in terms of overall travel time result from

min
X,xr

J(X,xr) = t⊤(X1+ xr)

s.t. BX = D

B(X1+ xr) = 0

X,xr ≥ 0,

where the demand matrix D ∈ R|V|×|V| represents the
requests between every pair of vertices, whose entries are

Dij =


αm, ∃m ∈M : om = j ∧ dm = i

−
∑

k ̸=j Dkj , i = j

0, otherwise.

(1)

Since Problem 1 is totally unimodular, X and xr can
be decoupled and computed separately [4]. The objective
function can also be interpreted as the minimum fleet size
required to implement the flows [3], [4].

B. Ride-pooling Time-invariant Network Flow Model

In this paper, we propose a formulation to take into
account ride-pooling without the need to change the original
structure of the problem. We transform the original set of
requests, portrayed by D, into an equivalent set of requests
accounting for ride-pooling, portrayed by Drp. We define the
ride-pooling network flow problem as follows:

Problem 2 (Ride-pooling Network Flow Problem). Given a
road graph G and a demand matrix Drp, the active vehicle
flows X and rebalancing flow xr that minimize the cost in
terms of overall travel time result from

min
X,xr

J(X,xr) = t⊤(X1+ xr)

s.t. BX = Drp

B(X1+ xr) = 0

X,xr ≥ 0.

The ride-pooling demand matrix Drp in Problem 2, which
describes the pooling pattern, has to be determined accord-
ing to four key conditions. First, the individual requests,
described by D, must be served. Second, ride-pooling two
requests is only spatially feasible if the detour travel time is
not greater than a threshold δ̄ ∈ R≥0. Third, ride-pooling
two requests is only temporally feasible if the waiting
time for a request to start being served does not exceed
a threshold t̄ ∈ R>0. Fourth, the requests are pooled to
minimize the cost function of Problem 2 at its solution. Due
to the combinatorial nature of such an endeavor, we relax
the problem in order to attain a computationally tractable
algorithm, according to the following approximation.

Approximation II.1. For the purpose of computing the
demand matrix Drp, the cost function of Problem 2 is
approximated by J̃(X) := t⊤X1.

It is crucial to remark that this approximation is only
employed in a first step to compute Drp and, afterwards,
in a second stage, the passenger and rebalancing flows
are optimized jointly according to Problem 2. This is in
order for an Autonomous Mobility on Demand fleet, for
example, which is centrally operated and whose vehicles do
not compete for rides. This is a very common approximation
used in the literature [10], which we leverage to devise a
polynomial-time algorithm to compute Drp that is optimal
w.r.t. the approximated version of the problem.
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Fig. 1. Distinct configurations for serving two requests rm, rn ∈ R. Each
arrow represents a flow of α = 1 vehicles. The dashed arrows represent a
flow with two users, whilst the solid ones represent a flow with one user.

C. Approximate Computation of the Demand Matrix

In this section, we present a framework to compute the
demand matrix Drp under Approximation II.1.

1) Spatial Analysis of Ride-pooling: In this section, we
analyze the feasibility and optimal configuration of ride-
pooling two requests from a spatial perspective. First, we
define δ as the delay experienced by each user, representing
the time required to travel the additional detour distance w.r.t.
the scenario without ride-pooling. If the delay experienced
by any of the two users is higher than the threshold δ̄, then
pooling the two requests is unfeasible. Second, given the
feasible pooling itineraries, we analyze which one is the
optimal, i.e., the best itinerary to serve the requests, and
whether pooling is advantageous w.r.t. no pooling. Consider
two requests rm, rn ∈ R. To restrict this analysis to the
spatial dimension, we temporarily make two key consid-
erations, that we lift in Section II-C.3: i) the requests rm
and rn are made at the same time; and ii) both requests
have the same demand, which we set, without any loss
of generality, to α = 1. There are five different ways of
serving two requests rm, rn ∈ R, as depicted in Fig. 1.
The goal is to assess whether it is feasible to ride-pool rm
and rn and which is the best configurations among the five.
Index each configuration with number c ∈ {0, . . . , 4}, with
c = 0 corresponding to no pooling. Each configuration can
be split into either two or three equivalent travel requests,
as shown in Fig. 1, each corresponding to an arrow. Denote
the set of such equivalent requests for configuration c as
Rc

mn (Rc
nm = Rc

mn) and we define Π(Rc
mn) as the order

of visited nodes. For each configuration c, one can now
solve Problem 2, under Approximation II.1, with a simplified
demand matrix Drp = Dmn,c obtained from the set of
requests Rc

mn with (1), obtaining a flow Xmn,c ∈ R|V|×|V|.
The delay δm,c of request rm for a configuration c, is

δm,c =
∑

p∈πc
mn

[t⊤Xmn,c]p − [t⊤Xmn,0]om ,

where πc
mn ⊆ Π(Rc

mn) is the ordered set of nodes Π(Rc
mn)

from om to the node before dm. The feasible configurations
are those whose delay of both users is below the threshold δ̄.
Then, among the feasible ones, comprehending also the no
pooling option, the optimal configuration is the one whose
flow Xmn,c achieves the lowest cost J̃(Xmn,⋆). Henceforth,
the simplified demand matrix of the optimal configuration for
ride-pooling rm and rn is denoted by Dmn,⋆.

Remark II.1. The demand matrix Dmn,c contains either two
or three equivalent travel requests between the origin and
destination nodes of requests rm and rn. To reduce the com-
putational load, a graph search technique can be employed
instead, to compute the shortest path between every pair of
nodes. Since each instance has a worst-case computational
complexity of O(|V|2), the overall computational complexity
is O(|V|4). The procedure depends on the graph G, meaning
that the computations have to be performed only once.

2) Temporal Analysis of Ride-pooling: In this section, we
analyze the temporal alignment of two requests for ride-
pooling. We derive the probability of two requests taking
place within the maximum waiting time, t̄. As common in
traffic flow models [3], we consider that the arrival rate
of a request rm ∈ R follows a Poisson process with
parameter αm. Consider two requests rm, rn ∈ R. In the
following lemma, we indicate the probability of the two
events occurring within a maximum time window t̄.

Lemma II.1. Let rm, rn ∈ R be two requests whose arrival
rate follow a Poisson process with parameters αm and αn,
respectively. The probability of each having an occurrence
within a maximum time interval t̄ is

P (αm, αn) := 1− αme−αn t̄ + αne
−αm t̄

αm + αn
. (2)

Proof. The proof can be found in Appendix I.

3) Expected Number of Pooled Rides: In Section II-
C.1, we analyzed the spatial dimension of the ride-pooling
problem, whereby we computed the best feasible pooling
path given two requests. In Section II-C.2, we analyzed the
temporal dimension of the ride-polling problem, whereby we
derived the probability of two requests happening within a
time window. By lifting the temporary assumptions made in
Section II-C.1, we formulate the ride-pooling demand matrix
given a certain pooling assignment, defined in what follows.

A fraction of the demand of every request rm ∈ R
can be assigned to be pooled with a request rn ∈ R. Let
β ∈ R|R|×|R|

≥0 denote the assignment matrix, whose entry
(m,n) is the demand of rm that is assigned to be pooled
with rn. For the remainder of this subsection we assume
that β is given. In Section II-C.4, we propose an algorithm
to compute the optimal value of β under Approximation II.1.

From the analysis in Section II-C.2, it is noticeable that
only a fraction of the allocated ride-pooling demand βmn

can actually be pooled due to the aforementioned temporal
constraints. Specifically, the probability of pooling is given
by P (βmn, βnm) according to Lemma II.1. Moreover, given
that we only consider pooling between two requests, at
most, the maximum pooled demand between rm, rn ∈ R
is min(βmn, βnm). Therefore, the effective expected pooled
demand between two requests rm, rn ∈ R is given by
γnm = γmn := min(βmn, βnm)P (βmn, βnm). As a result,
according to the spatial analysis in Section II-C.1, this pooled
demand is portrayed by the demand matrix γmnD

mn,⋆.
Note that the effective expected pooling demand follows
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∑
n∈M γmn ≤ αm, ∀rm ∈ R with equality if the full

demand of rm is pooled. The full ride-pooling demand
matrix Drp is made up of two contributions: i) the sum of the
expected pooled active vehicle flows of the form γmnD

mn,⋆

for rm, rn ∈ R; and ii) the requested demands that were not
ride-pooled. Thus, the entry (i, j) of Drp can be written as

Drp
ij =



∑
p,q∈M
p≥q

γpqD
pq,⋆
ij +

(
Dij −

∑
p∈M

γmpD
mp,⋆
ij

)
,

∃m ∈M : dm= i ∧ om= j

−
∑

k ̸=j D
rp
kj , i = j∑

p,q∈M
p≥q

γpqD
pq,⋆
ij , otherwise.

Finally, one can input Drp to Problem 2, which yields an
LP, given a pooling assignment β.

4) Optimal Ride-pooling Assignment: In this section, we
will compute the optimal ride-pooling assignment matrices
β⋆ and γ⋆, under Approximation II.1, leveraging an iterative
approach, which is described in what follows. For every
pair of requests rm, rn ∈ R, we can compute the unitary
improvement of the objective function of Problem 2, denoted
by ∆J̃mn, w.r.t. the no-pooling scenario. Specifically, it
amounts to the difference between J̃nm, which denotes the
cost with Drp = Dmn,⋆, and J̃n + J̃m, which again denotes
the cost with Drp = Dmn,0. Let α′

m,m ∈ M stand for
an auxiliary variable throughout the iterations and represent
the demand of request rm that has not yet been assigned,
and which is initialized as α′

m = αm. Further, the pair of
requests with the highest improvement is prioritized with
the highest possible pooling demand assignment. That is, in
each iteration, if rm, rn ∈ R is the pair of requests with the
highest ∆J̃mn, we set βmn = α′

m and βnm = α′
n. Moreover,

the rides that have been assigned but not pooled, are added
back to the original requests, i.e., we set α′

m = βmn − γmn

and α′
n = βnm−γnm. Let ∆J̃ ′

mn,m, n ∈M denote another
auxiliary variable throughout the iterations, initialized as
∆J̃ ′

mn = ∆J̃mn. At the end of every iteration, ∆J̃ ′
mn is

set to 0. This procedure is repeated until convergence is
achieved, i.e., maxm,n(∆J̃ ′

mn) ≤ 0. The pseudocode of
this procedure is presented in Algorithm 1. In the following
theorem, we establish the convergence and optimality of
Algorithm 1.

Theorem II.1. Let X⋆
γ denote the optimal solution of

Problem 2, under Approximation II.1, for the effective ride-
pooling demand matrix γ. Then, in |M|(|M| + 1)/2 itera-
tions at most, Algorithm 1 converges to β = β⋆ and γ = γ⋆,
which is a minimizer of J̃(X⋆

γ ) among all valid effective
ride-pooling matrices.

Proof. The proof can be found in Appendix II.

D. Discussion

A few comments are in order. First, the mobility system
is analyzed at steady-state in a time-invariant framework,
which is unsuitable for an online implementation, but it has

Algorithm 1 Compute optimal assignment matrices β⋆, γ⋆.

J̃mn ← input Dmn,⋆ to Problem 2, ∀m,n ∈M
J̃m + J̃n ← input Dmn,0 to Problem 2, ∀m,n ∈M
∆J̃mn ← J̃m + J̃n − J̃mn

∆J̃ ′
mn ← ∆J̃mn, ∀m,n ∈M

α′
m ← αm, ∀m ∈M

while maxm,n(∆J̃ ′
mn) > 0 do

(m,n) ∈ argmaxm,n(∆J̃ ′
mn)

if on = om and dn = dm then
βmn ← α′

m, βnm ← βmn

γmn ← βmnP (βmn, βnm)/2, γnm ← γmn

else
βnm ← α′

n, βmn ← α′
m

γmn ← min(βnm, βmn)P (βmn, βnm)
γnm ← γmn

end if
α′
m ← α′

m − γmn, α
′
n ← α′

n − γnm
∆J̃ ′

mn ← 0, ∆J̃ ′
nm ← ∆J̃ ′

mn

end while

been used for planning and design purposes by several works
in the literature as seen in Section 1. This assumption is
reasonable if the travel requests vary slowly w.r.t. the average
time of serving each request. This is the case especially
in highly populated metropolitan areas [19]. Second, our
framework does not take into account the stochastic nature
of the exogenous congestion that determines that travel time
in each road arc. However, this deterministic approach is
suitable for our purposes as it provides an average represen-
tation of these stochastic phenomena in a mesoscopic scale
[20]. Third, Problems 1 and 2 allow for fractional flows,
which is acceptable because of the mesoscopic perspective
of the work [1], [2], [9]. Finally, Drp is not optimal w.r.t.
the objective function of Problem 2, but it is w.r.t. its relaxed
version, enabling a polynomial-time computation.

III. CASE STUDY

This section showcases our modeling and optimization
framework in a real-world case study of Sioux Falls, USA,
with data obtained from the Transportation Networks for
Research repository [21]. Problems 2 was parsed with
YALMIP [22] and solved with Gurobi 9.5 [23]. We compute
it leveraging the optimal ride-pooling assignment, obtained
as described in Section II-C.4, for a varying amount of
hourly demands, obtained by uniformly scaling the demand
of the historical requests, and for various waiting times
and maximum delays. In Fig. 2, we compare the relative
improvement in objective of Problem 2 w.r.t. Problem 1, i.e.,
the improvement of the overall travel time. Fig. 2 shows that
ride-pooling always contributes to lowering the overall travel
time. In particular, the larger the number of hourly demands,
the larger the relative improvement. The reason is that the
probability function in (2) is monotonically increasing w.r.t.
βm and βn that, in turn, are monotonically increasing with
the number of demands. In Fig. 3 we note that the percentage
of rides that are pooled is strongly influenced by the number
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Fig. 2. Improvement of the objective function of Problem 2, i.e., overall
travel time, w.r.t. no ride-pooling, as a function of maximum waiting time,
delay, and demand intensity.

Fig. 3. Percentage of pooled rides and average experienced delay as
a function of the overall number of hourly demands, waiting time, and
maximum delay.

of demands, represented in logarithmic scale, to a lower
extent by the maximum waiting time, and marginally by
the maximum delay. In addition, for large demands, both
the waiting time and the delay have a minor impact on
the percentage of rides being pooled and on the relative
improvement. Fig. 3 also depicts the average experienced
delay by the users, which is significantly lower than the
bounds imposed on Section II-C.1. Moreover, we highlight
that the experienced delay decreases significantly for an
increasing number of hourly demands. This phenomenon
resembles the Mohring Effect [24], stating that the more
people use a mobility service, the shorter the waiting time
they experience. Conversely, the fewer people use a mobility
service, the higher the waiting time, reflecting in a lower
percentage of requests that can be effectively ride-pooled.
Moreover, for the simulations performed, t⊤xr, i.e., the re-
balancing time, accounts for less than 5% of the overall travel
time for every scenario studied. The original rebalancing time
for no ride-pooling is roughly the same. Thus, not only does
ride-pooling decrease the overall rebalancing time due to
the lower number of trips, but it also does not lead to a
relative increase w.r.t. the ride-pooling overall travel time.

This supports the hypothesis of Approximation II.1. Last,
we notice that for a sufficiently large number of requests, by
setting both a maximum delay and waiting time of 5 minute,
it is possible to ride-pool more than 90% of the requests.

A MATLAB implementation of the methods presented is
available in an open-source repository at https://github.
com/fabiopaparella/ride-pooling-MoD.

IV. CONCLUSIONS

This paper presented a framework to capture ride-pooling
in a time-invariant network flow model. Specifically, we
proposed a framework wherein we devise an equivalent set
of requests w.r.t. the original set so that the structure of
the traffic flow problem remains unchanged. This allows to
still obtain an LP problem that can be efficiently solved
with off-the-shelf solvers in polynomial-time. Additionally,
we proposed a method to compute a ride-pooling request
assignment, that is optimal w.r.t. a relaxed version of the
minimum travel time problem. Our case study of Sioux Falls
quantitatively showed that the overall number of requests
per unit time is a crucial factor to assess the benefit of
ride-pooling in mobility-on-demand systems. In fact, for a
sufficiently large number of travel requests, we achieved
average improvements in the overall travel time of up to
45%. We also showed that, for a large number of requests,
more than 90% of them could be pooled with a relatively
short waiting and delay time.

This work opens up the research into multi-commodity
traffic flow model planning, taking into account an ideal ride-
pooling scenario. In the future, we would like to analyze
the results with respect to the granularity of the road graph
and build on this research by including endogenous traffic
congestion.
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[22] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in IEEE Int. Symp. on Computer Aided Control Systems
Design, 2004.

[23] Gurobi Optimization, LLC. (2021) Gurobi optimizer reference manual.
Available at http://www.gurobi.com.

[24] A. Fielbaum, A. Tirachini, and J. Alonso-Mora, “Economies and
diseconomies of scale in on-demand ridepooling systems,” Economics
of Transportation, vol. 34, p. 100313, 2023.

[25] G. B. Dantzig, “Discrete-variable extremum problems,” Operations
Research, vol. 5, no. 2, pp. 266–288, 1957.

APPENDIX I
PROOF OF LEMMA II.1

Recall that the exponential distribution, whose probability
density function is given by f(x) = αe−αx, models the time
between events in a Poisson process of parameter α. Since

the two Poisson processes are independent,

P (αm, αn) =

∫ t̄

0

αne
−αntn

(∫ tn+t̄

0

αme−αmtmdtm

)
dtn+∫ ∞

t̄

αne
−αntn

(∫ tn+t̄

tn−t̄

αme−αmtmdtm

)
dtn,

where the presence of two terms arises from the fact that the
time interval [0,+∞) is considered. Making use of standard
integral calculus techniques, it can be rewritten as (2).

APPENDIX II
PROOF OF THEOREM II.1

The convergence of Algorithm 1 in at most
|M|(|M|+ 1)/2 iterations is immediate. In fact, since
for each pair (m,n) chosen in each iteration we set
∆J̃ ′

mn = ∆J̃ ′
nm = 0, neither (n,m) nor (m,n) will be

chosen again. The optimality of the solution β⋆ and
associated γ⋆ is carried out making use of an analogy with
the continuous Knapsack problem, which can be solved
by a well-known polynomial-time greedy algorithm [25].
Recall that such algorithm consists in, every iteration,
allocating the maximum amount of the resource with the
highest improvement in the objective function per unit of
the resource, which is intuitively evident. Similarly to the
continuous Knapsack problem, the goal is to minimize
J̃(X⋆

γ ) by allocating γmn ≥ 0 with m,n ∈ M. First,
borrowing the notation from Section II-C.1, if γmn is
assigned, then the corresponding decrease in the cost
function amounts to J̃(γnmXmn,0) − J̃(γmnX

mn,⋆) =
γmn(J̃(X

mn,0) − J̃(Xmn,⋆)) = γmn∆J̃mn, where the
linearity of J̃ played a key role. Thus, the allocation of γmn

leads to a relative improvement on the cost that amounts to
∆J̃mn. Second, as pointed out in Section II-C.4, throughout
the algorithm, α′

m corresponds to the demand of rm which
has not yet been ride-pooled with another request. Thus, the
value of γmn that can be allocated has an upper bound given
by γmn ≤ min(α′

m, α′
n)P (α′

m, α′
n). Note that Algorithm 1

corresponds to allocating the maximum amount of γmn,
where m and n are such that, at each iteration, the highest
positive relative improvement in the objective function is
achieved, i.e., (m,n) ∈ argmaxm,n(∆J̃ ′

mn), which shows
its optimality.
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