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Abstract— Cooperative localization is a promising solution
to improve the accuracy and overcome the shortcomings of
GNSS. Cooperation is often achieved by measuring the distance
between users. To optimally integrate a distance measurement
between two users into a navigation filter, the correlation
between the errors of their estimates must be known. Unfortu-
nately, in large scale networks the agents cannot compute these
correlations and must use consistent filters. A consistent filter
provides an upper bound on the covariance of the error of the
estimator taking into account all the possible correlations. In
this paper, a consistent linear filter for integrating a distance
measurement is derived using Split Covariance Intersection. Its
analysis shows that a distance measurement between two agents
can only benefit one of them, i.e., only one of the two can use the
distance measurement to improve its estimator. Furthermore,
in some cases, none can. A necessary condition for an agent to
benefit from the measurement is given for a general class of
objective functions. When the objective function is the trace or
the determinant, necessary and sufficient conditions are given.

I. INTRODUCTION

Accurate positioning is a key challenge for numerous
strategic applications. Global Navigation Satellite Systems
(GNSSs) provide a low-cost and effective solution for achiev-
ing satisfactory accuracy in open-sky environments. How-
ever, in GNSS-denied environments such as urban canyons,
indoors or underwater, other methods must be used. Coopera-
tive localization is a promising alternative because it can slow
down the loss of accuracy in the absence of GNSS signal
[22]. A simple form of cooperation is the measurement of
distances between the users, hereafter called agents. Inter-
agent distances can be inexpensively determined by mea-
suring the Received Signal Strength or the Time-of-Flight
of a signal. For example, cooperative localization has been
used for terrestrial vehicles [10] and UAVs [5], [7]. Recent
research has demonstrated the effectiveness of cooperation
in significantly improving positioning accuracy while using
simple algorithms [17].

One of the challenges in cooperative systems when in-
tegrating inter-agent distance measurements is dealing with
the correlations between the errors of the agents’ estimators.
The use of inter-agent measurements tends to correlate these
errors. If the cross-covariances are not taken into account,
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they lead to an underestimation of the errors and a potential
divergence of the filter [3]. These problems can be avoided by
calculating and storing the cross-covariances between each
pair of estimators. In centralized systems, the estimators
of all agents are stacked into a global estimator whose
covariance includes all the cross-covariances. This global
estimator is then updated in a centralized manner (at a
computing station), or in a distributed manner [21]. However,
such solutions are difficult to implement for networks with
a large number of agents due to the computational and
transmission costs. Another solution to avoid correlation
problems involves ensuring that no redundant information is
used. In [4], the authors propose to keep a table of all past
interactions to ensure that only independent information is
used in the filter. This requires storing the history of past
interactions and may be prohibitive for large networks.

In order to use two-way cooperation when some corre-
lation information is unknown, covariance consistent fil-
ters should be used. The literature also refers to these as
“conservative filters”, see, e.g., [8]. Covariance consistency
ensures that the estimator is not overconfident by providing
an upperbound on the estimator error. Several methods have
been developed to fuse different estimators with unknown
covariances. A recent paper [8] unifies some of them in a
general framework called the Conservative Linear Unbiased
Estimator (CLUE). Among these methods, Covariance Inter-
section (CI) [11] and its extension the Split Covariance Inter-
section (SCI) [12] are particularly efficient: several papers,
see, e.g., [6], have described the efficiency of CI, and more
recently CI has been shown to be the best method to fuse
two estimators under unknown correlations [20]. Even if SCI
has not been shown to be optimal, its simplicity makes it a
widely used method for decentralized cooperative positioning
[15], [16], [19]. The integration of distance measurements
using SCI have already been considered by [14], [18] in
the context of SLAM. The authors take benefit from the
fact that the observation noise is assumed independent and
therefore provides new information. However, to the best of
our knowledge, no specific study on the usefulness of the
integration of a distance measurement between two agents
with an unknown correlation using SCI has been performed
in the literature.

In this paper, we consider cooperative networks where
agents estimate their positions and store their own estimators.
Here, cooperation occurs through distance measurements be-
tween agents. We address the problem of integrating, through
linear filtering, a distance measurement between two agents
who have covariance consistent estimators of their states but
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the cross-covariance between these estimators is unknown.
Throughout the paper, we only consider the integration of
a distance measurement. In particular, the dynamics of the
system is beyond the scope of this paper and is the subject
of further work. Our first contribution is the derivation of
the optimal SCI filter for this problem, optimal w.r.t. a given
increasing cost function. In practice, this function is often the
trace or the determinant of the covariance of the estimate.
Our second contribution is the analysis of the SCI filter
which shows whether a distance measurement can be used
to improve the estimation. We provide a necessary condition
in the general case, and necessary and sufficient conditions
for the cases where the cost function is the trace or the
determinant.

The paper is organized as follows. Section II introduces
the problem of optimal filtering, then Section III derives a
candidate: the SCI filter. Section IV investigates the useful-
ness of such a filter, and Section V discusses the results, in
particular in simulations. Finally, Section VI provides some
perspectives and future directions.

Notation. In the sequel, vectors are underlined e.g., x ∈
Rn, random variables are denoted in lowercase boldface
letters e.g., z for a scalar or xxx for a vector, and matrices are
denoted in uppercase boldface variables e.g., M ∈ Rn×n.
The notation E[·] denotes the expected value of a random
variable and ‖·‖ the Euclidean norm of a vector. The trace,
the determinant, the inverse and the transpose of a matrix M
and the identity matrix are denoted as trM , |M |, M−1,
Mᵀ and I respectively. For two matrices A and B, A � B
means that the difference B − A is positive semi-definite.
A positive definite matrix P is represented in the figures by
the ellipsoid EP =

{
x | xᵀP−1x ≤ 1

}
.

II. PROBLEM STATEMENT

Let us first recall the definition of a covariance consistent
estimator.

Definition 1. An estimator (x̂xx,P ) of a random variable xxx is
said to be covariance consistent (or shortly consistent in the
sequel) if E [x̃̃x̃x] = 0 and P̃ � P where x̃̃x̃x = xxx − x̂̂x̂x denotes
the error and P̃ = E [x̃̃x̃xx̃̃x̃xᵀ] the mean-squared error (MSE).

In other words, a consistent estimator is unbiased and does
not underestimate the covariance of the error.

Consider two agents, denoted A and B, characterized by
their states xxxA and xxxB in Rn. For the sake of simplicity and
without loss of generality, the states are assumed to contain
only the positions of the agents; in practice, they may also
contain their orientations or their velocities, for example. The
two agents have consistent estimators of their states denoted
(x̂̂x̂xA,PA) and (x̂̂x̂xB ,PB). Notice that the true (centralized)
covariances of the errors, defined as,

P̃ = E

[(
x̃̃x̃xA
x̃̃x̃xB

)(
x̃̃x̃xA
x̃̃x̃xB

)ᵀ]
=

[
P̃A P̃AB
P̃ ᵀ
AB P̃B

]
, (1)

is unknown, i.e., P̃A, P̃B , and P̃AB are unknown. However,

consistency restrains the set of possible P̃ to:

P =

{[
P̃A P̃AB
P̃ ᵀ
AB P̃B

]
� 0 | P̃A � PA, P̃B � PB

}
. (2)

Furthermore, consider z = ‖xxxA − xxxB‖ + z̃ a measurement
of the distance between A and B where z̃ denotes the error.
The error z̃ is assumed centered, E [z̃] = 0, with variance
E
[
z̃2
]
= σ2

m, and independent of the errors of the estimators
x̃̃x̃xA and x̃̃x̃xB . Finally, consider that the measurement can
be linearized around the means of the estimators x̂A and
x̂B . Introducing the unit-length director vectors uBA =
x̂A−x̂B

‖x̂A−x̂B‖
, the linearized observation writes:

z = uᵀBA (xxxA − xxxB) + z̃, (3)

where z̃ is still assumed independent from the errors of the
estimators. This assumption is necessary to use SCI which
is a linear fusion. It is quite idealistic and causes a loss
of precision as the distance is a nonlinear function. It is
reasonable if the agents are sufficiently far from each other,
as the second-order terms become negligible. Without this
assumption, no linear filter can be used.

The objective is to improve the estimator of A using the
estimator of B and the distance measurement to create a
better estimator (x̂̂x̂xF ,PF ) of the state of A. Throughout
this paper, the estimators are compared w.r.t. an increasing
cost function J (increasing in the sense of the Loewner
ordering i.e., P ≺ Q =⇒ J(P ) < J(Q)). For two
consistent estimators (x̂̂x̂x1,P1) and (x̂̂x̂x2,P2) of the same
random variable xxx, (x̂̂x̂x1,P1) is said to be better than (x̂̂x̂x2,P2)
if J(P1) < J(P2). The estimator (x̂̂x̂xF ,PF ) is designed as
an unbiased1 linear filter defined as follows.

Definition 2. A linear filter for the state of A is an estimator
(x̂̂x̂xF ,PF ) of xxxA where x̂̂x̂xF is a linear combination of x̂̂x̂xA, x̂̂x̂xB
and z. It is defined by two matrices KF ,LF and a vector
wF such that:

x̂̂x̂xF = KF x̂̂x̂xA +LF x̂̂x̂xB + wFz. (4)

To have x̂̂x̂xF unbiased, since E[z] =
uᵀBA (E [xxxA]− E [xxxB ]) the gains must be dependent
and satisfy:

KF = I − wFu
ᵀ
BA, LF = wFu

ᵀ
BA. (5)

An unbiased linear filter is then only defined by wF as:

x̂̂x̂xF = (I − wFu
ᵀ
BA) x̂̂x̂xA + wFu

ᵀ
BAx̂̂x̂xB + wFz. (6)

For a possible P̃ ∈ P , the covariance of the error x̃̃x̃xF =
xxxA − x̂̂x̂xF is:

P̃F = P̃A +
(
σ̃2
A + σ̃2

B − 2γ̃ + σ2
m

)
wFw

ᵀ
F

−
(
P̃A − P̃AB

)
uBAw

ᵀ
F − wFu

ᵀ
BA

(
P̃A − P̃ ᵀ

AB

)
(7)

where

σ̃2
A = uᵀBAP̃AuBA, σ̃2

B = uᵀBAP̃BuBA, (8)

γ̃ = uᵀBAP̃ABuBA. (9)

1A bias would increase the MSE P̃F in the Loewner ordering sense.
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If the true covariance P̃ is known, the optimal linear filter
is calculable. It is derived from the classical Kalman Filter
equations [2]:

x̂̂x̂x∗F = x̂̂x̂xA +
z − uᵀBA (x̂̂x̂xA − x̂̂x̂xB)
σ̃2
A + σ̃2

B − 2γ̃ + σ2
m

(P̃A − P̃AB)uBA,

(10a)

P̃ ∗F = P̃A −
(P̃A − P̃AB)uBAu

ᵀ
BA(P̃A − P̃ ᵀ

AB)

σ̃2
A + σ̃2

B − 2γ̃ + σ2
m

. (10b)

In this case, P̃ ∗F is the minimum (in the Loewner ordering)
of the P̃F , and thus is optimal w.r.t. any increasing function
J .

However, as P̃ is not known, such a consideration is not
possible, and the linear filter must be consistent, i.e., it must
satisfy PF � P̃F for every possible covariance. We are now
in a position to state the main problem.

Problem 1. Find a gain wF and a covariance PF such
that the estimator (x̂̂x̂xF ,PF ) defined by (6) is consistent and
optimal w.r.t. J . In other words:{

minimize
wF ,PF

J(PF )

subject to ∀P̃ ∈ P , PF � P̃F
(P1)

where P̃F is given by (7).

The main result of this paper is the design of a candidate
filter solving Problem 1 using SCI and its analysis.

III. SCI FOR A DISTANCE MEASUREMENT

As a preliminary remark, (6) can be rewritten as:

x̂̂x̂xF = x̂̂x̂xA + wF [z − uᵀBA (x̂̂x̂xA − x̂̂x̂xB)] (11a)
= (I − wFu

ᵀ
BA) x̂̂x̂xA + wFu

ᵀ
BA (x̂̂x̂xB + zuBA) . (11b)

These two expressions highlight the equivalence between
linear filtering and fusion. Equation (11a) represents the
usual form of the Kalman correction step: wF is a gain and
z − uᵀBA (x̂̂x̂xA − x̂̂x̂xB) is the innovation on the measurement.
Equation (11b) on the other hand represents a fusion: the
term x̂̂x̂xB + zuBA is another estimator of the state of A. Let
x̂̂x̂x′A denote this estimator. Equation (11b) corresponds to the
fusion of x̂̂x̂xA and the observation of x̂̂x̂x′A through uBA.

Since the errors x̃̃x̃xA and x̃̃x̃xB are correlated to an unknown
degree and z̃ is independent of x̃̃x̃xA, the fusion of x̂̂x̂xA and
x̂̂x̂x′A respects the assumptions of SCI [12]. SCI fuses two
estimators using a linear combination whose weights depend
on their covariances. For any ω ∈ [0, 1), SCI provides a
consistent estimator (x̂̂x̂xSCI(ω),PSCI(ω)) for the state of A,
hereafter called an SCI filter. It is obtained by the SCI
equations [12, Eq. (12.24)-(12.25)]. The covariance is:

PSCI(ω) =

[
(1− ω)P−1A + ω

uBAu
ᵀ
BA

σ2
B + ωσ2

m

]−1
=

1

1− ω

[
PA −

ωPAuBAu
ᵀ
BAPA

ωσ2
A + (1− ω) (σ2

B + ωσ2
m)

]
,

(12a)

where σ2
A = uᵀBAPAuBA and σ2

B = uᵀBAPBuBA. The
corresponding estimator is x̂̂x̂xSCI(ω) = x̂̂x̂xF given by (11) with

a gain wF = wSCI(ω):

wSCI(ω) =
ω

ωσ2
A + (1− ω) (σ2

B + ωσ2
m)

PAuBA. (12b)

The optimal filter w.r.t. J within the family of SCI filter is
called the optimal SCI filter. To find the optimal SCI filter,
the parameter ω is chosen to minimize the cost function J :

ω∗ = argmin
0≤ω≤1

J(PSCI(ω)). (13)

We have proved the following result.

Theorem 1. The optimal SCI filter for the state of A is
(x̂̂x̂xSCI(ω

∗),PSCI(ω
∗)) given by (12) where the parameter ω∗

is defined by (13).

In the sequel, this optimal SCI filter is denoted
(x̂̂x̂x∗SCI,P

∗
SCI). SCI has not been shown to be optimal for the

fusion, therefore the optimal SCI filter (x̂̂x̂x∗SCI,P
∗
SCI) may be

suboptimal for Problem 1. However, since it is very simple to
implement, it is widely used in practice. Furthermore, when
the measurement is very accurate, i.e., when σ2

m tends to 0,
SCI becomes CI which is optimal (only when σ2

m = 0) [20].
These two reasons lead us to consider this filter and analyze
its usefulness.

IV. USEFULNESS OF THE FILTERING

A. General increasing cost function

Theorem 1 gives the expression of the optimal SCI filter.
Setting ω = 0 in the fusion ensures that the estimator
(x̂̂x̂x∗SCI,P

∗
SCI) is at least as good as the original estimator

(x̂̂x̂xA,PA). In fact, setting ω = 0 corresponds to keeping the
original estimator and ignoring the measurement. However,
there is no reason why there should be a better estimator, the
optimal parameter (13) could be ω∗ = 0. In such a case, SCI
filters cannot improve the estimator of A. We call pertinent a
linear filter for the state of A that provides a better estimator
than (x̂̂x̂xA,PA). This section characterizes the pertinence of
SCI filters.

Definition 3. A pertinent linear filter for the state of A is a
linear filter (x̂̂x̂xF ,PF ) such that J(PF ) < J(PA).

By definition of the optimal SCI filter, there is a pertinent
SCI filter if and only if the optimal SCI filter is pertinent.
The underlying question is therefore: Is the optimal SCI filter
(x̂̂x̂x∗SCI,P

∗
SCI) pertinent?

Let us start with two corollaries of Theorem 1 that provide
a necessary condition for the existence of a pertinent SCI
filter.

Corollary 1. If σ2
A ≤ σ2

B , there is not any pertinent SCI
filter for the state of A.

Proof. Assume that σ2
A ≤ σ2

B and let ω ∈ [0, 1). We
will show that PSCI(ω) � PA which is sufficient since J
is increasing. In (12a), P−1SCI (ω) is expressed as a convex
combination of P−1A and Q =

uBAu
ᵀ
BA

σ2
B+ωσ2

m
. Therefore, if

Q � P−1A , then P−1SCI (ω) � P−1A . Let us prove that
Q � P−1A , by proving that ∀v, vᵀ(P−1A −Q)v ≥ 0. Write
v = αuBA + w with α ∈ R and wᵀuBA = 0. Then,
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vᵀQv = α2/(σ2
B + ωσ2

m) ≤ α2/σ2
A. Finally, let us prove

that vᵀP−1A v ≥ α2/σ2
A.

Consider an orthonormal basis B = (uBA, u2, . . . , un)
containing uBA and the orthogonal matrix R =[
uBA u2 · · · un

]
. In this basis, the covariance of the

error of the estimator of A and the vector v become:

PA = R

[
σ2
A bᵀ

b C

]
Rᵀ, v = R

(
α
w′

)
where b, w′ ∈ Rn−1 and C ∈ R(n−1)×(n−1). Let S = C −
bbᵀ/σ2

A be the Schur complement of the first entry. S is
invertible and S−1 � 0, see, e.g., [9, Chap. 7]. The inverse
of PA and vᵀP−1A v become:

P−1A = R

[
σ−2A + σ−4A bᵀS−1b −σ−2A bᵀS−1

−σ−2A S−1b S−1

]
Rᵀ,

vᵀP−1A v =
α2

σ2
A

+

(
α

σ2
A

b− w′
)ᵀ

S−1
(
α

σ2
A

b− w′
)
.

Hence, vᵀP−1A v ≥ α2

σ2
A

.

Corollary 2. If there is a pertinent SCI filter for the state
of A, then there is not any pertinent SCI filter for the state
of B.

Proof. If there is a pertinent SCI filter for the state of
A, Corollary 1 implies σ2

B < σ2
A. Similarly, if there is a

pertinent SCI filter for the state of B, then σ2
A < σ2

B . Both
inequalities cannot hold simultaneously.

Corollary 1 provides only a necessary condition for the
existence of pertinent SCI filters. In the following, we extend
the property to provide a necessary and sufficient condition
for the two most commonly used cost functions: the trace
and the determinant. It is based on the following result.

Lemma 1. Assume that the function f : ω 7→ J(PSCI(ω)),
with PSCI(ω) given by (12a), is convex on [0, 1). Then, the
optimal SCI filter (x̂̂x̂x∗SCI,P

∗
SCI) is pertinent if and only if

f ′(0) < 0.

Proof. By definition, (x̂̂x̂x∗SCI,P
∗
SCI) is pertinent if and only

if f(ω∗) < f(0) = J(PA). If f ′(0) < 0, then there is a
ω0 > 0 such that f(ω0) < f(0) and therefore f(ω∗) <
f(0). If f ′(0) ≥ 0, since f is convex on [0, 1), ∀ω ∈ [0, 1),
f(ω) ≥ f(0) and therefore, f(ω∗) = f(0).

B. Particular case of the trace

In this paragraph, consider J(·) = tr · and let g : ω 7→
trPSCI(ω) be the cost function to be optimized. According
to (12a), the cost function is:

g(ω) =
trPA
1− ω

[
1− ωrAσ

2
A

ωσ2
A + (1− ω)(σ2

B + ωσ2
m)

]
(14)

where:

rA =

1
σ2
A
‖PAuBA‖

2

trPA
. (15)

The meaning of rA is discussed in Section V. In order to
apply Lemma 1, let us prove the following.

Lemma 2. The cost function g is convex on [0, 1).

Proof. Let us first prove that 0 < rA ≤ 1. Consider again the
orthonormal basis B = (uBA, u2, . . . , un) containing uBA
and the orthogonal matrix R =

[
uBA u2 · · · un

]
. In

this basis, the covariance of the estimator of A becomes:

RᵀPAR =


σ2
A ρ2σAσ2 · · · ρnσAσn

ρ2σAσ2 σ2
2 ∗ ∗

... ∗
. . . ∗

ρnσAσn ∗ ∗ σ2
n

 (16)

where only the diagonal coefficients and the correlations with
the first component have been labeled. With these notations,
rA is developed as:

rA =

1
σ2
A
‖PAuBA‖

2

trPA
=
σ2
A +

∑n
i=2 ρ

2
iσ

2
i

σ2
A +

∑n
i=2 σ

2
i

. (17)

Since the correlations satisfy |ρi| ≤ 1, the ratio satisfies 0 <
rA ≤ 1.

To prove the convexity of g, let us first assume that rA <
1. By putting all the terms in the same fraction, the cost
function g is a rational function:

g(ω) =
trPA
1− ω

(1− rA)ωσ2
A + (1− ω)(σ2

B + ωσ2
m)

ωσ2
A + (1− ω)(σ2

B + ωσ2
m)

=
trPA
1− ω

σ2
B + [(1− rA)σ2

A − σ2
B + σ2

m]ω − σ2
mω

2

σ2
B + (σ2

A − σ2
B + σ2

m)ω − σ2
mω

2
.

Let P : ω 7→ σ2
B +(σ2

A− σ2
B + σ2

m)ω− σ2
mω

2 and Q : ω 7→
σ2
B +[(1− rA)σ2

A−σ2
B +σ2

m]ω−σ2
mω

2 be the polynomials
of degree 2 at the denominator and numerator. Since P (0) =
σ2
B and P (1) = σ2

A, P has two roots b and d which satisfy:
b < 0 < 1 < d. Similarly, by noting that Q(ω) = P (ω) −
rAσ

2
Aω, Q(b) = −rAbσ2

A > 0, Q(1) = (1 − rA)σ
2
A > 0

and Q(d) = −rAdσ2
A < 0, Q has two roots a and c which

satisfy:

a < b < 0 < 1 < c < d.

The cost function is therefore:

g(ω) = − trPA(ω − a)(ω − c)
(ω − 1)(ω − b)(ω − d)

.

Then, using partial fraction decomposition:

g(ω) = trPA

(
A

ω − 1
+

B

ω − b
+

C

ω − d

)
(18)

with:

A = − (1− a)(1− c)
(1− b)(1− d)

< 0, B = − (b− a)(b− c)
(b− 1)(b− d)

> 0,

C = − (d− a)(d− c)
(d− 1)(d− b)

< 0.

Since trPA > 0, the three terms in (18) are convex on
(b, 1). Therefore, since b < 0, the cost function g is convex
on [0, 1).

Finally, if rA = 1, then c = 1 which simplifies the
expression of g. By the same logic, g is convex on (b, d),
and thus on [0, 1]. Note that rA = 1 corresponds to the one-
dimensional case.

We are now in a position to apply Lemma 1 to the trace.
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Theorem 2. The optimal SCI filter for the state of A w.r.t.
to the trace is pertinent if and only if:

σ2
B < rAσ

2
A. (19)

Proof. Since g is convex on [0, 1) as stated in Lemma 2,
by Lemma 1, the optimal SCI filter is pertinent if and
only if g′(0) < 0. The claim then follows from g′(0) =
trPA

(
1− rAσ2

A/σ
2
B

)
.

C. Particular case of the determinant

In this paragraph, consider J(·) = |·| and let h : ω 7→
|PSCI(ω)| be the cost function to be optimized. According to
(12a), the cost function is:

h(ω) =
|PA|

(1− ω)n

∣∣∣∣∣I − ωP
1/2
A uBAu

ᵀ
BAP

1/2
A

ωσ2
A + (1− ω)(σ2

B + ωσ2
m)

∣∣∣∣∣ (20)

where P
1/2
A denotes the square root of PA and n is the

dimension of the state. Using that |I + uvᵀ| = 1+uᵀv, (20)
becomes:

h(ω) =
|PA|

(1− ω)n−1
σ2
B + ωσ2

m

ωσ2
A + (1− ω)[σ2

B + ωσ2
m]
. (21)

As for the trace, the convexity of h is proven in the
following result.

Lemma 3. The cost function h is convex on [0, 1).

Proof. This proof is very similar to the proof of Lemma 2.
First, let P : ω 7→ σ2

B + (σ2
A − σ2

B + σ2
m)ω − σ2

mω
2. As

P (0) > 0, P (1) > 0 and P (−σ2
B/σ

2
m) < 0, the cost function

h is a rational function which can be expressed as follows.

h(ω) = − |PA| (ω + σ2
B/σ

2
m)

(1− ω)n−1(ω − a)(ω − b)
where the zeros of P , denoted a and b, satisfy:

−σ2
B/σ

2
m < a < 0 < 1 < b.

Then, using partial fraction decomposition:

h(ω) =
|PA|A

(ω − a)(1− ω)n−1
+

|PA|B
(ω − b)(1− ω)n−1

(22)

with:

A =
−(a+ σ2

B/σ
2
m)

(a− b)
> 0, B =

−(b+ σ2
B/σ

2
m)

(b− a)
< 0.

Both terms in (22) are convex on [0, 1).

We are now in a position to apply Lemma 1 to the
determinant.

Theorem 3. The optimal SCI filter for the state of A w.r.t.
to the determinant is pertinent if and only if:

σ2
B <

1

n
σ2
A. (23)

Proof. Since h is convex on [0, 1) as stated in Lemma 3, the
optimal SCI filter is pertinent if and only if h′(0) < 0. The
claim then follows from h′(0) = |PA|

(
n− σ2

A/σ
2
B

)
.

V. DISCUSSION AND NUMERICAL SIMULATIONS

Illustrations of the optimal SCI filters for the trace and
the determinant are shown in Fig. 1. In this figure, the
consistency of the filter has been illustrated by generating

-4 -2 0 2 4 20

−2

0

2

A B

(a) J(·) = tr ·

-4 -2 0 2 4 20

−2

0

2

A B

(b) J(·) = |·|

Fig. 1: Example of the optimal SCI filters for two different
cost functions J . The black solid ellipses represent the
covariance of the estimators PA and PB . The dashed ellipse
represents the covariance of the optimal SCI filter P ∗SCI.
The grey solid ellipses represent possible covariances P̃F
obtained by (7) with wF = wSCI(ω

∗) and different P̃ ∈ P ,
and the grey area their convex hull. In both figures: PA =
[16, 8; 8, 9], PB = [1, 1; 1, 4], and σ2

m = 1. The optimal
parameters are ω∗ ≈ 0.28 for the trace and ω∗ ≈ 0.36 for
the determinant.

several possible P̃ ∈ P and plotting the resulting MSE given
by (7). As observed, the two optimal SCI filters are different.
This means that they depend on the cost function which is
a first difference with the usual case where P̃ is known.

The main implication of Theorem 1 and Corollary 1 is
that it is not always possible to improve an estimator using
SCI. Improvements require that the helping agent, here Agent
B, has a sufficiently good precision (w.r.t. Agent A) in the
direction of the measure, i.e., that σ2

B < σ2
A as stated in

Corollary 1. Furthermore, this condition is only necessary,
harder constraints should be satisfied in practice, they depend
on the cost function J . It can happen that neither agent
can improve its estimator, for example when considering the
trace, if rAσ2

A < σ2
B < σ2

A as shown in Theorem 2. This is
an important difference from the usual case. If P̃ is known,
it is almost always possible to improve the estimator: the
optimal linear filter was recalled in (10) (Section II). In this
case, even extremely poor precision on the helping agent
provides (tiny) improvements.

The expression of the SCI filter (12) involves the whole
statistic of the estimate of Agent A but only the variance of

7699



the estimate of Agent B in the direction of the measurement.
This asymmetry reduces the communication cost of the
filter: the agents only need to send their estimate and their
variance in the direction of the measurement (but not their
full covariance). The asymmetry is due to the linearization
assumption.

Moreover, for the two commonly used cost functions,
the trace and the determinant, the necessary and sufficient
conditions given in Theorem 2 and Theorem 3 allow to check
efficiently the pertinence of the SCI filter before doing the
measurement. In practice, this criterion can save energy by
avoiding useless measurements. Furthermore, the precision
of the measurement σ2

m does not appear in these conditions
(19) or (23). This means that if the property is not satisfied,
even a perfect measurement cannot improve the estimate.
However, the variance σ2

m does affect the improvement (if
it occurs). As (12) suggests, the larger σ2

m, the smaller the
improvement. In addition, it seems that the condition for
the existence of a pertinent filter becomes more difficult to
satisfy as the dimension increases: the right-hand sides of
(23) and (19) tend to 0 as the dimension increases (except
for the trace when the errors are perfectly correlated in almost
all directions).

Finally, it is worth mentioning that the optimal parameter
ω∗ can be calculated analytically for the cases of the trace
and the determinant. Since the cost functions g and h are
convex, the minimum is reached either at 0, at 1 (only
possible when rA = 1), or when g′(ω) = 0 or h′(ω) = 0.
From their decompositions (18) and (22), solving g′(ω) = 0
requires finding the roots of a polynomial of degree 4, and
solving h′(ω) = 0 requires finding the roots of a polynomial
of degree 3, both of which can be done analytically.

VI. CONCLUDING REMARKS

The SCI filter is a candidate for the optimal filtering
problem. It is based on the linearization of the observation.
Under this linearization assumption, we have been able to
fully characterize the usefulness of the filter. The validity of
this assumption may be evaluated by computing the second-
order terms. The extension of this work to nonlinear observa-
tion remains open. To better fit the nonlinearities, a possible
improvement could be the use of the Unscented Transform
[13]. Furthermore, the optimal SCI filter proposed here may
not be the solution to Problem 1: a better linear filter may
exist outside the family of SCI filters. We conjecture, after
numerous simulations, that the optimal SCI filter is indeed
the solution to Problem 1. The conjecture is based on the
facts that SCI is the natural extension of CI when the errors
of the estimators have independent components, and that CI
is optimal for the problem it considers [20].

Finally, we only studied the integration of one distance
measurement. Future works will focus on the simultaneous
integration of distance measurements with multiple helping
agents. They will consider filters such as:

x̂̂x̂xF = Kx̂̂x̂xA +L1x̂̂x̂x1 + z1w1 + · · ·+Lmx̂̂x̂xm + zmwm.

Most of the concepts introduced in this paper can be adapted,

but as [1] explains, CI is not optimal for more than two
estimators, therefore SCI should also be suboptimal.
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