
General extremal field method
for time-optimal trajectory planning in flow fields

Bastien Schnitzler1, Antoine Drouin2, Jean-Marc Moschetta3 and Daniel Delahaye4

Abstract— We present an algorithm to compute time-optimal
trajectories for light vehicles in unsteady flow fields, with appli-
cations to long-range, low-power aircraft as well as underwater
vehicles in ocean currents. The proposed approach aims at
unifying various works from the literature on extremal fields
and extends it by several features. First, we propose an exact
scheme to deal with still obstacles. While being directly useful
for pure obstacles, it is also of particular interest to ensure
the validity of computation at the borders of the problem
domain. Second, we demonstrate the method ability to deal
with trajectory planning for long-range airborne missions with
real weather data. Lastly, the source code, written in Python,
is made open to the community to accelerate research in the
domain.

I. INTRODUCTION

The need to reduce CO2 emissions in the aerospace indus-
try led to the creation of the ”Mermoz challenge”, starting at
ISAE-SUPAERO. This challenge is about designing an Un-
manned Aerial Vehicle (UAV) to cross the Atlantic following
air mail pioneer Jean Mermoz’s route from Dakar, Senegal
to Natal, Brazil, with limited carbon emissions. So far, the
fuel cell solution based on liquid hydrogen was selected as
power source for this 3000 km flight. By design, the UAV is
light and its airspeed is low compared to commercial aviation
aircraft crossing the Atlantic over similar routes. Thus, it
is sensible to its environment: wind fields and convective
weather areas. While the latter can be seen as a threat
to the fulfillment of the mission, there is nevertheless an
opportunity to save energy by a careful trajectory planning
in the wind fields. This optimization process carries a lot
of challenging features: spatially non-uniform and unsteady
flow field, presence of hazardous zones, uncertainty in the
weather data used for computation over a large time window.
These features as well as the underlying model (specified in
Section III) are shared with trajectory planning problems for
underwater vehicles, so the literature is indeed built upon
both application fields.

II. LITERATURE REVIEW

Trajectory optimization for vehicles in flows has a rich
literature arising from the diversity of optimization methods.
A fundamental division appears: either the problem is dis-
cretized first, and optimized then, in which case we talk about
direct methods, or the problem is first optimized theoretically
and then cast to discrete representation, in which case we talk
about indirect methods.

a) Direct methods: The most common direct method
family is control parameterization. By discretizing state and

control, it turns the trajectory planning problem into a Non-
Linear Program (NLP) for which powerful solvers exist. This
formulation is very versatile and has been used successfully
even for large problems [5]. However, it finds local optima
by design. Graph-based cost minimization methods are also
popular in the literature. The popular robotic algorithm A*
proved efficient for steady-flow cases [7]. Fast Marching
(FM) methods also tackle the path planning problem suc-
cessfully. They were applied to underwater vehicles [10] and
their refinement in flow fields called ordered upwinds proved
efficient for aircraft trajectory optimization [4]. Nevertheless,
the controllability condition, i.e. the vehicle speed being
greater than the flow field magnitude is often necessary for
these methods to work.

b) Sampling-based methods: At the interface between
direct and indirect methods, sampling-based methods carry
out simultaneously a random sampling of the state space and
optimization. They originated with probabilistic roadmaps,
but really thrived with Rapidly-exploring Random Trees
(RRT, RRT*) [11] as well as a sampling-based FM method
called Fast Marching Trees (FMT*) [6]. For UAV guidance
in 3D complex wind a ”kinematic tree” method also proved
efficient [2].

c) Indirect methods: This family of methods not only
provide schemes for optimal trajectory computation but also
enable a detailed theoretical look on what optimality means
for the navigation problem. Mathematically, two approaches
exist to find an optimal trajectory: either characterize it
(sufficient conditions) or eliminate non-optimal trajectories
(necessary conditions). We see this fundamental difference
occur in the literature: the first approach entails Level-Set
Methods (LSM) while the second leads to Extremal Field
Methods (EFM). LSM have proved very efficient to deal with
strongly unsteady flows [8]. They are also able to deal with
uncertainty in the flow data [13]. On the other hand, applying
necessary conditions let one deal with extremal trajectories.
These trajectories are valid candidates to optimality among
which the true optimum shall be sorted out [1]. An efficient
scheme to do so is the construction of an extremal field,
which was addressed in [12] and which is the focus of this
article. This scheme was also cast to spherical geometry in
[9].

III. PROBLEM DEFINITION

Notations

In what follows, the norm of vector x is noted |x|, the
transpose of matrix A is noted Aᵀ. The set of continuous
functions (resp. piece-wise continuous functions) defined

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 8242

va s

vw

s

ẋ

x0

xf

va s

vw
x

Fig. 1. Left, the basic kinematics of the situation linking the airspeed va ,
the heading vector s and wind speed vw to ground speed ẋ. Right, the
control problem where the vehicle starts at x0 and has to reach xf using a
control law in airspeed va(·) and in heading s(·) minimizing some criteria.

on [a, b] which may be scalar- or vector-valued is noted
C0([a, b]) (resp. C0pw([a, b])).

A. Model

We first formalize the trajectory planning problem features
as they are seen from a large-scale point of view. We indeed
focus on trajectory planning for the whole flight as opposed
to local vehicle steering (e.g. wind gradient harnessing or
gust avoidance).

State space: Either a plane (R2) or a sphere (S2
associated to Earth)
Vehicle: A point in the state space with a given speed
but no inertia.
Flow field: A vector field over the state space (tangent
to the manifold in the spherical case).
Obstacles: Subsets of the state space that are not safe
for the vehicle and that should be avoided.

The state space is always restricted to two degrees of
freedom. This is motivated by several reasons: for large-scale
cruise flights, aircraft usually choose an adapted cruising
altitude and maintain it throughout the whole flight. In
regards to underwater vehicles, the vertical profile of the
trajectory is often imposed before planning the trajectory,
so only bidimensional planning is required. This is also an
operational constraint of the Mermoz challenge.

For the sake of clarity, we will now state the kinematic
model in its planar version and refer the reader to [9]
for spherical equations. We will also extensively use the
vocabulary of aircraft but it shall always be remembered
that every notion can be cast to underwater navigation by
replacing ”wind” by ”ocean current”.

The considered domain is a bounded subset D ⊂ R2. In
the reference frame, x(t) ∈ D denotes the vehicle position
at time t, ẋ := dx

dt its speed, s ∈ S1 is the heading direction
and va its speed relative to the flow (called ”airspeed” in
what follows). The flow field is noted vw and is a function
of time and space. The situation is summarized in Fig. 1 and
leads to the following kinematics:

ẋ(t) = va(t) s(t) + vw(t,x(t)) (1)

We will study the problem of starting from a given point
x0 ∈ D and reaching xt ∈ D minimizing travel time. This
problem is best known as Zermelo’s problem in the literature.
We assume the problem data is defined over a sufficiently

large time window [0, T ◦]. With T fixed in [0, T ◦], we define
a flight as a solution to the Cauchy problem:

x(0) = x0

x(·) satisfies (1)

with va(·), s(·) in C0pw([0, T])

(2)

From then it will be useful to define flyability. In brief,
it characterizes whether a path drawn on the ground can be
followed in the air taking into account the wind advection.

Flyability: We say that a ground path ξ(·) ∈ C0([0, 1]),
ξ : [0, 1] → D is flyable if there exist a time window upper
bound T , a flight x(·) on [0, T], and a time-warping function
γ : [0, T]→ [0, 1] such that

∀t ∈ [0, T], x(t) = ξ(γ(t))

A time-warping function γ : [a, b] → [a′, b′] satisfies
i) γ(a) = a′, γ(b) = b′ ii) γ invertible iii) γ and γ−1

continuous. It is used to eliminate time parameterization from
the definition of the path.

With this notion, we can eliminate the airspeed as control
variable for time-optimal problems. Indeed, for physical
reasons the airspeed is always bounded by some constant
v
(max)
a . If a flight uses an airspeed law that is not saturated

to the maximum value, i.e. va(·) < v
(max)
a on some open

interval, then we can prove that this flight, seen as a ground
path, is still flyable with ṽa(·) = v

(max)
a . As a result, the new

travel time is reduced, and the former trajectory is suboptimal
compared to the new one. The demonstration relies on the
fact that it is always possible to increase the airspeed on a
flight while maintaining the same ground route by adjusting
the heading.

We can then formalize the Time-optimal Navigation Prob-
lem:

(TNP)



inf
s(·)∈C0pw([0,T

◦])
T

ẋ(t) = va s(t) + vw(t,x(t))

x(0) = x0

x(T) = xt
(3)

Note that solutions of this problem are heading control laws.
We now have formulated an optimal control problem, for
which variational calculus will provide a resolution scheme.

B. Optimality conditions

We assume the wind field is C0 in time and C1 in space. We
look for absolutely continuous solutions of the TNP. We use
Pontryagin’s Maximum Principle (PMP) to derive necessary
conditions of optimality [1]. We introduce an adjoint state
t 7→ p(t) ∈ R2 and a parameter λ ∈ R, and define the
Hamiltonian of the system:

H : [0, T ◦]× R2 × R2 × R× S1 → R
(t,x,p, λ, s) 7→ va p

ᵀ s + pᵀ vw(t,x) + λ
(4)

We assume there exists at least one solution to the TNP
and note T ∗ the optimal travel time. The PMP states that

8243

if s∗(·) is a solution of the TNP and (x∗(·),p∗(·), λ∗) the
associated optimal triplet (absolutely continuous), then:

i)
Point-wise minimization : For a.e. t ∈ [0, T ∗],

s∗(t) ∈ arg min
s∈S1

H(t,x∗(t),p∗(t), λ∗, s)

ii)
Adjoint state evolution : For a.e. t ∈ [0, T ∗],

ṗ∗(t) = −∂vw

∂x (t,x∗(t))ᵀ p∗(t)

iii)
Transversality (free final time)
min
s∈S1

H(T ∗,x∗(T ∗),p∗(T ∗), λ∗, s) = 0

In our case, the Hamiltonian is smooth over the control
variable so the point-wise minimization leads to

For a.e. t ∈ [0, T ∗], s∗(t) = − p∗(t)

|p∗(t)| (5)

We define the augmented state z :=

(
x
p

)
= (xᵀ pᵀ)

ᵀ

and write its derivative:

ż(t) =

(
ẋ(t)

ṗ(t)

)
=

−va
p(t)
|p(t)| + vw(t,x(t))

−∂vw

∂x (t,x(t))ᵀ p(t)

 (6)

With x0 fixed and p0 ∈ R2 a parameter, we note S[p0] the
following Cauchy problem:

S[p0] :

{
z(0) = (xᵀ

0 pᵀ
0)

ᵀ

z(·) satisfies (6)
(7)

which admits a unique solution, noted zp0
(·) and called

augmented extremal trajectory. We define πx the projection
to the state space, i.e. πx(z) = x with z = (xᵀ pᵀ)

ᵀ. Then,
πx(zp0(·)) is the extremal trajectory associated to parameter
p0. We now show an important property saying that the norm
of p0 does not matter.

Invariance to scaling: For any α > 0, πx(zαp0(·)) =
πx(zp0(·))

Proof. Let zp0(·) = (x(·)ᵀ p(·)ᵀ)
ᵀ. Define z′(·) =

(x(·)ᵀ αp(·)ᵀ)
ᵀ and notice that z′ still satisfies (6) and

z′(0) = (xᵀ
0 αpᵀ

0)
ᵀ. So, z′ is the solution to S[αp0].

This solution is unique, thus z′ = zαp0
which proves

πx(zαp0(·)) = x(·) = πx(zp0(·)).
In the PMP, there exist two kinds of extremal trajectories:

normal ones, for which λ = 1, and abnormal ones for
which λ = 0. The former are rather the norm while the
latter are the exception. Abnormal extremal trajectories are
not fundamental to establish the resolution method presented
in Section IV so they are not discussed in this article. For
normal ones, the transversality condition writes:

|p∗(T ∗)| (va + s∗(T ∗)ᵀ vw(T ∗,x∗(T ∗)))︸ ︷︷ ︸
s∗(T∗)ᵀ ẋ∗(T∗)

= 1 (8)

So if we shoot an augmented extremal zp0
(·) =

(x(·)ᵀ p(·)ᵀ)
ᵀ over a time-window [0, T] and if we have

s(T)ᵀ ẋ(T) > 0, then we can multiply p(·) by a positive
factor to satisfy the transversality (8) without changing the
resulting x(·) according to the invariance in scaling. This

φobs(·) < 0φobs(·) > 0

vw(tk, x(tk))

va s(tk)

A

B

x(tk)

x(tk−1)

(a)

vw(tk,x(tk))

va s(tk)

(b)

x(tk−1)

x(tk)

ẋ(tk)
ẋ(tk)

Fig. 2. State evolution in obstacle mode. Left, the determination of the
appropriate heading vector to follow obstacle. Right, a situation where the
wind is too strong and forces the integration to stop. The obstacle function
being smooth and the analysis being conducted at infinitesimal scale, the
obstacle boundary is drawn as a straight line.

trajectory then satisfies all conditions of the PMP and is thus
a valid candidate to optimality. Let us now do the following
remarks:

i) In the steady case (wind field invariant in time), it can
be shown that the sign of sᵀ ẋ is invariant in time
and thus is the same as s(0)ᵀ ẋ(0). So it is known
before shooting whether we shoot a valid candidate to
optimality or not.

ii) In general, the sign of s(T)ᵀ ẋ(T) is not known in
advance. So we will shoot extremal trajectories and
check afterwards for which time stamps t they are
valid candidates to optimality to go from x0 to x(t)
by checking s(t)ᵀ ẋ(t) > 0. In practice, the opposite
case rarely happens (when s(t)ᵀ ẋ(t) < 0 the vehicle
is heading backwards from its trajectory).

So in what follows, we will look for the solution of the
TNP by shooting extremal trajectories sampled for p0 ∈ S1.
We call extremal field Φx0(T) the collection of all extremal
trajectories over a time window:

Φx0(T) :=
⋃

p0∈S1
{πx(zp0(t))| t ∈ [0, T]} (9)

We are specifically interested in tracking the border of the
extremal field ∂Φx0(T) which we call extremal front.

C. Obstacles

Real problems always come with bounds or zones to
avoid e.g. storms or restricted zones. State constraints are
challenging for the application of the PMP. Still, some
work has been successful for Zermelo’s problem with
bounds [3]. In a similar fashion, we derive optimality
conditions in the presence of still obstacles by modifying
the evolution of the augmented extremal. We characterize
an obstacle by a differentiable obstacle function φobs :
R2 → R for which

{
x ∈ R2| φobs(x) < 0

}
is the inside

of the obstacle,
{
x ∈ R2| φobs(x) > 0

}
the outside and{

x ∈ R2| φobs(x) = 0
}

its boundary.
The modified augmented extremal z̃ = (x̃ᵀ p̃ᵀ)

ᵀ in the
presence of obstacles evolves likewise:

Rule for integration in the presence of obstacles:
i) When φobs(x̃(t)) > 0, using (6).

8244

ii) When φobs(x̃(tobs)) = 0, using φ−1obs({0}) as ground
route for t ≥ tobs. In general, two heading vectors
are possible to follow the boundary (points A and B
on Fig. 2). We choose the one which is consistent
with the direction of the path and maximizes the
absolute ground speed. If at a future time stamp the
boundary becomes unflyable, i.e. the wind forces the
trajectory either inside or outside the obstacle, then
stop integration1.

We now have all the theoretical ingredients to define a
resolution method for the TNP.

IV. METHOD

A. Algorithm

We present a resolution method for the TNP in Algorithm
1. The general idea is similar to [9], [12]. We try here to
exhibit a concise formulation of the procedure, and include
the explicit handling of obstacles. Fig. 3 illustrates the
following explanations.

We form an initial set of extremal trajectories using an
uniform sampling of S1 for the value of p0, so they can cover
uniformly the state space around x0, at least close to start.
Then, the integration loop begins, applying any appropriate
integration scheme (explicit Euler for instance) and using
the rule defined in Section III-C to draw the trajectories. At
some further time stamps, initial trajectories diverge from
one another, so to keep precision under a given threshold, we
need to shoot a new extremal trajectory between diverging
ones. If z1 and z2 are current neighboring trajectories at t0
which are diverging (|x1(t0)− x2(t0)| > ε) and their initial
adjoint state is resp. p(1)

0 and p
(2)
0 , an intuitive idea would be

to shoot the extremal trajectory z̃ associated to p
(1)
0 +p

(2)
0

2 . But
the latter would be very close to z1 and z2 over the whole
time window [0, t0] and its integration up to t0 would add no
useful information to find the optimum. So the idea is instead
to add directly a new extremal trajectory z′ as ”child” of z1
and z2 initialized with z′(t0) =

(
x1+x2

2
p1+p2

2

)ᵀ
. Provided

ε is sufficiently small, z′(t0) is a good approximation of
z̃(t0) (we can show that when |x1(t0) − x2(t0)| = O(ε),
we have |z′(t0)− z̃(t0)| = O(ε2)). This way, the collection
of extremal trajectories shot by the procedure admits a tree
structure.

The previous resampling scheme can be directly applied
to trajectories evolving within obstacles and is even the key
to track efficiently the extremal field around obstacles, when
two neighboring particle are alternatively within and outside
an obstacle.

We explain here two constructions appearing in the
pseudo-code of Algorithm 1.

1When the wind forces the trajectory outside the obstacle, it is possible to
resume shooting in mode i) by modifying the adjoint state with an additional
Lagrange multiplier, as described in [3]. But for the present algorithm, the
resampling scheme already approximates such trajectories with arbitrary
precision (depending on the neighboring threshold ε and the time step dt),
so we do not need to implement the additional Lagrange multiplier and we
can simply stop trajectories unable to follow obstacle boundaries.

Data: x0,xt,vw, φobs
Parameters: Ndisc, dt, ε
Result: T ∗, z∗ BMinimum time and optimal

trajectory
l← [];
for k ∈ {0, 1, ..., Ndisc − 1} do

p0 ←
(

cos
(

2πk
Ndisc

)
sin
(

2πk
Ndisc

))ᵀ
;

l.push(Traj(x0,p0))
end
Z ← CyclicalGraph(l);
t← 0;
while True do

t← t+ dt;
for z ∈ Z do

x,p← z.tail();
xnew,pnew, status← SingleStep(x,p);
if status = False then
Z.remove(z) ; BCannot follow obstacle

else
z.push((xᵀ

new pᵀ
new)

ᵀ
);

if |xnew − xt| < ε then
return t, z

end
end

end
for z1, z2 ∈ Z .neighbors() do

x1,p1 ← z1.tail(); x2,p2 ← z2.tail();
if |x1 − x2| > ε then
Z.addBetween(z1, z2,Traj

(
x1+x2

2 , p1+p2

2

)
)

end
end
[refinements]

end
Algorithm 1: Resolution of the TNP using extremal
trajectories.

• ”Traj” is an appropriate data structure to store a se-
quence of state and adjoint vectors representing an
augmented extremal trajectory, with dedicated methods
to get last element (”tail”) and add an element (”push”).
The structure is initialized with initial state and initial
adjoint vectors.

• ”SingleStep” applies the integration scheme on the
kinematics of the vehicle, and complies with the rule
defined in Section III-C. It has a flag ”status” to signal
that the integration has stopped: the only possible next
step falls into an obstacle, whatever the control input.

Refinements: The algorithm involves creating new ex-
tremal trajectories along the way, which number may grow
exponentially in some cases (highly unsteady winds for
instance). But every trajectory is not needed to find the
optimum. One may then add a trimming procedure at marker
[refinements] in the algorithm to stop the integration of
suboptimal trajectories based on a suboptimality detection
criterion.

8245

0

3

6

9

×
1
0
6
[m

]

0 2 4 6 8
x [m] ×106

0

1

2

3

4

5

6

7

8

9

y
 [

m
]

×106

Time

0.206

0

5

10

15

20

25

30

35

W
in

d
 [

m
/s

]

double-gyre-scaled

 01 10:59:30
35970.215

0 2 4 6 8
x [m] ×106

0

1

2

3

4

5

6

7

8

9

y
 [

m
]

×106

Time

0.62

0

5

10

15

20

25

30

35

W
in

d
 [

m
/s

]

double-gyre-scaled

 02 06:58:30
107910.644

0 2 4 6 8
x [m] ×106

0

1

2

3

4

5

6

7

8

9

y
 [

m
]

×106

Time

1

0

5

10

15

20

25

30

35

W
in

d
 [

m
/s

]

double-gyre-scaled

 03 01:25:17
174317.193

0 2 4 6 8
x [m] ×106

0

1

2

3

4

5

6

7

8

9

y
 [

m
]

×106

Time

1

0

5

10

15

20

25

30

35

W
in

d
 [

m
/s

]

double-gyre-scaled

 03 01:25:17
174317.193

Fig. 3. The extremal front ∂Φx0 is approximated by extremal trajectories (black points) for t1 = 10 h, t2 = 30 h and t3 = 48 h 44 min (target
reached). At t2, the extremal field Φx0 (t2) is also represented, showing the resampling scheme and the collision filter at ridges. The fastest trajectory is
drawn in black.

In [12], this is done by cutting off cycles occur-
ring in the extremal pseudo-front (i.e. the closed curve⋃

p0∈S1 πx(zp0
(t)) at some time t). Still, this scheme is

challenged by the presence of explicit obstacles which may
cut a single extremal pseudo-front into independent sub-
pieces. In this work, we implement a similar cycle-cutting
scheme heuristic, adapted to the presence of obstacles2.

In [9], a minimum-time mesh is built to keep track of
the minimum time to reach every mesh point. This way,
one may exclude extremal trajectories entering zones already
visited by others. Still, this procedure is not valid for highly
unsteady winds which may make it unavoidable to pass
several times by the same region to reach destination (wind
forces the path). We chose to implement a collision filtering
scheme, which is similar to the previous idea, but only for
steady problems. The idea is to prohibit the crossing of two
extremal trajectories, which in the steady case implies that
at least one of the two is suboptimal. The implementation is
made efficient by updating a collision buffer dividing space
in regular cells that keep track of possible conflicts in the
corresponding area.

B. Implementation
The previous algorithm idea is implemented in a Python

module called DABRY which source is made open3. The
module aims at providing a complete pipeline to solve trajec-
tory planning problems in flow fields. It handles analytically
defined flow fields (hard-coded in Python using classes)
as well as database wind (grib weather files). It features
the previous extremal field algorithm (solver ef.py). An
interface to the Matlab® solver ToolboxLS4 is provided for
comparison to level-set methods. DABRY deals with planar
as well as spherical problems, steady flow fields as well as
dynamic ones.

V. EXPERIMENTS

A. Planar, steady but strong flow
We address the well known case of the analytical double

gyre flow as benchmark for a strong, spatially non-uniform

2Implemented in the trim method of the SolverEF class in
solver ef.py from the DABRY module, see Section IV-B.

3https://github.com/dabry-route/dabry
4https://www.cs.ubc.ca/˜mitchell/ToolboxLS/

flow. We adapt the magnitude of the problem to the relevant
scale for the Mermoz drone, i.e. thousands of kilometers as
space scale and around 23 m/s for the flow. The problem
data is
• x0 =

(
1.8× 106m 1.8× 106 m

)ᵀ
• xt =

(
7.2× 106m 7.2× 106 m

)ᵀ
• va = 23 m/s

•

vw : (x1, x2) 7→

vw

(
− sin(k1 (x1 − x(c)1)) cos(k2 (x2 − x(c)2))

cos(k1 (x1 − x(c)1)) sin(k2 (x2 − x(c)2))

)
vw = 36.11m/s, k1 = k2 = 1.04× 10−6 m−1

x
(c)
1 = x

(c)
2 = 1.5× 106 m

The solver finds a minimum travel time T ∗ = 48 h 44 min
in about 10 s of computation5. Fig. 3 shows the step-by-step
computation where we can see the extremal front evolve.
The optimal trajectory uses strong flow regions |vw(x)| >
va. The results, consistent with [7], were validated using
ToolboxLS.

In reality, the output of the method is not just a single
optimal trajectory, but a collection of extremal trajectories,
as is depicted in Fig. 3. Many of these extremal trajectories
provide the optimal travel time to other points in space: this
happens for each one lying on the extremal front ∂Φx0

(t).
So the method really computes an optimal synthesis of the
control problem. Level set methods also provide this com-
plete resolution of the control problem, but one advantage of
the extremal field method is the possibility to access optimal
trajectories directly after computation, whereas for LSMs an
additional shooting phase must be run, building the optimal
control law from vectors that are normal to fronts.

This example thus illustrates how the algorithm builds
optimal trajectories in a steady but strong flow field.

B. Spherical, unsteady and constrained
We then demonstrate a real life application of the method.

We consider re-analyses of the Global Forecast Model (GFS)
to work on real wind data. The wind is the surface wind
(1000 hPa) extracted from Sep. 29th 2021 00:00Z to Oct. 1st

2021 00:00Z with a 6 hour time step6. This time window

5Intel®Core™i5-10210U CPU @ 1.60GHz × 8
6https://www.ncei.noaa.gov/products/

weather-climate-models/global-forecast

8246

30°W 20°W

Time

0

0

5

10

15

20

W
in

d
 [

m
/s

]

example_natal-dakar-constr**

 2021-09-29 00:00:00
1632866400.000 2021-09-29 00:00Z

30°W 20°W

Time

0.32

0

5

10

15

20

W
in

d
 [

m
/s

]

example_natal-dakar-constr**

 2021-09-29 13:59:27
1632916767.883 2021-09-29 14:00Z

30°W 20°W

Time

0.994

0

5

10

15

20

W
in

d
 [

m
/s

]

example_natal-dakar-constr**

 2021-09-30 19:32:14
1633023134.842 2021-09-30 19:30Z

30°W 20°W

Time

0.994

0

5

10

15

20

W
in

d
 [

m
/s

]

example_natal-dakar-constr**

 2021-09-30 19:32:14
1633023134.842

Fig. 4. Dakar to Natal crossing between Sep. 29th and Sep. 30th, 2021. The red trajectory is the optimal one in the absence of obstacles. The blue
one takes a hashed no-go zone into account. The map is an orthographic projection of Earth centered at the middle point between Dakar and Natal (great
circle). Tenth of degrees latitudes and longitudes are drawn in background. Color cells show wind field resolution of 0.5 degrees.

captures tropical storm ”Victor” depicted in Fig. 4. The
computation uses linear interpolation of the wind both in
time and space and uses the spherical version of extremal
evolution equations. Results are validated against ToolboxLS.
The latter does not handle spherical geometry directly, so
it is run on a projected wind field using an orthographic
projection with the middle of the great circle between start
and target as projection center. This projection is selected
because it has few parameters (only its center) and it is a
correct approximation for thousands of kilometers order of
magnitude.

We run the computation unconstrained first, producing the
red trajectory in Fig. 4, which arrives in 38 h. This trajectory
benefits from the advection of the high wind currents around
the storm. By comparison, following the great circle ground
route takes 36 h without wind and 51 h 49 min in this
environment. This helps quantify the operational interest of
optimal path planning in such a dynamic environment.

We can also imagine that it is not acceptable to get this
close to storms. In Fig. 4, a no-go zone encapsulating the
moving storm is displayed. We run again the computation
taking this obstacle into account and get the blue trajectory
reaching target in 43 h 30 min.

Both computation were each run in less than 10 s. This
shows the efficiency of the method to deal with real-life
examples featuring unsteady winds as well as the apparition
of danger zones.

VI. CONCLUSION AND FUTURE WORK

Time-optimal navigation in flow fields is of particular
interest for slow airborne vehicles as well as underwater
vehicles. In this paper, the relevance of extremal field meth-
ods has been demonstrated in an unsteady and constrained
airborne time-optimal navigation problem.

To the best of the authors’ knowledge, it is also the first
demonstration of explicit obstacle handling in an operational
example for EFM. More than 15 other examples are available
in the DABRY module and displayed online7.

The low computational cost of the method appeals gener-
alization. In further work, we plan to study energy-optimal

7https://dabry-route.github.io

navigation in which the airspeed law is made variable. EFMs
are indeed believed to keep the cost of computation low even
for this larger problem, because the optimal airspeed law can
also be found by shooting extremal trajectories.

Furthermore, it is planned to deal with uncertainty in the
data to produce robust optimal paths. Weather ensemble fore-
cast can be an input to a generalized EF method quantifying
risk for trajectories.

REFERENCES

[1] S. J. Bijlsma. Optimal Aircraft Routing in General Wind Fields.
Journal of Guidance, Control, and Dynamics, 32(3):1025–1029, May
2009.

[2] A. Chakrabarty and J. Langelaan. UAV flight path planning in time
varying complex wind-fields. In 2013 American Control Conference,
pages 2568–2574, Washington, DC, June 2013. IEEE.

[3] R. Chertovskih, D. Karamzin, N. T. Khalil, and F. L. Pereira. An Indi-
rect Method for Regular State-Constrained Optimal Control Problems
in Flow Fields. IEEE Transactions on Automatic Control, 66(2):787–
793, Feb. 2021.

[4] B. Girardet, L. Lapasset, D. Delahaye, and C. Rabut. Wind-optimal
path planning: Application to aircraft trajectories. In 2014 13th
International Conference on Control Automation Robotics & Vision
(ICARCV), pages 1403–1408. IEEE, 2014.

[5] D. González-Arribas, M. Soler, and M. Sanjurjo-Rivo. Robust Aircraft
Trajectory Planning Under Wind Uncertainty Using Optimal Control.
Journal of Guidance, Control, and Dynamics, 41(3):673–688, Mar.
2018.

[6] A. Guitart, D. Delahaye, and E. Feron. An Accelerated Dual Fast
Marching Tree Applied to Emergency Geometric Trajectory Genera-
tion. Aerospace, 9(4):180, Mar. 2022.

[7] D. Kularatne, S. Bhattacharya, and M. A. Hsieh. Time and Energy
Optimal Path Planning in General Flows, 2016.

[8] T. Lolla, P. F. J. Lermusiaux, M. P. Ueckermann, and P. J. Haley.
Time-optimal path planning in dynamic flows using level set equations:
theory and schemes. Ocean Dynamics, 64(10):1373–1397, Oct. 2014.

[9] A. Marchidan and E. Bakolas. Numerical Techniques for Minimum-
Time Routing on Sphere with Realistic Winds. Journal of Guidance,
Control, and Dynamics, 39(1):188–193, Jan. 2016.

[10] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane. Path
Planning for Autonomous Underwater Vehicles. IEEE Transactions on
Robotics, 23(2):331–341, Apr. 2007.

[11] D. Rao and S. B. Williams. Large-scale path planning for Underwater
Gliders in ocean currents. Australasian Conference on Robotics and
Automation, 2009.

[12] B. Rhoads, I. Mezić, and A. C. Poje. Minimum time heading control
of underpowered vehicles in time-varying ocean currents. Ocean
Engineering, 66:12–31, July 2013.

[13] D. N. Subramani, Q. J. Wei, and P. F. Lermusiaux. Stochastic
time-optimal path-planning in uncertain, strong, and dynamic flows.
Computer Methods in Applied Mechanics and Engineering, 333:218–
237, May 2018.

8247

