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Abstract— The symplectic Stiefel manifold is a Riemannian
manifold that is a generalization of the symplectic group. In
this study, we propose novel conjugate gradient methods on the
symplectic Stiefel manifold and compare them with the steepest
descent method proposed in existing studies through numerical
experiments. Although the theoretical basis of the Riemannian
conjugate gradient methods has already been established, spe-
cial treatment is required to address specific manifolds since
these methods utilize some mappings, such as a retraction
and vector transport, on the manifold. Numerical experiments
demonstrate that the proposed method outperforms existing
methods and is efficient.

I. INTRODUCTION

When the search space of a constrained optimization
problem on the Euclidean space Rn is a Riemannian man-
ifold M , the problem can be considered an unconstrained
optimization problem on M and solved efficiently using
optimization methods on M such as the steepest descent,
conjugate gradient (CG), and Newton’s methods [1], [17].
In recent years, many studies have been conducted on op-
timization on Riemannian manifolds, particularly problems
on matrix manifolds, such as the Stiefel manifold [23], [27]
and Grassmann manifold [19], which are essential from a
practical point of view since they have many applications in
real-world problems. In this study, we discuss optimization
on the symplectic Stiefel manifold, which is related to a
type of eigenvalue problem of matrices, and propose a novel
efficient CG method on this manifold.

We consider optimization problems of the following form:

Problem 1:

Minimize f(X)

subject to X⊤J2nX = J2p, X ∈ R2n×2p.

Here, p ≤ n, J2m =
[

0 Im
−Im 0

]
, Im is the m ×m identity

matrix, and f is a smooth objective function defined in
R2n×2p. In the following, we also denote both J2n and
J2p simply by J and denote the identity matrix by I since
their size is clear from the context. Optimization problems
expressed in this form appear in various fields. For example,
the symplectic eigenvalue problem is represented in this form
by defining f(X) := tr(X⊤AX), where A ∈ R2n×2n is a
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symmetric positive definite matrix, which can be applied in
fields such as quantum mechanics [7].

The feasible region of Problem 1 is the following sym-
plectic Stiefel manifold:

Sp(2p, 2n) := {X ∈ R2n×2p | X⊤J2nX = J2p}.

Note that when n = p, the manifold Sp(2n, 2n) has the
structure of a group and is called the symplectic group.
We denote the restriction of the objective function f to
Sp(2p, 2n), that is, f |Sp(2p,2n), also by f . Thus, Problem 1
can be expressed as follows:

Problem 2:

Minimize f(X)

subject to X ∈ Sp(2p, 2n).

For Problem 2, the steepest descent method was pro-
posed [8]. Moreover, two types of retraction on Sp(2p, 2n)
have been proposed in the literature: the quasi-geodesic
retraction and Cayley retraction. Later, in [13], [14], a more
efficient retraction was proposed, showing numerical and
experimental superiority over the Cayley retraction in [8].
For the case n = p, Newton’s method was proposed in [4]
as an optimization method for symplectic groups. However,
Newton’s method cannot be applied straightforwardly when
n > p.

In this study, we propose effective CG methods for
Problem 2. The Riemannian CG method [1], [15], [18],
[20], [28], which is a nonlinear CG method to generate
a sequence {xk} on a Riemannian manifold M , updates
the search direction ηk at xk ∈ M using an algorithm-
specific parameter βk, an appropriate map T (k) : Txk

M →
Txk+1

M , and a scaling parameter sk at each iteration number
k as ηk+1 = − grad f (xk+1) + βk+1skT (k) (ηk). Note
that η0 = − grad f(x0) at x0 ∈ M . The CG method
is known to converge numerically faster than the steepest
descent method. However, it is difficult to implement on
a particular manifold compared with the steepest descent
method since we need an appropriate map T (k), whereas
the search direction ηk in the steepest descent method is
simply taken as ηk = − grad f(xk) for every k. There is no
literature dealing with the Riemannian CG methods on the
symplectic Stiefel manifold, and to the best of the authors’
knowledge, this study is the first attempt to address them.

We use the Cayley retraction proposed by [8] as a retrac-
tion on Sp(2p, 2n). When n = p, the inverse map of the
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retraction according to [28] is used as the map T (k). When
n > p, instead of the inverse retraction, a novel method
using the orthogonal projections onto the tangent spaces of
Sp(2p, 2n) is proposed. Numerical experiments with these
implementations show that the proposed methods outperform
the naive and improved steepest descent methods proposed
by [8] in terms of the convergence speed.

The remainder of this paper is organized as follows.
Section II reviews the concepts necessary for optimization
on Sp(2p, 2n). Section III provides an overview of the
proposed CG algorithm, followed by a discussion of cases
n = p and n > p. We also discuss how to choose the
step length and βk to enhance the efficacy of the proposed
methods. In Section IV, the results of numerical experiments
are presented; the CG methods proposed in this paper are
demonstrated to be superior to existing methods, such as [8],
mainly in terms of performance. Finally, a summary and the
conclusions of this study are presented in Section V.

II. OPTIMIZATION ON SYMPLECTIC STIEFEL MANIFOLD

In this section, we review the concepts on the symplectic
Stiefel manifold Sp(2p, 2n) necessary for optimization on it.

A. Tangent spaces

Given a point X ∈ Sp(2p, 2n), the tangent space
TXSp(2p, 2n) at X is expressed in three forms [8], where
Sym(2n) is the set of all symmetric matrices of size 2n×2n:

TXSp(2p, 2n)

= {Z ∈ R2n×2p | Z⊤JX +X⊤JZ = 0}
= {XJW + JX⊥K |W ∈ Sym(2p),K ∈ R2(n−p)×2p}
= {SJX | S ∈ Sym(2n)}. (1)

Here, X⊥ ∈ R2n×2(n−p) is an orthonormal matrix that spans
the orthogonal complement of the subspace spanned by the
columns of X , where orthogonality is defined with respect
to the standard inner product in R2n. Therefore, such X⊥ is
not unique and can be arbitrary in subsequent discussions.
In the following, we arbitrarily fix one such X⊥.

B. Retraction

As a retraction on Sp(2p, 2n), we use the following Cayley
retraction Rcay [8], which is defined for X ∈ Sp(2p, 2n) and
Z ∈ TXSp(2p, 2n), as

Rcay
X (Z) :=

(
I − 1

2
SX,ZJ

)−1(
I +

1

2
SX,ZJ

)
X,

where SX,Z = GXZ(XJ)⊤ +XJ(GXZ)⊤ and GX = I −
1
2XJX⊤J⊤. See [1] for a general theory of retraction.

C. Riemannian metrics and gradients

A family of smoothly varying inner products on
TXSp(2p, 2n), that is, a Riemannian metric, can be defined
using the parameter ρ > 0 and the matrices W and K used
in the representation of tangent spaces in (1) as follows [8]:

gρ(Z1, Z2) :=
1

ρ
tr
(
W⊤

1 W2

)
+ tr

(
K⊤

1 K2

)
, (2)

where Zi = XJWi + JX⊥Ki ∈ TX Sp(2p, 2n) for i =
1, 2. Here, the parameter ρ > 0 plays a role of weighting
tr
(
W⊤

1 W2

)
for tr

(
K⊤

1 K2

)
. We also denote gρ(Z1, Z2)

as ⟨Z1, Z2⟩ by omitting the parameter ρ since we do not
consider varying ρ in this study, and there is no confusion.

Regarding the Riemannian metric gρ in (2), the orthogonal
projection onto the tangent spaces of the symplectic Stiefel
manifold is given as follows [8]:

Proposition 1: Given X ∈ Sp(2p, 2n) the orthogonal
projection of Y ∈ R2n×2p onto TXSp(2p, 2n) with respect
to the metric gρ is written as PX(Y ) = SX,Y JX , where
SX,Y = 2 sym(GXY (XJ)⊤), GX = I − 1

2XJX⊤J⊤,
sym(B) := 1

2 (B +B⊤), and skew(B) := 1
2 (B −B⊤) for a

square matrix B.
Note that the expression of PX(Y ) does not depend on ρ.

Using the orthogonal projection, from the general theory of
Riemannian geometry [1], we can compute the Riemannian
gradient of a function on Sp(2p, 2n) as follows [8]:

Proposition 2: Assume that Sp(2p, 2n) is endowed with
the Riemannian metric (2). Let f̄ and ∇f̄ be a smooth
extension of a smooth function f : Sp(2p, 2n) → R to
R2n×2p and its Euclidean gradient, respectively. Then, the
Riemannian gradient of f satisfies gradρ f(X) = SXJX at
X ∈ Sp(2p, 2n), where SX = 2 sym(HX∇f̄(X)(XJ)⊤)
with HX = ρ

2XX⊤ + JX⊥X
⊤
⊥J⊤.

III. CG METHODS ON SYMPLECTIC STIEFEL MANIFOLD

In this section, we provide an outline and implementation
details of our proposed CG method on the symplectic Stiefel
manifolds.

First, we briefly review basic CG methods in Euclidean
spaces. The CG method in the Euclidean space Rn is a
descent method that generates a sequence {xk} by iterating
xk+1 = xk + tkηk with the search direction ηk and step
length tk > 0, where η0 = −∇f(x0) and ηk for k ≥ 1 is
updated as ηk+1 = −∇f (xk+1) + βk+1ηk. The sequence
{xk} obtained in this manner is guaranteed to have a global
convergence property with appropriate assumptions, step
lengths, and βk [18]. Its convergence is generally known
to be numerically faster than that of the steepest descent
method. Various formulas for computing the parameter βk

in the above updating formula for ηk have been proposed.
See [9] for a review of Euclidean CG methods.

A. CG methods on general Riemannian manifold

In the CG method on a Riemannian manifold M , the
situation differs from that in Euclidean spaces since we have
− grad f (xk+1) ∈ Txk+1

M and ηk ∈ Txk
M . Therefore,

a map T (k) : Txk
M → Txk+1

M is required to add them
together. The update formula for the search direction is
defined using the map T (k) as

ηk+1 := − grad f(xk+1) + βk+1skT
(k)(ηk),

where sk > 0 is a parameter that scales the norm of the
obtained tangent vector and guarantees convergence, which
is defined as sk := min{1, ∥ηk∥xk

/∥T (k)(ηk)∥xk+1
} > 0,

where ∥ · ∥x with x ∈ M is the induced norm in TxM by
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the Riemannian metric. Then, ∥skT (k)(ηk)∥xk+1
≤ ∥ηk∥xk

holds for each k ≥ 0. This inequality is crucial for guaran-
teeing convergence.

B. Proposed algorithms

In this subsection, we first outline the proposed CG
method on the symplectic Stiefel manifold and then describe
how to determine the step length and βk in the algorithm.

The proposed algorithm is outlined in Algorithm 1. The

Algorithm 1 CG method on symplectic Stiefel manifold
Input: Objective function f on Sp(2p, 2n), retraction R,

map T (k), initial point X0 ∈ Sp(2p, 2n), ϵ > 0, and
positive integer maxItr.

Output: Sequence {Xk} on Sp(2p, 2n).
1: η0 ← − grad f(X0).
2: k ← 0.
3: while ∥ grad f(Xk)∥ > ϵ and k < maxItr do
4: Choose a step length tk.
5: Xk+1 ← RXk

(tkηk).
6: Compute T (k) (ηk).
7: Compute sk := min

{
1,

∥ηk∥Xk

∥T (k)(ηk)∥Xk+1

}
and βk+1.

8: ηk+1 ← − grad f (Xk+1) + βk+1skT (k) (ηk).
9: k ← k + 1.

10: end while
11: return Xk.

step length tk in the algorithm is computed, e.g., such that
the following Armijo condition is satisfied in each iteration:

f(RXk
(tkηk)) ≤ f(Xk) + αtk⟨grad f(Xk), ηk⟩Xk

. (3)

Note that α is a positive constant, which was set to 10−4

in our numerical experiments. In fact, to theoretically guar-
antee the global convergence property, the Riemannian CG
methods usually require step lengths to satisfy the Wolfe
conditions or related conditions, such as the strong or gen-
eralized Wolfe conditions [18]. However, in practice, step
lengths satisfying the Armijo condition (3), which is weaker
than the Wolfe conditions, are also used since they are easily
implemented and computed.

The search for a step length tk satisfying the above
conditions is performed based on a backtracking strategy,
that is, we set

tk = 10−ikγk, (4)

where ik ∈ {0, 1, 2, · · · } is the smallest integer for which
tk = 10−ikγk satisfies (3). For the initial trial step length γk
in (4), we used γk = 2(f(Xk+1)−f(Xk))

⟨grad f(Xk),−ηk⟩Xk

, whose Euclidean
counterpart is discussed in [12].

Furthermore, for βk, we used the following βR-DY
k [16],

[18], [28]:

βR–DY
k =

∥gk+1∥2Xk+1

⟨gk+1, skT (k)(ηk)⟩Xk+1
− ⟨gk, ηk⟩Xk

,

where gk := grad f(Xk). This βR–DY
k is a generalization of

the Euclidean version of βDY
k proposed in [6].

Note that the denominators of the formulas for γk and
βR–DY
k are always positive under some mild assumptions

given in Proposition 6.3 in [18].

C. Case of symplectic group
If Sp(2p, 2n) is the symplectic group, that is, if n = p,

we use a strategy that uses the inverse map of a retraction
as T (k) (ηk), whose general theory is discussed in [28].
Specifically, using the Cayley retraction R = Rcay, we
update Xk as Xk+1 = Rcay

Xk
(tkηk) and define T (k) (ηk) in

Algorithm 1 as T (k) (ηk) = −t−1
k (Rcay

Xk+1
)−1(Xk). For this

T (k) (ηk) and appropriately chosen tk and βk, the general
theory in [28] guarantees the global convergence of the
resultant CG method on Sp(2p, 2n).

The Cayley retraction Rcay
X (Z) is, as mentioned above,

defined as follows:

Rcay
X (Z) :=

(
I − 1

2
SX,ZJ

)−1(
I +

1

2
SX,ZJ

)
X, (5)

where SX,Z = GXZ(XJ)⊤ +XJ (GXZ)
⊤ and GX = I −

1
2XJX⊤J⊤. Hence, letting Z̃ := (Rcay

Xk+1
)−1(Xk), we have

Xk =

(
I − 1

2
SXk+1,Z̃

J

)−1(
I +

1

2
SXk+1,Z̃

J

)
Xk+1,

that is,(
I − 1

2
SXk+1,Z̃

J

)
Xk =

(
I +

1

2
SXk+1,Z̃

J

)
Xk+1.

It follows that

2(Xk −Xk+1) = SXk+1,Z̃
J(Xk +Xk+1). (6)

Therefore, if we know that Xk+Xk+1 is regular, noting that
J−1 = −J holds, SXk+1,Z̃

can be calculated as

SXk+1,Z̃
= −2(Xk −Xk+1)(Xk +Xk+1)

−1J. (7)

Furthermore, it follows from Z̃ ∈ TXk+1
Sp(2p, 2n) and [8,

Corollary 4.4] that Z̃ = SXk+1,Z̃
JXk+1.

The Cayley retraction itself is not globally defined [8,
Proposition 5.4]. However, in fact, when Xk+1 is computed
as Xk+1 = Rcay

Xk
(tkηk), the inverse retraction R−1

Xk+1
is glob-

ally defined. This is guaranteed by the fact that Xk +Xk+1

is always invertible, as proved in the following proposition.
Proposition 3: Let n = p, X ∈ Sp(2p, 2n), and Z ∈

TXSp(2p, 2n). Assume that X+ := Rcay
X (Z) is defined.

Then, the matrix X +X+ ∈ R2n×2n is invertible.
Proof: Letting G := I − 1

2XJX⊤J and S :=
GZ(XJ)⊤ + XJ(GZ)⊤, it follows from (5) that X+ =
(I − 1

2SJ)
−1(I + 1

2SJ)X , where we note that I − 1
2SJ is

invertible since we assume that X+ = Rcay
X (Z) is defined.

Therefore, we have

X +X+ = X +

(
I − 1

2
SJ

)−1(
I +

1

2
SJ

)
X

=

(
I − 1

2
SJ

)−1
((

I − 1

2
SJ

)
+

(
I +

1

2
SJ

))
X

= 2

(
I − 1

2
SJ

)−1

X.
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Here, from X⊤JX = J , we have det(X)2 = 1, which
means that X is invertible. Hence, X + X+ is invertible
because, specifically, we have

(X +X+)
−1 =

1

2
X−1

(
I − 1

2
SJ

)
.

Therefore, for n = p, the proposed method implements the
CG algorithm by defining the search direction as follows: We
calculate S := −2(Xk−Xk+1)(Xk+Xk+1)

−1J and define
T (k)(ηk) as T (k)(ηk) := (Rcay

Xk+1
)−1(Xk) = SJXk+1 to

update the search direction in Algorithm 1.

D. Case of general symplectic Stiefel manifold

If n > p, there are several SXk+1,Z̃
such that (6) is satis-

fied. To use the inverse retraction strategy, it is necessary to
find SXk+1,Z̃

such that SXk+1,Z̃
JXk+1 ∈ TXk+1

Sp(2p, 2n).
In other words, it is necessary to find SXk+1,Z̃

such that it is a
symmetric matrix from [8, Proposition 3.3 (3.8c)]. However,
this is challenging to find.

Therefore, we do not use the inverse retraction in this
case; instead, we use the orthogonal projection onto TXk+1

M
in Proposition 1 as T (k) (ηk) = SXk+1,ηk

JXk+1, where
SXk+1,ηk

= GXk+1
ηk(Xk+1J)

⊤+Xk+1J
(
GXk+1

ηk
)⊤

and
GXk+1

= I − 1
2Xk+1JX

⊤
k+1J

⊤. In other words, in the case
of n > p, we implement the CG method using the above
T (k) (ηk) to define the search direction at every step. The
orthogonal projection-based Riemannian CG methods are
not always guaranteed to converge globally. This is because
the projection-based map T (k) is not known to satisfy the
condition that T (k) is sufficiently close to the differentiated
retraction DRXk

(tkηk), which causes the CG method to
converge globally. See Assumption 4.2 in [18] for more
details. However, in our numerical experiments in the next
section, this method is effective in minimizing the objective
function compared with existing optimization methods on the
symplectic Stiefel manifold. In fact, some examples in which
the orthogonal projection-based Riemannian CG methods are
guaranteed to converge globally are discussed in [18] such as
methods on the sphere and Grassmann manifold. Clarifying
whether the proposed method on the general symplectic
Stiefel manifold always globally converges is left for future
work.

We note that the projection-based CG method discussed
here can be also applied to the case of n = p. However, in
that case, the CG method based on the inverse retraction
is theoretically superior since global convergence can be
guaranteed under some assumptions, as discussed in the
previous subsection.

IV. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical ex-
periments in which Algorithm 1 is applied. We choose the
symplectic eigenvalue problem as our target problem, which
is one of the problems used in the numerical experiments in
a previous work [8]. In addition, we prepared instances for
cases n = p and n > p and performed a CG search, each

using the appropriate technique described in the previous
section. The runtime environment was MATLAB2021b, Mac
Pro (processor: 3 GHz 8-core Intel Xeon E5, memory: 32
GB). The code for the proposed method was written by
modifying that for [8] provided in https://github.
com/opt-gaobin/spopt.

A. Symplectic eigenvalue problem

Any positive definite symmetric matrix A ∈ R2n×2n can
be diagonalized by a symplectic matrix X ∈ Sp(2n, 2n), as
described in [25]. Specifically, for every symmetric positive
definite matrix A ∈ R2n×2n, there exists X ∈ Sp(2n, 2n)
such that

X⊤AX =

[
D 0
0 D

]
,

where D = diag (d1, d2, . . . , dn) and 0 < d1 ≤ · · · ≤ dn.
These d1, d2, . . . , dn are called symplectic eigenvalues, and
finding X and D is called the symplectic eigenvalue problem.
We note that the term “symplectic eigenvalue problem” is
sometimes used with a different meaning, e.g., in [3]. This
is noted in detail in [22], which is an arXiv version of [21].

In this situation, from the smallest to the pth symplectic
eigenvalues can be obtained by solving the following opti-
mization problem on Sp(2p, 2n):

Problem 3:

Minimize f(X) := tr(X⊤AX)

subject to X ∈ Sp(2p, 2n).

A smooth extension of f : Sp(2p, 2n) → R to the entire
space R2n×2p is f̄(X) = tr

(
X⊤AX

)
and its Euclidean

gradient is ∇f̄(X) = 2AX . Therefore, the Riemannian
gradient can be computed as in Proposition 2.

The details and results of our numerical experiments
on the above problem are as follows. We set parameter
ρ = 0.5 for the Riemannian metric gρ. The parameters
of the termination conditions in Algorithm 1 were set as
ϵ = 10−5 and maxItr = 2000, and n and p were set
as (n, p) = (80, 80), (80, 40). Matrix A ∈ R2n×2n was
randomly generated as a positive definite symmetric matrix
by the following procedure, based on previous studies [8],
using the parameter λ ≥ 1 to control the condition number. 1)
Let Λ ∈ R2n×2n be a diagonal matrix such that Λii = λ1−i,
i = 1, 2, . . . , 2n; 2) Matrix Q ∈ R2n×2n is an orthogonal
matrix obtained by the QR decomposition of a random
matrix in MATLAB as Q = qr(randn(2*n, 2*n));
3) Matrix A is generated by A = QΛQ⊤. Note that
parameter λ was set to λ = 1.04 in this experiment. Here,
the diagonal elements of Λ are the eigenvalues of A in
terms of the standard eigenvalue problem. In addition, the
initial point X0 ∈ Sp(2p, 2n) was randomly constructed in
the same manner as for the code in https://github.
com/opt-gaobin/spopt. Specifically, we constructed
W̃ ∈ R2p×2p each of whose element follows the standard
normal distribution and computed W := W̃⊤W̃ + 0.1I .
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Subsequently, letting W =:
[
W1

W2

]
with W1,W2 ∈ Rp×2p,

we computed E := exp
([

W2

−W1

])
∈ R2p×2p, where exp is

the matrix exponential function. Finally, letting E =:
[
E1

E2

]
with E1, E2 ∈ Rp×2p, we computed X0 :=

[
E1
0
E2
0

]
, where the

size of the zero matrix 0 is (n− p)× 2p.
Under the above conditions, the following three methods

were compared: SD (steepest descent method); SD-nBB
(improved steepest descent method); CG (conjugate gradient
method (proposed method)).

The SD method is a simple steepest descent method, in
which the search direction is ηk = − grad f(Xk) at Xk. We
set the method for determining the step length in this method
as in Section III-B.

The SD-nBB method is an improved steepest descent
method proposed in a previous study [8]. This method
searches for an appropriate step length using the backtracking
formula (3) in the same manner as our proposed method but
has two different features for determining the step length.
The first feature is “nonmonotone line search” [26], which
concerns the conditions for updating the step length. This
method was extended to the Stiefel manifold [24] and to
general Riemannian manifolds [10, section 3.3], [11] . In
the nonmonotone line search, the step length at every step k
is determined to satisfy the following condition:

f (RXk
(tkηk)) ≤ ck + αtk ⟨grad f (Xk) , ηk⟩Xk

, (8)

where α ∈ (0, 1) is a parameter, q0 = 1 and c0 = f(X0), and
qk and ck for k ≥ 1 are defined as qk = τqk−1+1 and ck =
τqk−1

qk
ck−1 + 1

qk
f (Xk) with a parameter τ ∈ [0, 1]. Note

that the nonmonotone condition (8) reduces to the standard
Armijo condition (3) when τ = 0. In the experiments, we
set τ = 0.85. The second feature is the “Barzilai–Borwein
(BB) method” [2], which concerns the choice of the initial
trial step length γk in (4). This method was extended to
general Riemannian manifolds in [11], and a method called
“alternating BB strategy,” which is a further improvement on
the BB method in terms of speed, was proposed in [5]. In
nSD-BB, the alternating BB strategy was used to determine
γk. First, γBB1

k and γBB2
k were defined as follows:

γBB1
k :=

⟨Sk−1, Sk−1⟩
|⟨Sk−1, Yk−1⟩|

, γBB2
k :=

|⟨Sk−1, Yk−1⟩|
⟨Yk−1, Yk−1⟩

, (9)

where Sk−1 = Xk − Xk−1 and Yk−1 = gradρ f (Xk) −
gradρ f (Xk−1). Using this γBB1

k and γBB2
k , the initial trial

step length γk in (4) is chosen as γk = γBB1
k if k is odd and

γk = γBB2
k if k is even. Note that the inner product in (9)

is the Euclidean inner product ⟨·, ·⟩ instead of gρ because it
was confirmed in [8] that this would accelerate the speed of
the algorithm of the steepest descent method.

The CG method is the proposed method. When we consid-
ered the implementation of this method, we attempted to use
methods with the nonmonotone line search and BB strategies
to search for step lengths. However, in this method, they did
not accelerate the speed of convergence, but rather worsened

it. Therefore, we did not use them and implemented the
backtracking line search method in Section III-B as an
alternative method for the step length search.

The numerical results for n = p = 80 and (n, p) =
(80, 40) are shown in Figures 1 and 2. The vertical axis
represents the norm of the gradient, and the horizontal axis
represents the number of iterations. In both cases n = p and
n > p, the proposed CG method converges faster than the SD
and nSD-BB methods. Moreover, the norm of the gradient
decreases almost monotonically and steadily in the proposed
method compared with the nSD-BB case, where the norm of
the gradient oscillates by increasing and decreasing rapidly.

Fig. 1. Convergence history (n = p = 80)

Fig. 2. Convergence history (n = 80 and p = 40)

In the following, we focus on problems with matrices
larger than those considered above to measure and compare
the execution times. For ease of measurement, the termi-
nation condition was changed to ϵ = 10−4 and maxItr =
30000. We performed experiments for problem sizes n =
p = 120 and (n, p) = (120, 60). The other conditions were
identical to those used in the previous experiment. Tables I
and II list the results of the experiments. As the entries
in each table indicate, Time refers to the time required to
stop the algorithm, and Itr. and ∥ grad f∥ denote k and
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∥ grad f(Xk)∥Xk
at the end of the algorithm, respectively.

First, as can be observed from the Itr. and ∥ grad f∥ entries in
Tables I and II, the SD method did not reach the ∥ grad f∥
termination condition for either n = p = 120 or (n, p) =
(120, 60), whereas the nSD-BB and CG methods reached
the ∥ grad f∥ termination condition. Next, in the case of
n = p = 120, the CG method terminated in fewer steps
than the nSD-BB method, but the CG method required more
execution time. This could be because of the time required
for solving a system of linear equations to compute (7).
On the other hand, when (n, p) = (120, 60), the CG
method is superior in terms of both the number of steps and
execution time. In the case (n, p) = (120, 60), the number
of steps required for convergence increased significantly in
the nSD-BB method, whereas convergence was achieved
with a relatively small number of steps in the CG method.
This confirms the usefulness of the proposed method using
orthogonal projection compared with previous methods.

TABLE I
EXECUTION TIMES (n = p = 120)

method Time (s) Itr. ∥ grad f∥
SD 215.6 30000 2.58× 10−3

nSD-BB 15.5 2166 1.00× 10−4

CG 17.4 1435 9.69× 10−5

TABLE II
EXECUTION TIMES (n = 120 AND p = 60)

method Time (s) Itr. ∥ grad f∥
SD 162.0 30000 4.64× 10−2

nSD-BB 136.7 24554 9.71× 10−5

CG 46.1 5011 9.80× 10−5

V. CONCLUSION

In this study, we proposed CG methods on the symplectic
Stiefel manifolds Sp(2p, 2n) and derived specific formulas
for implementation that are valid for the cases n = p and n >
p. Their usefulness compared to existing methods, such as
the steepest descent method, was demonstrated by numerical
experiments on the symplectic eigenvalue problem.

For the case n = p, we applied CG methods based on the
inverse map of the Cayley retraction on the symplectic Stiefel
manifold (symplectic group), and the specific computational
formulas in the algorithm were derived. We proved that,
when we compute Xk+1 from Xk by the Cayley retraction
Rcay

Xk
, the inverse retraction (Rcay

Xk+1
)−1 is globally defined.

For the case n > p, we proposed a CG method using
orthogonal projection from a new point of view.

It was demonstrated that the proposed methods for both
cases n = p and n > p are superior to the existing methods
in terms of convergence speed for the symplectic eigenvalue
problem.
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