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Abstract— We present an optimization-based method for the
joint estimation of system parameters and noise covariances of
linear time-variant systems. Given measured data, this method
maximizes the likelihood of the parameters. We solve the
optimization problem of interest via a novel structure-exploiting
solver. We present the advantages of the proposed approach
over commonly used methods in the framework of Moving
Horizon Estimation. Finally, we show the performance of the
method through numerical simulations on a realistic example of
a thermal system. In this example, the method can successfully
estimate the model parameters in a short computational time.

I. INTRODUCTION

System identification and estimation enable us to build
accurate models which is a fundamental prerequisite for
successfully solving control tasks. Having precise models
also allow for reliable predictions about the system behavior
which are essential for the deployment of Model Predictive
Control (MPC) [1].

In the context of system identification, subspace methods
are widely used for identifying linear systems [2]–[4]. How-
ever, these methods cannot enforce any particular structure,
which is often given by the laws of physics. Parametric sys-
tem identification overcomes this limitation [4]. For online
state estimation of linear systems, several methods exists
such as the Kalman filter (KF) [5]. To apply one of these
state estimation methods, it is often necessary to estimate the
covariances of the noise model using the available data, and
one could use, e.g., covariance matching [6], or correlation
techniques [7].

The Maximum Likelihood Estimation (MLE) problem for
parametric linear dynamical systems has been formulated
in [8], [9], or more recently in [10]. Approximate versions
of the MLE problem have also been studied. These fall into
the class of prediction error methods, and they have the
advantage of being more computationally tractable compared
to the exact MLE problem. Nevertheless, when the number
of parameters to estimate grows, the resulting optimization
problem becomes difficult to solve, limiting the actual use
of methods based on MLE. To get through this limitation,
typically two separate tasks are considered, first, the system
parameters are identified, and secondly, the estimation of the
process and measurement noise is carried out [10].
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Contributions: In this paper, we study the MLE prob-
lem for linear time-variant systems and provide the following
contributions

• we introduce a framework in which the MLE formula-
tion can be stated and used for the joint estimation of
parameters in the deterministic part of the model and
parameters in the covariance matrices of the process and
measurement noise;

• we discuss and motivate with a counterexample why
this method might provide generally a better parameter
estimation than Trajectory Optimization (TO) methods,
which are widely used in the context of Moving Horizon
Estimation (MHE) [11], [12];

• we propose a tailored optimization algorithm to effi-
ciently solve the optimization problem resulting from
the MLE approach, and compare it with a state-of-the-
art solver.

The combination of the MLE formulation with the proposed
optimization algorithm constitutes a novel parameter estima-
tion method for which performance, in terms of prediction
accuracy, and efficiency, in terms of runtime, is ultimately
proven on a realistic example of thermal control system.

Outline: In Section II we introduce the considered class
of systems, the estimation task, and we provide relevant
examples that fall into this class. Section III introduces the
MLE method for parameter identification. In Section IV
we compare the MLE method against TO, another common
method for parameter estimation, providing a statistical result
and a counterexample for TO. In Section IV-B, we present an
optimization algorithm to solve the MLE problem. Section V
presents numerical results of the proposed method for a
realistic thermal control system.

Notation: We denote by S++
n , the set of symmetric

Positive Definite (PD) matrices of Rn×n. For M ∈ S++
n

and e ∈ Rn, we write ‖e‖2M := e>Me for e ∈ Rn, and |M |
the determinant of M . For the unweighted L2 norm, we omit
the index: ‖e‖2 := e>e. The Gaussian distribution with mean
µ ∈ Rn and covariance matrix Σ ∈ S++

n is N (µ,Σ), and
fgauss(·, µ,Σ) is its density function. The uniform probability
distribution on the interval [a, b] is denoted by U(a, b). The
symbol In stands for the identity matrix. Throughout the
paper, we use hat symbols for estimates, e.g., ŷk.

II. PROBLEM STATEMENT

In this work, we consider the class of parametric discrete-
time and time-variant linear systems affected by state and
output stochastic noise, defined by the following equations,
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valid for k = 0, . . . , N

xk+1 = Ak(α)xk + bk(α) + wk,

yk = Ck(α)xk + vk, (1)
wk ∼ N (0, Qk(α)) ,

vk ∼ N (0, Rk(α)) ,

where xk ∈ Rnx , yk ∈ Rny are the states and the measure-
ments while α ∈ Rnα stacks the unknown parameters of the
dynamical model and of the noise covariance model. The
functions Ak(·), bk(·), Ck(·), Qk(·) and Rk(·) are of appro-
priate dimensions and are assumed to be known. We assume
that the random variables w0, . . . , wN−1 and v0, . . . , vN
are drawn independently. Additionally, we consider that the
initial state comes from the following distribution

x0 ∼ N (x̂0, P0) , (2)

with x̂0 ∈ Rn and P0 a fixed positive semi-definite matrix.
Note that this assumption does not lead to any loss of
generality, because choosing A0(α) and b0(α) is equivalent
to choosing the Gaussian distribution of the state x1.

The set of possible parameters α is denoted by A and is
assumed to be with the following form

A := {α ∈ Rnα
∣∣ h(α) ≤ 0}, (3)

where the function h : Rnα → Rnh is continuously
differentiable. This function might express prior knowledge
about the parameters. For instance, it can specify the ranges
in which the parameters can take value. It is also necessary
to ensure that for any α ∈ A, the matrices Qk(α) and Rk(α)
are PD.

We assume that measurements are available, i.e., we know
the sequence y0, . . . , yN . We denote by Yk the information
set up to time k as Yk := (y0, . . . , yk). The task is to find
the parameter α which makes measurements as likely as
possible.

Remark 1. The equations (1) notably model the case where
the dynamical equations contain inputs uk which have al-
ready been chosen and are assumed to be known. Even if
the inputs uk act in a nonlinear way, the estimation problem
still falls into the general class described by equations (1)

Remark 2. One important application of this setting is the
estimation of a disturbance model which can be used to
achieve offset-free MPC [13]. When such models are used,
the process noise wk now contains two components with a
different meaning, which need to be scaled [14]. Generally,
this problem is difficult, and it also falls into the class of
estimation problems described in this paper.

III. MAXIMUM LIKELIHOOD FORMULATION

In the following, we formulate an optimization problem
to estimate α from the data YN = (y0, . . . , yN ). More
precisely, we formulate the Maximum Likelihood Estimation
(MLE) problem for identifying α given the probabilistic
model (1). These formulations have been already derived
in [9] to estimate model parameters or in [15] to estimate

the matrices Q and R. Before diving into the MLE problem,
we briefly recall the Kalman filter, a central tool for the
formulation of the MLE problem.

A. The Kalman filter

For given parameters α and past measurements Yk−1,
the Kalman filter (KF), introduced in [5], yields a Gaussian
probability density of the state xk given past measurements,
which is defined by its mean and its covariance, usually
referred to as x̂k|k−1 and Pk|k−1, but in this paper we will
write them x̂k and Pk. These are defined with the initial
conditions (x̂0, P0) and the following recursive equations,
valid for k = 0, . . . , N

Sk = CkPkC
>
k +Rk,

ek = yk − Ckx̂k,

x̂k+1 = Ak

(
x̂k + PkC

>
k S−1

k ek
)
+ bk, (4)

Pk+1 = Ak

(
Pk − PkC

>
k S−1

k CkPk

)
A>

k +Qk,

where the dependency on α has been omitted for simplicity.
Specifically, the function that maps past data and pa-

rameters to the prediction of the next measurement and its
covariance is given by

ŷk(α,Yk−1) := Ckx̂k,

Sk(α) := CkPkC
>
k +Rk.

(5)

Note that Sk(α) ∈ S++
ny

for any α ∈ A. Finally, the
probability density function of yk given the probabilistic
model (1) for some α, and the measurements Yk−1 is

p (yk | Yk−1, α) = fgauss(yk, ŷk(α,Yk−1), Sk(α)). (6)

B. Maximum Likelihood problem

We define the Maximum Likelihood (ML) estimation
problem as

maximize
α∈A

p (YN | α) , (7)

where p(YN | α) stands for the value of the probability
density function of the measurements y0, . . . , yN given the
probabilistic model (1). In previous works, this problem
has been derived explicitly [9], we recall this result in the
following proposition.

Proposition 1. The ML formulation (7) is equivalent to the
following optimization problem

minimize
α∈A

N∑
k=0

‖yk − ŷk(α,Yk−1)‖2Sk(α)−1 + log |Sk(α)| ,

(8)

where ŷk(α,Yk−1) and Sk(α) are defined in (5).

Proof. Using basic probability rules, it is easy to derive the
following formula

p(YN | α) =
N∏

k=0

p (yk | Yk−1, α) , (9)
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where p (yk | Yk−1, α) is defined in the previous section.
Combining equations (9) and (6), the likelihood in (7) can
be written explicitly

p (YN | α) =
N∏

k=0

fgauss(yk, ŷk(α,Yk−1), Sk(α)),

=

N∏
k=0

(|2πSk(α)|)−
1
2 e

− 1
2‖yk−ŷk(α,Yk−1)‖2

Sk(α)−1

Finally, we apply the decreasing function p 7→ −2 log(p),
then disregard the additive constant ny log (2π), which leads
to the desired form (8).

Remark 3. This ML formulation can be under-determined
depending on the choice of the uncertain parameters α.
Indeed, some parameters may be impossible to estimate from
the available data when the system is over parameterized,
or when it is not excited enough. In this paper, we simply
assume that the parameterization and the measured data are
such that there is a unique parameter that maximizes the
likelihood in (7). In practice, expert knowledge about the
system at hand usually allows one to formulate valid pa-
rameterization and design experiments to collect sufficiently
information-rich data.

It has been shown, under some additional assumption, that
this MLE formulation provides an asymptotically unbiased
estimate, and that it converges almost surely to the true
parameters when the number of data points goes to infinity
[4], [8]. Here, we simply state a statistical result that states
that if the data is generated through the model (1), the true
parameters minimize the expected value of the objective
function in (8). This result can easily be proven by the fact
that the objective function is the negative log-likelihood.

Proposition 2. If α? ∈ A is the true parameter and Ψ(·,YN )
is the objective function in (8), then the following holds

α? ∈ argmin
α∈A

E
YN

[Ψ(α,YN )] . (10)

IV. COMPARISON WITH TRAJECTORY OPTIMIZATION

In this section, we compare the presented formulation with
another one, namely, Trajectory Optimization for parameter
estimation.

A. Trajectory Optimization

The formulation stated so far falls into the class of
prediction error estimation methods [16]. Another class of
methods widely used for parameter estimation is Trajectory
Optimization (TO) [11], [12]. These methods are typically
used in Moving Horizon Estimation (MHE) settings for
jointly estimating the state and the parameters of a model.
In this section, we show that these methods are in general
suboptimal compared to the one presented and they might
fail to estimate some parameters even for an arbitrarily large
number of data points N .

In TO methods, when the matrices Qk and Rk are fixed,
the parameters are found by solving the following problem

minimize
α,x0,...,xN

N−1∑
k=0

‖xk+1 −Ak(α)xk − bk(α)‖2Q−1
k

(11)

+

N∑
k=0

‖Ck(α)xk − yk‖2R−1
k

+ ‖x0 − x̂0‖2P−1
0

.

This formulation can also be stated in a likelihood formal-
ism: if XN := (x0, . . . , xN ) stands for the trajectories, (11)
is equivalent to solving the following problem

maximize
XN∈R(N+1)nx ,α∈A

p (XN ,YN | α) =: Φ(XN , α) (12)

Indeed, the following holds

p (XN ,YN | α) = p (XN | α) · p (YN | α,XN ) ,

=

N−1∏
k=0

fgauss (xk+1, Ak(α)xk + bk(α), Qk)

×
N∏

k=0

fgauss (yk, Ck(α)xk, Rk) ,

which is proportional to the exponential of half the negative
objective in (11), when the covariance matrices Qk and Rk

are independent of α. In addition, using the law of total
probability, the likelihood used in (7) can also be written as

p (YN | α) ∝
∫
R(N+1)nx

Φ(XN , α)dXN . (13)

This formula shows a new perspective on TO for parameter
estimation. Indeed, TO could be interpreted as an approxi-
mation to MLE which relies on

argmax
α∈A

∫
Φ(XN , α)dXN ≈ argmax

α∈A

(
max
XN

Φ(XN , α)

)
.

In the next part, we highlight the superiority of the exact
MLE over TO through an illustrative example.

B. An illustrative example
While the approximation above can sometimes give decent

results, it fails, in general, to give an unbiased estimation of
α as we see in the example below.

Example 1. Let us consider the following probabilistic
model, where only one parameter α needs to be estimated

xk+1 = xk + wk, k = 0, . . . , N − 1,

yk = αxk + vk, k = 0, . . . , N, (14)[
wk

vk

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
, k = 0, . . . , N,

x0 = 0.

The task is to estimate α ≥ 0 from measurements y0, . . . , yN .

The TO formulation for the problem (14) reads

minimize
α,x1,...,xN

N−1∑
k=0

(xk+1 − xk)
2
+

N∑
k=0

(αxk − yk)
2

subject to α ≥ 0.

(15)
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Fig. 1. Objective functions for problems (11) and (7) applied to the
Example 1. For TO, the minimum over XN for a given α is shown. The
data YN is generated from the probabilistic model (14) with α? = 1 and
N = 1000. Each objective function is transformed affinely such that its
values are between 0 and 1 on the interval [0, 5].
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Fig. 2. Mean Squared Error over m = 200 samples of the estimates
against the length of the measurement time series N , for Example 1.

For any number N , and any sequence y0, . . . , yN , the so-
lution of problem (15) can only be α = +∞. Indeed, for
xk = εyk and α = 1/ε with some ε > 0, the objective
value of (15) is ε2

∑N−1
k=0 (yk+1 − yk)

2 which is arbitrarily
small when ε is close to zero. Hence, the TO method is
incapable to estimate α in this example. Figure 1 illustrates
the objective functions corresponding to the problem (11),
(7) for the Example 1.

In contrast, we can prove and also show experimentally
that the MLE formulation (7) provides an asymptotically
unbiased estimate for α in this example. For this pur-
pose, we generate measurement time series YN,1, . . . ,YN,m

by simulating the system (14) with different parameters
α?
1, . . . , α

?
m ∈ [0, 2]. Then, we compute the corresponding

estimates α̂i that solve the problems (7). Since only one
parameter is sought, it is enough to use a simple line
search to compute the corresponding estimate. To observe
the asymptotic behavior of these estimates when N goes
to infinity, let us compute the Mean Squared Error (MSE)
EMSE := 1

m

∑m
i=1 (α̂i − α?

i )
2 and repeat the same experi-

ment for many values of N . The profile of the MSE as a
function of N is depicted in Figure 2. From this experiment,
we can observe that the MLE formulation provides good
estimates and, as expected, the performance increases with
the number of measurements N .

TAILORED OPTIMIZATION ALGORITHM

Due to the nonlinearity of the functions ŷk(α,Yk−1)
and Sk(α), the optimization problem (8) is a nonconvex
and Nonlinear Programming problem (NLP). Hence, solving
this problem to global optimality is very hard. In fact,
the computational difficulty of this optimization problem,
even to local optimality, has been the main obstacle to
the use of MLE methods to estimate parameters in the
noise covariances of linear systems. In the following, we

discuss two NLP algorithms for solving efficiently the MLE
problem (8). Even though such algorithms converge to a
local minimum that is not necessarily the global minimum,
we assume that this already provides a correct estimate. In
the first part, we present how to use a sparse interior point
solver for this problem, and in the second we present a hand-
tailored Sequential Quadratic Programming (SQP) specific to
the optimization problem concerned.

The efficiency of these algorithms will be assessed in
Section V on a realistic numerical example.

Optimization using a sparse interior-point solver

We formulate the MLE optimization problem using
CasADi [17] via its Python interface and solve the corre-
sponding NLP using IPOPT [18] with the shipped sparse
linear solver MUMPS. We promote sparsity in the optimiza-
tion problem by adopting a multiple shooting formulation.
Therefore, we lift the variables involved in the Kalman filter
propagation and we impose equations (4) as constraints. The
optimization problem (7) takes the following form

minimize
α,e,S,x̂,P

N∑
k=0

(ek)
>(Sk)

−1ek + log |Sk|

subject to

Sk = Ck Pk C
>
k +Rk(α), for k = 0, . . . , N,

ek = yk − Ckx̂k, (16)

x̂k+1 = Ak(α)
(
x̂k + Pk C

>
k S−1

k ek
)
+ bk(α),

Pk+1 = Ak(α)
(
Pk − Pk C

>
k S−1 Ck Pk

)
Ak(α)

> +Qk(α),

h(α) ≤ 0,

C. A tailored Sequential Quadratic Programming algorithm

Before describing the tailored algorithm, we need to
reformulate the optimization problem (8). Thus, we define
the functions ek(α) and Sk(α) that map the parameters α
to the solution ek and Sk of the recursive equations of the
Kalman filter defined in (4). Secondly, we define a function
ϕ : Rny × S++

ny
× R → R, with ϕ(e, S, γ) := e>S−1e + γ.

With these definitions, problem (8) can be reformulated as
follows

minimize
α∈Rnα

N∑
k=0

ϕ
(
ek(α), Sk(α), log |Sk(α)|

)
subject to h(α) ≤ 0.

(17)

An important point is that the function ϕ(·, ·, ·) is con-
vex [19], hence the objective function has a “convex-over-
nonlinear” structure, which allows the use of an optimiza-
tion technique called the Generalized Gauss-Newton (GGN)
method [20], [21]. Finally, for compactness and consistency
with the notation adopted in [21], we can rewrite the opti-
mization problem (17) as

minimize
α∈Rnα

N∑
k=0

φ
(
Fk(α)

)
subject to h(α) ≤ 0,

(18)
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where Fk are nonlinear functions given by stacking the
components of the functions ek(α), Sk(α), and log |Sk(α)|,
and φ is the vector-input version of ϕ.

The GGN method that we develop consists in sequentially
solving a Quadratic Program (QP) obtained by the quadratic
approximation of (18) around the current solution point ᾱ.
Specifically, we linearize the inequality constraints and the
functions Fk(α), while we replace φ(·) by its quadratic
approximation φquad(·) defined as follows

φquad(∆F ; F̄ ) := φ(F̄ ) +
dφ

dF
∆F +

1

2
(∆F )>

d2φ

dF 2
∆F,

which is ensured to be convex. As a result, the QP to solve
at each iteration reads

minimize
∆α∈Rnα

N∑
k=0

φquad

(
dFk

dα
(ᾱ)∆α;Fk(ᾱ)

)
subject to h(ᾱ) +

dh

dα
(ᾱ)∆α ≤ 0.

(19)

Finally, to ensure convergence, the optimization variable α
is ultimately updated in the direction found by the QP, using
a globalization technique based on back-tracking line-search
until the Armijo condition is satisfied [22].

The linearization of the functions Fk(·) is done by prop-
agating the values and derivatives of Sk, ek, x̂k|k−1 and
Pk|k−1 in equations (4). We also use the mathematical for-
mula d log|S|

dS = S−1 for the linearization of log |Sk(α)|. Note
that the hand-tailored implementation of these derivatives
improves efficiency. For instance, the inverse matrices S−1

k

are computed only once, while they are used multiple times:
in the first equation of (4) or in the derivative of log |Sk|.

Finally, regarding the stopping criterion, the algorithm
stops when the cost decreases less than a given relative
tolerance, which we set to 10−5. The presented algorithm
is implemented in Python using standard libraries for linear
algebra, and CVXOPT [23] for solving the QP.

Remark 4. The significant steps are the propagation of the
derivatives of Pk and the solution of the QP. Hence, the
complexity of an SQP step is O(Nn3

xnα + n3
α).

Remark 5. Even though the method scales linearly in the
horizon length N , for online parameter estimation, where
the optimization needs to be performed quickly and the
quantity of past data is growing, moving horizons might be
considered, as proposed in [10].

V. NUMERICAL EXAMPLE

In this section, we apply the presented method to a
realistic estimation task. We use this task to investigate the
performance of the presented method when the dimensions
of the system scale up. It is also used to assess the efficiency
of the optimization algorithms discussed in Section IV-B.

The present estimation task is inspired by an industrial
problem of controlling the temperature of a fluid through
mass transport inside a straight pipe. The control inputs are
the temperature of the inlet and the position of a valve
located in the inlet, which can modify the fluid velocity.
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Fig. 3. Example of input and output data generated through the described
process, for the parameters α? = ( 1

2
, . . . , 1

2
) ∈ [0, 1]7.

The system is also subjected to unknown disturbances and
heat losses. The output measurements are obtained by two
thermometers placed at two different locations of the pipe. In
the context of controlling this system via MPC with a linear
state estimator, an accurate knowledge of its parameters is
required. Thus, our task is to estimate model parameters,
such as the heat losses, or the heat transfer coefficients that
depend on the valve position. The precision of each sensor
is also a parameter to estimate, jointly with the process noise
and the disturbance fluctuations. For this thermal system we
propose a linear model given by the following equations, for
k = 0, . . . , N

x1,k+1 = (1− ak)x1,k + akα1u1,k + wx
1,k,

xi,k+1 = (1− ak)xi,k + akxi−1,k + wx
i,k, i = 2, . . . , 5,

dk+1 = dk + wd
k,

y1,k = x2,k+1 + dk + v1,k,

y2,k = x5,k+1 + dk + v2,k, (20)
wx

k ∼ N (0,diag(α4, ε, ε, ε, ε)),

wd
k ∼ N (0, α5),

vk ∼ N (0,diag(α6, α7)),

where ak = 1
10 (α2 + α3u2,k) and ε = 10−6. The state x ∈

R5 models the temperature of the fluid at different locations
along the pipe. The state has been augmented by d ∈ R to
account for disturbances (cf. Remark 2). The control is given
by u ∈ R2, where u1 denotes the inlet temperature and u2

the valve position. Note that the control acts both linearly
and non-linearly on the system, which makes the present
system time-variant. The measured temperatures at locations
2 and 5 corresponds to the output y ∈ R2. The system has
parameters in both the dynamics and the noise covariances,
the parameter vector is α ∈ A = [0, 1]7. The parameter α1

models heat losses, while α2 and α3 model the heat transfer
dues to mass transport for the two positions of the valve.
The task is to estimate the whole parameter vector α.

We first collect measurements by simulating the system
using equations (20), where the inputs alternate every 200
time-steps between two values ulow = (100, 0) and uhigh =
(200, 1). Figure 3 shows a time series generated via this
model. Each parameter is sampled from a uniform probabil-
ity distribution U (0, 1). We apply the presented MLE method
with different sizes of measurement data, from N = 1000
to N = 3000. The two optimization algorithms described
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Fig. 5. Difference between the estimated parameters α, and true parameters
α? when the amount of data grows.

in Section IV-B are used separately. The first observation is
that both algorithms, i.e., the one based on the solver IPOPT
and the one based on the tailored SQP method, converge to
the same point, with a maximum difference between the two
solutions smaller than 10−3. This is encouraging because
it seems to imply that both algorithms converged to the
optimum of the MLE optimization problem.

Runtimes of the two algorithm are compared in Figure
4. This figure confirms that the algorithm complexity scales
linearly in the number of data point N , as it was mentioned
in Remark 4. Moreover, it shows that the developed SQP
method has a runtime 5 times smaller than IPOPT. Even
though, our implementation is done in Python using standard
libraries while IPOPT runs compiled C code. Hence, we
expect that by implementing the proposed SQP method in a
compiled language we could reduce its runtime dramatically.
As a reference, for the investigated problem with nontrivial
dimensions and with a rather difficult estimation task, the
algorithm takes about 20 seconds for N = 3000 data points.

Regarding the estimation performance, in Figure 5, we
compare the sum of squares of the differences between
the estimated parameters and the true parameters. The plot
shows that both model parameters and noise variances are
correctly estimated, and in case of enough data points, the
true parameters are recovered.

VI. CONCLUSION AND OUTLOOK

This paper offers a study about parameter estimation for
linear dynamical systems in the maximum likelihood frame-
work. We have shown, from a theoretical and a numerical
perspective, that through this framework it is possible to
jointly estimate parameters in the system dynamics and
the noise covariances. Specifically, we presented a tailored
optimization algorithm that extends the application of the
maximum likelihood framework to systems with realistic
dimensions. A fast open-source implementation of the al-
gorithm is left for future research, as well as the case of
online estimation.
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time algorithm for moving horizon state and parameter estimation,”
Computers and Chemical Engineering, vol. 35, no. 1, pp. 71–83, 2011.

[13] G. Pannocchia and J. Rawlings, “Disturbance Models for Offset-
Free Model-Predictive Control,” AIChE Journal, vol. 49, pp. 426–437,
2003.

[14] S. J. Kuntz and J. B. Rawlings, “Maximum likelihood estimation of
linear disturbance models for offset-free model predictive control,”
American Control Conference, pp. 3961–3966, 2022.

[15] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun,
“Discriminative training of Kalman filters.” in Robotics: Science and
systems, vol. 2, 2005, p. 1.

[16] L. Ljung, “Prediction error estimation methods,” Circuits, Systems and
Signal Processing, vol. 21, no. 1, pp. 11–21, 2002.

[17] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – a software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.
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