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Abstract— Over-the-Air Computation is a beyond-5G com-
munication strategy that has recently been shown to be useful
for the decentralized training of machine learning models due
to its efficiency. In this letter, we propose an Over-the-Air
federated learning algorithm that aims to provide fairness
and robustness through minmax optimization. By using the
epigraph form of the problem at hand, we show that the
proposed algorithm converges to the optimal solution of the
minmax problem. Moreover, the proposed approach does not re-
quire reconstructing channel coefficients by complex encoding-
decoding schemes as opposed to state-of-the-art approaches.
This improves both efficiency and privacy.

I. INTRODUCTION

In a traditional federated learning setting (as in [1]–[4],
and some references therein), we consider a system of N
agents connected to a central unit, and their objective is
to accomplish a machine learning task in a decentralized
manner. In a supervised learning setting, each agent i has its
own local dataset represented by Di = {dn

i }
|Di|
n=1, where |Di| is

the number of data points and i = 1,2, · · · ,N. The dataset Di
consists of pairs of inputs un

i and labels zn
i , i.e., dn

i = (un
i ,z

n
i ),

and the objective is to build a global parametric model that
is able to predict the correct labels of the given data points.
To this end, each agent i uses the private local cost function

gi(θ) =
1

|Di|

|Di|

∑
n=1

Li(dn
i ,θ), (1)

where Li(dn
i ,θ) is the error function representing the dif-

ference between the predicted output of the model with
parameter θ and the actual label of the given data point
dn

i . If we define the average of all local cost functions as the
global cost function g(θ), the objective of the overall system
is to solve the constrained optimization problem

θ
∗ = argmin

θ∈Θ

g(θ) = argmin
θ∈Θ

1
N

N

∑
i=1

gi(θ), (2)

where Θ ⊂ Rm is a nonempty constraint set. If the central
unit had access to the datasets of all agents, a centralized
gradient descent-based optimization could be employed to
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address the global learning task at hand [5]. However, in
a federated learning setting, e.g., [3], [6], [7], each agent
has access only to its own local (possibly private) dataset.
Having carried out the local optimization steps, they transmit
the updated versions of the local parameter estimates to
the central unit. Subsequently, the central unit aggregates
these local parameter estimates and transmits the aggregated
version to the agents for the next optimization steps.

For large-scale systems, where information exchange and
cooperation are vital, one critical challenge for the averaging-
based federated learning algorithms is heterogeneity [8]–
[10]. When the data is heterogeneous, i.e., the fact that agents
observe data from different distributions, the parameter vec-
tors minimizing the local cost functions will in general vary
significantly between different agents, and minimizing the
cost function (2) may not be desirable. Instead, using a worst-
case optimization problem may reflect practical requirements
more accurately. Another problem that we encounter in
large-scale networks is that the communication load on
the overall system increases with the number of agents
[11]–[14]. When multiple agents transmit information at
the same time and in the same frequency band, signals
are affected by the physical phenomenon of interference.
Standard communication protocols1 prevent interference by
transmitting signals orthogonally. However, these techniques
are not resource-efficient in the sense that they increase the
need for bandwidth or the number of communication rounds,
which in general leads to a decrease in total throughput and
efficiency [15], [16].

In this letter, we present a federated learning algorithm that
aims to improve the performance of the worst-performing
agent in the system, thus providing fairness and robustness
against heterogeneity. We leverage a beyond-5G communi-
cation strategy, called Over-the-Air Computation, which is
more efficient as the number of agents grows [16]. Unlike
the existing literature on Over-the-Air computation, e.g.,
[8], [17], the proposed algorithm can operate despite the
inherently unknown nature of channel coefficients. We do not
assume any knowledge of (nor the capability to reconstruct)
channel coefficients, and therefore we will not need extra pre-
processing efforts to reconstruct the channel, which makes
the proposed scheme more time and resource-efficient. More-
over, since the channel coefficients are completely unknown,
privacy is inherently guaranteed, as discussed in [18].

The remainder of this letter is organized as follows: we

1In TDMA (Time Division Multiple Access), agents are assigned
different time slots when they can transmit, whereas in FDMA (Frequency
Division Multiple Access), different frequency bands are allocated to
different users.
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present the problem setup in Section II. In Section III,
we introduce the proposed algorithm, whose convergence
analysis is presented in Section IV. A numerical example
is presented in Section V. Concluding remarks are given in
Section VI.

II. PROBLEM SETUP

The set of real numbers is denoted by R, and Rm repre-
sents m-dimensional Euclidean space. N and N0 respectively
denote the set of natural numbers and the set of nonnegative
integers. Given a finite set T , its cardinality is denoted by |T |.
For a vector x∈Rm, xT denotes its transpose. Euclidean norm
of the vector x ∈ Rm is denoted by ||x||. The projection of
x∈Rm onto a nonempty closed convex set S⊂Rm is denoted
by PS(x), i.e., PS(x) = argmins∈S ||s−x||. Projection is non-
expansive, i.e., ||PΘ(x)− PΘ(y)|| ≤ ||x − y|| holds for all
x,y∈Rm if Θ is a nonempty closed convex set (see [19]). For
given a,b ∈R, the function max{a,b} takes value a if a > b,
and b otherwise. The expected value of a random variable p
is denoted by E[p]. Given a logical argument gi(x), 1{gi(x)}
denotes the function that takes value 1 when gi(x) is true
and 0 when gi(x) is false. For a function f : Rm → (−∞,∞],
we define D f = {x ∈Rm

∣∣ f (x)< ∞}. Then, for a subgradient
of a convex function f with respect to x at x̃ ∈ D f , denoted
by ∂x f (x̃), the inequality f (x̃)+∂ f T (x̃)(x− x̃)≤ f (x) holds
for all x ∈ D f .

A. Minmax Reformulation

In a federated learning setting with N agents, where
V = {1,2, · · · ,N} denotes the index set, we are interested
in improving the performance of the worst-performing agent
by solving the following optimization problem:

min
θ∈Θ

max
i∈V

gi(θ). (3)

We aim to compute a parameter vector estimate minimizing
the worst-case loss observed among all agents, thus providing
some form of fairness [20], [21]. However, it is difficult and
inefficient to use (3) since it cannot be naturally split into
independent subproblems over agents, requiring coordination
for joint decision-making. This coordination overhead leads
to scalability and efficiency challenges. Instead, we can
consider an alternative (epigraph) form:

min
α∈R

α

subject to gi(θ)≤ α ∀θ ∈ Θ, i ∈V ; (4)

where the optimal value α∗ is assumed to be finite. More-
over, gi(θ

∗) ≤ α∗ holds if θ ∗ ∈ Θ is optimal for (4).
Let ḡi

(
(θ ,α)

)
= max{gi(θ)−α,0} and pi > 0 respectively

denote a penalty for violating the constraint in (4) for i ∈V
and a weight of this penalty. Then, by following [22] and
[23], one can rewrite (4) as

min
θ∈Θ,α∈R

α +
N

∑
i=1

piḡi
(
(θ ,α)

)
. (5)

It has been shown in [22] that any solution for (5) is also
a solution of (4) if pi > 1 for all i ∈ V . Hence, (5) can

be considered as the global loss function for the federated
learning setting.

B. Over-the-Air Communication Model

In wireless communication systems, the wireless multiple
access channel (WMAC) model has been extensively used
to characterize communication between multiple transmitters
and a single receiver over fading channels, e.g., [24], [25].
Throughout this letter, we employ the WMAC-based commu-
nication model described by [15], [26]. Let each agent i ∈V
simultaneously transmit information si(k)∈Rm to the central
unit in the same frequency band at each time step k ∈ N0.
However, this information is corrupted by the channel and
superimposed by the receiver, i.e., the received information
by the central unit is given by

srec(k) =
N

∑
i=1

λi(k)si(k), (6)

where the λi(k) are unknown time-varying positive channel
coefficients, i.e., λi(k)> 0 for all i = 1,2, · · · ,N.

Note that employing Over-the-Air computation has two
main advantages: (i) the channel coefficients λi(k) in (6)
are unknown, and it is impossible to reconstruct si(k) from
srec(k), which inherently provides privacy; (ii) our approach
does not require any knowledge of the channel coefficients,
nor do they need to be reconstructed. This makes our
algorithm highly efficient, in particular for large N. This is
demonstrated in numerical experiments in Section V.

III. FEDERATED FAIR OVER-THE-AIR LEARNING
(FEDFAIR) ALGORITHM

The FedFAir algorithm is summarized in Algorithm 1. At
the beginning, the central unit selects θ(0)∈Θ and α(0)∈R.
Then, through iterations, the central unit computes (7) and
broadcasts v(k) and θ(k). Subsequently, each agent computes
its own αi(k) and θi(k) by using the local update rules (8)
and (9) with the step size η(k), respectively. Afterward, in
the first round of agent-to-central unit communications, all
agents transmit simultaneously (and in the same frequency
band) their local values αi(k) to the central unit. In the
second round, each agent transmits simultaneously (and
in the same frequency band) their local parameter vectors
θi(k). Finally, in the third round, the constant ρi(k) = 1 is
transmitted by all agents again simultaneously and in the
same frequency band. We assume that the delays between
the three rounds are sufficiently small such that the channel
coefficients can be considered constant over the three rounds.
According to the WMAC model, the central unit receives the
vector (11) and two scalars given in (12) and (13) at each
time step k ∈N0. Finally, the central unit computes (14) and
(15), which can be rewritten in the following form:

θ(k+1) = PΘ

(
N

∑
i=1

hi(k)θi(k)

)
, (16)

α(k+1) =
N

∑
i=1

hi(k)αi(k), (17)



Algorithm 1: FedFAir
Initialization: θ(0) ∈ Θ, α(0) ∈ R, and pi ∈ R
Loop:

1: for each time step k ∈ N0 do
2: The central unit computes:

v(k) = α(k)− η(k)
N

(7)

3: The central unit broadcasts θ(k) and v(k)
4: Each agent i updates its local variables:

θi(k) = θ(k)−η(k)pi∂θ ḡi
(
(θ(k),v(k))

)
(8)

αi(k) = v(k)−η(k)pi∂α ḡi
(
(θ(k),v(k))

)
(9)

ρi(k) = 1 (10)

5: Each agent i transmits θi(k), αi(k), and ρi(k)
6: The central unit receives:

θ
rec(k) =

N

∑
i=1

λi(k)θi(k) (11)

α
rec(k) =

N

∑
i=1

λi(k)αi(k) (12)

ρ
rec(k) =

N

∑
i=1

λi(k)ρi(k) (13)

7: The central unit updates:

θ(k+1) = PΘ

(
θ rec(k)
ρ rec(k)

)
(14)

α(k+1) =
α rec(k)
ρ rec(k)

(15)

8: end for

where PΘ is the projection operator onto the set Θ, hi(k) =
λi(k)

∑
N
i=1 λi(k)

are the normalized channel coefficients, and the
λi(k) are the unknown time-varying positive real channel
coefficients. By construction, the hi(k) are also positive, and,
for all k ≥ 0,

N

∑
i=1

hi(k) = 1. (18)

Next, we state our assumptions on individual objective
functions and the step size as follows:

Assumption 1: The constraint set Θ ⊂ Rm is convex and
compact. As a consequence (see [27, Theorem 2.41, p.40]),
Θ is then also closed and bounded.

Assumption 2: The individual objective functions gi(θ)
are convex over Rm. Consequently, the minimax problem
(3) is also convex since the point-wise maximum of convex
functions preserves convexity [19, Proposition 1.2.4]. In
addition, the local cost functions ḡi

(
(θ ,α)

)
are also convex

but nondifferentiable, and their sets of subdifferentials are
nonempty for all x ∈ R, and i ∈V [19, Proposition 4.2.1].

Assumption 3: The step size η(k) in the FedFAir algo-
rithm is chosen to satisfy η(k) > 0, ∑

∞
k=0 η(k) = ∞, and

∑
∞
k=0 η2(k)< ∞.

Assumption 4: The unknown time-varying positive real
channel coefficients λi(k) (i = 1,2, · · · ,N) are assumed to
be random variables, independent across time and agents.

Remark 1: Assumption 4 is standard in the modeling of
WMACs (see [28, Ch 2.3, Ch 2.4], [29, Ch 5.4], and [30]).
We do not assume any specific probability distribution for
the channel coefficients.

IV. CONVERGENCE PROPERTIES

We start with the following lemmas that are essential for
the proofs presented in the letter.

Lemma 1 ( [31, Thm. 3.4.2]): If a sequence {a(k)} of
real numbers converges to a real number x, then any sub-
sequence {a(kt)} of {a(k)} also converges to x.

Lemma 2 ( [32, Lem. 11, p.50]): Let {v(k)}, {b(k)},
{u(k)}, and {c(k)} be nonnegative sequences of random
variables. Suppose that
(i) ∑

∞
k=0 b(k)< ∞ and ∑

∞
k=0 c(k)< ∞ hold almost surely,

(ii) For each k ∈ N0, the following holds almost surely

E
[
v(k+1)|Fk

]
≤
(
1+b(k)

)
v(k)−u(k)+ c(k), (19)

where E
[
v(k+ 1)|Fk

]
denotes the conditional expecta-

tion for the given Fk = {v(t),u(t),c(t), t = 0,1, · · · ,k}.
Then, {v(k)} converges to some v ≥ 0 and ∑

∞
k=0 u(k) < ∞

almost surely.
Lemma 3 ( [33, Prop. 2]): Let {a(k)} be a nonnegative

sequence and {b(k)} an eventually nonnegative sequence,
i.e., ∃k̃ ≥ 0 such that b(k)≥ 0 ∀k ≥ k̃. Let ∑

∞
k=0 a(k) = ∞ and

∑
∞
k=0 a(k)b(k)< ∞. Then, there exists a subsequence {b(kt)}

of {b(k)} such that limt→∞ b(kt) = 0.
Lemma 4: [23] Let α∗ = minθ∈Θ maxi∈V gi(θ), θ ∗ =

argminθ∈Θ maxi∈V gi(θ), and pi > 1 for all i ∈ V .
Then, for ḡi

(
(θ ,α)

)
= max{gi(θ) − α,0}, we have

∑
N
i=1 piḡi

(
(θ ,α)

)
+α ≥ α∗ for all θ ∈ Θ and α ∈ R, where

equality holds if and only if θ = θ ∗ and α = α∗.
We are now ready to present the main result.

Theorem 1: Suppose that Assumptions 1, 2, 3, and 4
hold. Let θ ∗ ∈ Θ and α∗ ∈ R respectively be an optimal
solution and the optimal value for the problem (3). If pi >

max
(

1, 1
NE[hi(k)]

)
for all i ∈ V , then limk→∞ θ(k) = θ ∗ and

limk→∞ α(k) = α∗ with probability 1.
Proof: We start by introducing β (k) =

[
θ(k)T α(k)

]T ,
y(k) =

[
θ(k)T v(k)

]T . Then, for any β ∗ =
[
θ ∗T α∗]T ∈

Θ×R, by using (7)-(17), the non-expansive property of the
projection PΘ, and the fact that θ ∗ = PΘ(θ

∗), we have

||β (k+1)−β
∗||2 =

∣∣∣∣∣
∣∣∣∣∣
[

PΘ

(
∑

N
i=1 hi(k)θi(k)

)
−PΘ(θ

∗)

∑
N
i=1 hi(k)αi(k)−α∗

]∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
[

θ(k)−θ ∗−η(k)∑
N
i=1 hi(k)pi∂θ ḡi

(
(θ(k),v(k))

)
v(k)−α∗−η(k)∑

N
i=1 hi(k)pi∂α ḡi

(
(θ(k),v(k))

)]∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣∣y(k)−β

∗−η(k)
N

∑
i=1

hi(k)pi∂ ḡi
(
y(k)

))∣∣∣∣∣∣2, (20)

where ∂ ḡi
(
y(k)

)
=
[
∂θ gi

(
θ(k)

)
−1
]T 1{gi(θ)≥α}.



We can further expand (20) as

||β (k+1)−β
∗||2 ≤

∣∣∣∣∣∣∣∣y(k)−η(k)
N

∑
i=1

hi(k)pi∂ ḡi
(
y(k)

)
−β

∗
∣∣∣∣∣∣∣∣2

=
∣∣∣∣y(k)−β

∗∣∣∣∣2
−2η(k)

N

∑
i=1

hi(k)pi∂ ḡT
i
(
y(k)

)(
y(k)−β

∗)
+
∣∣∣∣∣∣η(k)

N

∑
i=1

hi(k)pi∂ ḡi
(
y(k)

)∣∣∣∣∣∣2.
(21)

For the first term on the right-hand side of (21), we have

∣∣∣∣y(k)−β
∗∣∣∣∣2 = ∣∣∣∣∣

∣∣∣∣∣
[

θ(k)−θ ∗

α(k)−α∗

]
−
[

0
η(k)

N

]∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣β (k)−β

∗∣∣∣∣2 − 2η(k)
N

(
α(k)−α

∗)+ η2(k)
N2 .

(22)

which follows from (7). Note that the boundedness of the
constraint set Θ implies ∃LΘ > 0 such that

∣∣∣∣∂ ḡi
(
y(k)

)∣∣∣∣ ≤
LΘ, which together with (18), the convexity of the function
|| · ||2, and the fact that 1 < pi ≤ pmax with pmax = maxi pi
(i ∈V ) can be used to find an upper-bound for the last term
on the right-hand side of (21) as∣∣∣∣∣∣η(k)

N

∑
i=1

hi(k)pi∂ ḡi
(
y(k)

)∣∣∣∣∣∣2 = η
2(k)

∣∣∣∣∣∣ N

∑
i=1

hi(k)pi∂ ḡi
(
y(k)

)∣∣∣∣∣∣2
≤ η

2(k)M1, (23)

where M1 = p2
maxL2

Θ
. Let Fk represent the past iterates of α(k)

and θ(k), i.e., Fk = {α(t), θ(t), t = 0,1, · · · ,k} for k ∈ N0.
Subsequently, by using (22), (23), and taking the expectation
conditioned on Fk of both sides of (21) together with the
linearity of the expectation, we obtain

E
[
||β (k+1)−β

∗||2|Fk
]
≤
∣∣∣∣β (k)−β

∗∣∣∣∣2 − 2η(k)
N

(α(k)−α
∗)

−2η(k)E
[ N

∑
i=1

hi(k)pi∂ ḡT
i
(
y(k)

)(
y(k)−β

∗)|Fk
]

+η
2(k)M2, (24)

where M2 = M1 +
1

N2 . Note that due to Assumption 4,
the statistics of hi(k) (i = 1,2, · · · ,N) are independent of
hi(t) for t < k, which also implies that y(k) and hi(k) are
statistically independent at time k since the statistics of y(k)
are dependent only on hi(t) for t < k and i = 1,2, · · · ,N.
Hence, E

[
hi(k)|Fk

]
= E

[
hi(k)

]
holds for all k ∈ N0. Then,

by using the linearity of the expectation again, we can write
the third term on the right-hand side of (24) as

−2η(k)E
[ N

∑
i=1

hi(k)pi∂ ḡT
i
(
y(k)

)(
y(k)−β

∗)|Fk
]

=−2η(k)
N

∑
i=1

E
[
hi(k)pi∂ ḡT

i
(
y(k)

)(
y(k)−β

∗)|Fk
]

=−2η(k)
N

∑
i=1

E
[
hi(k)

]
pi∂ ḡT

i
(
y(k)

)(
y(k)−β

∗). (25)

Moreover, by Assumption 2 (convexity of ḡi(·)), we have

N

∑
i=1

pi∂yḡT
i
(
y(k)

)(
y(k)−β

∗)≥ N

∑
i=1

pi

(
ḡi
(
y(k)

)
− ḡi

(
β
∗))

=
N

∑
i=1

piḡi
(
y(k)

)
, (26)

which follows from the fact that for any β ∗ =
[
θ ∗T α∗]T ∈

Θ ×R, we have gi(θ
∗)− α∗ ≤ 0, and therefore ḡi(v∗) =

max{gi(θ
∗)− α∗,0} = 0 for all i ∈ V and k ∈ N0. Thus,

by using (26), (25) can be written as

−2η(k)
N

∑
i=1

E
[
hi(k)

]
pi∂ ḡi

(
y(k)

)(
y(k)−β

∗)
≤−2η(k)

N

∑
i=1

E
[
hi(k)

]
piḡi
(
y(k)

)
, (27)

which can then be used to rewrite (24) as

E
[
||β (k+1)−β

∗||2|Fk
]
≤
∣∣∣∣β (k)−β

∗∣∣∣∣2 +η
2(k)M2

− 2η(k)
N

(
α(k)−α

∗+N
N

∑
i=1

p̄iḡi
(
y(k)

))
(28)

where p̄i = E
[
hi(k)

]
pi. We can add and subtract the term

2η(k)
(

∑
N
i=1 p̄iḡi

(
β (k)

))
from the right hand side of (28) to

get

E
[
||β (k+1)−β

∗||2|Fk
]
≤
∣∣∣∣β (k)−β

∗∣∣∣∣2 +η
2(k)M2

− 2η(k)
N

(
α(k)−α

∗+N
N

∑
i=1

p̄iḡi
(
β (k)

))
+2η(k)p̄max

N

∑
i=1

∣∣ḡi
(
β (k)

)
− ḡi

(
y(k)

)∣∣,
(29)

which follows from the fact that
N

∑
i=1

p̄iḡi
(
β (k)

)
−

N

∑
i=1

p̄iḡi
(
y(k)

)
≤ p̄max

N

∑
i=1

∣∣ḡi
(
β (k)

)
− ḡi

(
y(k)

)∣∣
where p̄max = maxi p̄i (i ∈V ). By using (7) and the relation
|max{x1,0}−max{x2,0}| ≤ |x1 − x2| for scalars x1 and x2,
one can obtain

|ḡi
(
β (k)

)
− ḡi

(
y(k)

)
| ≤ |gi

(
θ(k)

)
−α(k)−gi

(
θ(k)

)
+ v(k)|

=
η(k)

N
, (30)

which can then be used to obtain

E
[
||β (k+1)−β

∗||2|Fk
]
≤
∣∣∣∣β (k)−β

∗∣∣∣∣2 +η
2(k)M3

− 2η(k)
N

(
α(k)−α

∗+
N

∑
i=1

wiḡi
(
β (k)

))
(31)

where wi = N p̄i and M3 = M2 + 2pmax. Suppose that pi >

max
(

1, 1
NE[hi(k)]

)
. Then, wi = N p̄i = NE

[
hi(k)

]
pi > 1. Note

that since α∗ = minθ∈Θ maxi∈V gi(θ), by Lemma 4, we have
α(k)−α∗+∑

N
i=1 wiḡi

(
β (k)

)
≥ 0 for all k ∈ N0. Moreover,



by Assumption 3, we have ∑
∞
k=0 η2(k)< ∞, which together

with (31) and Lemma 2 give

lim
k→∞

∣∣∣∣β (k)−β
∗∣∣∣∣2 = ϑ ≥ 0, (32)

∞

∑
k=0

η(k)
(

α(k)−α
∗+

N

∑
i=1

wiḡi
(
β (k)

))
< ∞, (33)

for any β ∗ =
[
θ ∗T α∗]T ∈ Θ×R and α∗ ∈R with probabil-

ity 1. Additionally, ∑
∞
k=0 η(k) = ∞ also holds by Assumption

3, which together with Lemma 3 imply that there exists a
subsequence such that the following holds with probability
1,

lim
l→∞

(
α(kl)−α

∗+
N

∑
i=1

wiḡi
(
β (kl)

))
= 0, (34)

which also implies that along a further subsequence, we have
limit points liml→∞ α(kl) = ᾱ and liml→∞ β (kl) = β̄ with
probability 1, which satisfy

ᾱ −α
∗+

N

∑
i=1

wiḡi
(
β̄
)
= 0. (35)

Hence, by Lemma 4 and the fact that wi > 1 for all i ∈ V ,
it follows that ᾱ = α∗ and θ̄ = θ ∗ are optimal for the
minmax problem (3) with probability 1. This implies that
liml→∞

∣∣∣∣β (kl)− β ∗∣∣∣∣2 = 0 with probability 1. Hence, by
Lemma 1, we have ϑ = 0 in (32) with probability 1, and
that concludes the proof.

V. NUMERICAL EXAMPLE

We consider a federated logistic regression problem, where
each agent has its own private data. The objective is to
collaboratively build a global model that can carry out a
binary classification task. In this setting, each agent has 2
different classes of data, labeled by 0 or 1. We represent
the dataset of the i-th agent by Di = {dn

i }
|Di|
n=1, where dn

i =
(un

i ,z
n
i ) ∈ Rm ×{0,1}. The objective is to find a separation

rule so that agents can identify the correct classes of some
unseen data from different classes. To this end, the following
convex loss function is used by each agent:

gi(θ ,di) =− 1
|Di|

( |Di|

∑
n=1

zn
i log

(
S(θ T un

i )
)

+(1− zn
i ) log

(
1−S(θ T un

i )
))

, (36)

where S(x) = 1
1+e−x and S(θ T un

i ) is the local estimate of the
i-th agent. The step size is chosen as η(k) = 0.01

(k+1)0.6 .
To demonstrate the fairness and robustness of the FedFAir

algorithm, we consider a system of 12 agents, each with
an individual imbalanced dataset, and the total number
of training samples is different for each agent. Moreover,
different types of noise, sampled from different distribu-
tions, are injected into the data available to each agent to
ensure statistical heterogeneity. The parameter vector is of
dimension 4, i.e., θ ∈ R4, and pi > 1 is chosen for all
agents i = 1,2, · · · ,12. Additionally, the constraint set is
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Fig. 1. Comparison of the performance of FedFAir, FedAVG, COTAF,
FedProx, and SCAFFOLD algorithms on unseen data during training in
terms of their accuracy.
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Fig. 2. Comparison of Confusion Matrices (CMs)

given by Θ = {θ ∈ R4| ||θ || ≤ 10}. In order to monitor
the performance of the system, we randomly sample some
previously unseen test data at every iteration, and then we
measure the performance of the global model on this test
data by computing its classification accuracy during training.
As it can be seen from Fig. 1, the FedFAir algorithm
achieves around 90% accuracy after approximately 5000
transmissions.

We have also compared FedFAir with FedAVG [1] and
three other state-of-the-art algorithms, COTAF [8], FedProx
[12], and SCAFFOLD [34]. Note that single-step gradient
update is carried out on agents’ devices for FedFair while the
other algorithms require agents to run multiple gradient steps
on their devices, which increases the performance but also
the computational costs. As can be seen in Fig. 1, COTAF,
FedProx, and SCAFFOLD perform better than FedAVG, but
the performance of FedFAir is observed to be the best. This
is even more remarkable as COTAF, which also uses Over-
the-Air computation, assumes all channel coefficients to be
known. Simulations for COTAF were therefore performed
for known channel coefficients, while they were unknown in
the FedFAir simulations. Moreover, due to the heterogeneity
in the distribution of the data, we observe from the confusion



matrices (CMs) in Fig. 2 that the FedAVG algorithm cannot
properly identify the samples of data with labels 1. Even
though we see some improvements for COTAF, FedProx, and
SCAFFOLD, the FedFAir algorithm performs much better by
recognizing a large percentage of data, both labeled 0 and 1.

Additionally, we compare the FedFAir algorithm and the
other algorithms in terms of communication efficiency. For
the latter, the TDMA scheme is used for communication
between agents and the central unit. In this case, an in-
dividual time slot is allocated for each agent to transmit
its parameter vector at each communication round. After
receiving parameter vectors, the central unit computes the
average of them and sends it back to the agents. Since we
consider a system with N = 12 agents, it takes N = 12 time
slots per communication round for each agent to transmit its
updated parameter vector, while only 3 are needed for the
FedFAir algorithm (see (13)), independent of the value of N.
This makes the execution of one iteration of the FedFAir
algorithm N/3 = 4 times faster than the execution of an
iteration of the other algorithms.

VI. CONCLUSION

In this letter, we have introduced the FedFAir algorithm,
which uses Over-the-Air Computation to carry out efficient
decentralized learning while providing fairness and improved
performance. We have shown that the FedFAir algorithm
converges to an optimal solution of the minimax problem.
Furthermore, FedFAir ensures fairness by minimizing the
maximum loss across all agents, regardless of their individual
characteristics, thus promoting robustness against data het-
erogeneity. We have also illustrated our theoretical findings
with a numerical example.

Future research will include the development of resilient
federated learning algorithms when there are malicious
agents in the system.
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