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Convex Synthesis of Control Barrier Functions
Under Input Constraints

Pan Zhao , Member, IEEE, Reza Ghabcheloo , Yikun Cheng, Graduate Student Member, IEEE,
Hossein Abdi , and Naira Hovakimyan , Fellow, IEEE

Abstract—This letter presents a systematic method
based on the sum of square (SOS) optimization to synthe-
size control barrier functions (CBFs) for nonlinear polyno-
mial systems subject to input constraints. The approach
consists of two design steps. In the first step, using a
linear-like representation of the nonlinear dynamics, an
SOS optimization problem is formulated to search for an
initial CBF and controller jointly. In the second step, an
iterative optimization procedure involving the solution of a
series of SOS problems is proposed to alternatively update
the CBF and the controller to increase the invariant set
defined by the CBF. The efficacy of the proposed approach
is validated using numerical examples.

Index Terms—Constrained control, optimization, nonlin-
ear systems, safety.

I. INTRODUCTION

CONTROL barrier functions (CBFs) have emerged as
a practical tool for controlling nonlinear systems with

safety constraints [1], [2]. CBFs can be used to synthesize
control signals to enforce state constraints by ensuring set
invariance, while not resorting to a specific control law [1].
On the other hand, input constraints exist in almost any real-
world system. Consideration of input constraints in control
design is therefore needed for practical implementation.

In most of the existing work on CBFs [1], [2], [3], [4], [5], a
function is heuristically or intuitively selected and assumed to
be a CBF. However, this heuristic or intuitive design procedure
works only for naive scenarios, e.g., simple box constraints on
position or velocity [1], [2], [3], [4], [5]. Given an intuitively
designed candidate function, one still needs to verify that this
function is indeed a CBF, which is particularly important in
the presence of input constraints. Otherwise, the feasibility of
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the QP problem formulated to construct the control signal and
safety of the system cannot be guaranteed.

Contributions: This letter presents a systematic method
based on convex optimization (in particular, sum of squares
(SOS) optimization [6]) for the synthesis of CBFs in the pres-
ence of input constraints for nonlinear polynomial systems.
Our method consists of two design steps, each yielding a valid
CBF. The initial design is to jointly search an initial CBF and
a controller, using a state-dependent linear-like form of the
nonlinear dynamics and SOS techniques, in which the volume
of the CBF-defined invariant set is maximized. The second
step is to alternatively update the CBF obtained from the first
step and the controller while fixing the other using the origi-
nal nonlinear dynamics. Numerical examples are included to
validate the effectiveness of the proposed method.

Related Work: A closely related problem is Lyapunov-
based nonlinear control synthesis using SOS optimization.
Leveraging a linear-like representation, [7] proposed to search
for a state-dependent Lyapunov function (LF) and a con-
troller jointly using SOS programming. In [7], nonlinear terms
involving the product of LF coefficients and controller gain
are avoided by constraining the LF to depend on states whose
derivatives are not directly affected by any control input. The
result in [7] motivates our proposed approach to CBF synthe-
sis (the first step). Finally, [8] proposed to iteratively search
for control Lyapunov functions (CLFs) via SOS optimization
without searching for a controller.

Convex optimization-based nonlinear control synthesis
under input constraints has also been studied. The author of [9]
introduced a polytope model to characterize the saturation and
formulated the design problem as an SOS problem by extend-
ing the linear matrix inequality (LMI) approach for linear
systems with input saturation. In [10], a system with saturating
input was converted to a new system with unsaturated input
and a vanishing disturbance input, to which a standard design
method inspired by [7] can be applied. Also inspired by [7],
the authors of [11] formulated an SOS optimization problem
to compute the optimal feedback gain for predictive control
of a nonlinear system subject to input constraints. This let-
ter motivates the first step of our SOS-based method for CBF
synthesis.

CBF synthesis has been explored recently based on SOS
optimization [12], [13], [14], linearization [15], machine
learning [16], [17] and Hamilton-Jacobi reachability analy-
sis [18], [19]. In [12], the authors proposed to sequentially
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update a CBF and a controller while fixing the other using
SOS optimization. However, the design procedure needs an
LF to calculate an initial CBF, while how to obtain such
an LF was not given. In [13], the author presented an SOS
optimization-based method for CBF synthesis, which, unfor-
tunately, is computationally heavy and does not guarantee the
return of a valid CBF. Very few works considered CBF syn-
thesis under input constraints. In [15], the authors proposed
to synthesize CBFs for discrete-time nonlinear systems with
input constraints, by first searching for a quadratic CBF for
a linearized system and then refining it for the nonlinear
systems. However, the limit to quadratic functions makes the
design overly conservative. Additionally, the design proce-
dure requires a global solution of nonlinear programming
problems, which, by itself, is a challenging problem. Very
recently, [14] proposed an SOS optimization-based method for
CLF/CBF synthesis that both accounts for input constraints
and explicitly avoids the construction of a nominal controller,
potentially improving performance and reducing the compu-
tational cost. However, an initial valid LF is needed for the
synthesis procedure.

Notations: Let R, Rn, Rm×n and Sn denote the sets of real
numbers, n-dimensional real vectors, m by n real matrices, and
n × n real symmetric matrices, respectively. Z

n
1 denotes the

integer set {1, 2, . . . , n}. R[x] denotes the set of polynomials
with real coefficients, while Sn[x] and R

m×n[x] denote the sets
of n×n real symmetric polynomial matrices and of m × n real
matrices, respectively, whose entries are polynomials of x with
real coefficients. Finally, we let �[x] denote the set of SOS
polynomials of x.

II. PRELIMINARIES AND PROBLEM SETTING

Consider a nonlinear control-affine system

ẋ = f (x) + B(x)u, (1)

where x(t) ∈ R
n, u(t) ∈ R

m, f : Rn → R
n and B : Rn → R

m

are polynomial and locally Lipschitz continuous functions. The
system (1) needs to satisfy state constraints given by

x(t) ∈ X � {x ∈ R
n : ci(x) ≤ 0, i = 1, . . . , p}, (2)

for all t ≥ 0, where ci : Rn → R is a polynomial function,
and X is a compact set. Additionally, (1) is subject to input
constraints of the form

u(t) ∈ U � {u ∈ R
m : Dju ≤ 1, i = 1, . . . , q}, (3)

for all t ≥ 0, where Dj ∈ R
1×m. Without loss of generality, we

assume the interior of X contains the origin. If this assumption
does not hold, one can possibly shift the system so that X
defined using the shifted states contains the origin.

Definition 1 (CBF [1]): A continuously differentiable func-
tion h : Rn → R is a CBF for the system (1), if there exists an
extended class K function α(·) such that for all x ∈ X , there
exists a u ∈ R

m satisfying

ḣ(x) = Lf h(x) + LBh(x)u ≥ −α(h(x)), (4)

where Lf h(x) � ∂h(x)
∂x f (x), LBh(x) � ∂h(x)

∂x B(x).
As noted in [1], h(x) being a CBF ensures the set

Xh � {x ∈ R
n : h(x) ≥ 0} (5)

is forward invariant: if x(0) ∈ Xh, then there exists a control
law u(t) ∈ U such that for all t ≥ 0, x(t) ∈ Xh. Definition 1
allows us to consider all control signals for each x ∈ X and
t ≥ 0 that render Xh forward invariant:

Kcbf(x) � {u ∈ U : Lf h(x) + LBh(x)u ≥ −α(h(x))}. (6)

A polynomial l(x) is an SOS if there exist polynomials
l1(x), . . . , lm(x) such that l(x) = ∑m

i=1 l2i (x). A polynomial
l(x) of degree 2d is an SOS iff there exists a positive semidef-
inite (PSD) matrix Q such that l(x) = yT(x)Qy(x), where y(x)
is a column vector whose entries are all monomials in x with
degree up to d [6]. An SOS decomposition for a given l(x)
can be computed using semidefinite programming (SDP) (by
searching for a PSD matrix Q). When a polynomial l(x) is
not exactly determined, but its coefficients are affinely param-
eterized in terms of some unknowns, the search for these
unknowns which render l(x) an SOS can still be performed
via SDP [7].

Proposition 1 [7, Proposition 2]: Let F(x) be an N × N
symmetric polynomial matrix of degree 2d in x ∈ R

n.
Then, F(x) ≥ 0 ∀x ∈ R

n, if vTF(x)v ∈ �[x, v], where
v ∈ R

N .
Proposition 2 [7, Proposition 10]: Let F(x) be an N × N

symmetric polynomial matrix of degree 2d in x ∈ R
n, and let

X be a set defined as X = {x ∈ R
n : gl(x) ≥ 0, l = 1, . . . , s},

v ∈ R
N . Suppose there exist SOS polynomials ll(x, v), l =

1, . . . , s whose degree in v is equal to two, such that vTF(x)v−∑s
l=1 ll(x, v)gl(x) ∈ �[x, v]. Then, F(x) ≥ 0 for all x ∈ X .

III. SOS OPTIMIZATION-BASED SYNTHESIS OF CBFS

UNDER INPUT CONSTRAINTS

In this section, we first present an approach to synthesizing
CBFs under input constraints using state-dependent linear-like
forms and SOS optimization. We then introduce an iterative
algorithm involving SOS optimization to further improve the
CBFs from the initial design.

A. Initial CBF Synthesis Using Linear-Like Forms

Inspired by [7], [11], we make the following assumptions.
Assumption 1: The nonlinear system (1) has a a state-

dependent linear-like representation [7]:

ẋ = A(x)z(x) + B(x)u, (7)

where A(x) ∈ R
n×N is a polynomial matrix, and z(x) ∈ R

N is
a vector of monomials such that z(x) = 0 iff x = 0.

Assumption 2: There exists a compact algebraic set X̄ =
{x ∈ R

n|h0(x) ≥ 0}, where

h0(x) � 1 − zT(x)P−1
0 z(x) (8)

for some positive definite matrix P0, such that X ⊆ X̄ .
Remark 1: Assumption 1 is not very restrictive as it can

always be satisfied when f (x) is a polynomial and does not
contain any constant terms, i.e., monomials of zero degrees. If
the original state constraint set (X ) is compact, we can always
find a set X̄ (which will be an ellipsoid when z(x) = x) that
is sufficiently large such that Assumption 2 holds.
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Fig. 1. Illustration of algebraic sets defined in Section III.

With z(x) in (7), we can introduce an inner approximation
of X as

X � {x ∈ R
n : |Ci(x)z(x)| ≤ 1, i ∈ Z

p̃
1}, (9)

where Ci : R
n → R

1×N is a vector-valued polynomial
function. An illustration of different sets is given in Fig. 1.
Similarly, we introduce an inner approximation of U as
U � {u ∈ R

m : |D̃ju| ≤ 1, j ∈ Z
q̃
1}, where D̃j ∈ R

1×m.
Remark 2: Definition (9) captures a wide range of com-

monly seen geometric sets. For instance, the constraint |xi| ≤
ai (ai > 0) for defining a hypercube can be represented as
| 1/ai1i︸ ︷︷ ︸

Ci(x)

x︸︷︷︸
z(x)

| ≤ 1 with 1i being a vector of appropriate dimen-

sion with all zero elements except the ith one equal to 1. An
ellipsoid constraint xTPx ≤ 1 can be represented as

∣
∣Ci(x)z(x)

∣
∣

with Ci(x) = xTP and z(x) = x.
In addition, we define M(x) to be an N × n polynomial

matrix whose (i, j)-th entry is given by Mij = ∂zi
∂xj

(x). Let Aj(x)
denote the j-th row of A(x), J = {j1, j2, . . . , jm} denote the row
indices of B(x) whose corresponding row is equal to zero, and
define

x̃ = (xj1 , xj2 , . . . , xjm),

which includes all the states whose derivatives are not directly
affected by control inputs.

The result is summarized in the following theorem.
Theorem 1: Consider the system (7) subject to the input

constraint (3) and state constraint (2). Suppose Assumption 2
hold, and the following optimization problem is feasible:

max
X ∈ SN[x̃], Y ∈ R

m×N[x], l0, l1, l2 ∈ �[x, v],

li3 ∈ �[x, v, w] ∀i ∈ Z
p̃
1, lj4 ∈ �[x, v, w] ∀j ∈ Z

q̃
1, X0 > 0

log det(X0)

(10)

s.t.

vT F1(x)v − l0h0(x) ∈ �[x, v], (11)

vT(
X(x̃) − X0

)
v − l1h0(x) ∈ �[x, v], (12)

vT(
P0 − X(x̃)

)
v − l2h0(x) ∈ �[x, v], (13)

[
v
w

]T[
1 CiX(x̃)
∗ X(x̃)

][
v
w

]

− li3h0(x) ∈ �[x, v, w], ∀i ∈ Z
p̃
1, (14)

[
v
w

]T[
1 D̃jY(x)
∗ X(x̃)

][
v
w

]

− lj4h0(x) ∈ �[x, v, w], ∀j ∈ Z
q̃
1, (15)

where v ∈ R
N and w ∈ R are introduced to convert a matrix-

valued polynomial to a scalar polynomial so that an SOS

constraint can be formulated,

F1(x) = ∑

j∈J

∂X(x̃)
∂xj

(
Ajz

) −
〈
M

(
AX(x̃) + BY

)〉
, (16)

and we have omitted the dependence of most variables on x
for brevity. Then, the following statements hold:

(a) The function

h(x) = 1 − zT(x)X−1(x̃)z(x) (17)

is a CBF for (7) according to Definition 1. Moreover, (4) is
satisfied for all x ∈ X with a control signal from

u(x) = Y(x)X−1(x̃)z(x) (18)

satisfying (4) for all x ∈ X . Moreover, Xh ⊆ X , where X and
Xh are defined in (2), and (5), respectively.

(b) If x(0) ∈ Xh, under the control law (18), we have
u(t) ∈ U and x(t) ∈ Xh for all t ≥ 0.

Before proceeding to the proof, we first explain the purpose
of constraints imposed in (10). Condition (11) ensures ḣ(x) ≥ 0
for any x ∈ X̄ with the control law (18), while (12), and (13)
ensure X(x̃) ≥ X0 and P0 ≥ X(x̃), respectively, for any x ∈ X̄ .
Condition (14) ensures

∣
∣Ci(x)z(x)

∣
∣ ≤ 1, i.e., the ith condition

in defining X̄ in (9) is satisfied, for any x ∈ X̄ , while (15)
ensures

∣
∣
∣D̃ju

∣
∣
∣ ≤ 1, i.e., the ith input constraint condition is

satisfied, for any x ∈ X̄ with the control law (18).
Remark 3: Similar to [7], the matrix X depends only

on x̃. If X depends on all the states, when com-
puting dX−1(x)

dt to calculate ḣ as in (22), we have
dX−1(x)

dt = ∑n
j=1

∂X−1(x)
∂xj

(Ajz + Bju(x)) instead of dX−1(x̃)
dt =

∑
j∈J

∂X−1(x̃)
∂xj

(Ajz) currently used in (22). As a result, we could
not obtain a convex SOS condition similar to (11) anymore.

Remark 4: Recall that the volume of a generalized ellipsoid
E = {v|‖Qv‖ ≤ 1} is proportional to det(Q−1) [20, Sec. 8.4].
We can think of the set Xh with h(x) defined in (17) as an ellip-
soid (although it is not unless X(x̃) is constant and z(x) = x).
Therefore, maximizing log det X0 in (10) is a proxy mechanism
for maximizing the volume of Xh.

Proof [Proof of (a)]: According to Proposition 2, (12)
implies X(x̃) ≥ X0 > 0, for all x ∈ X̄ . Also, (13) implies
P0 ≥ X(x̃) for all x ∈ X̄ , which further implies

1 − zT(x)P−1
0 z(x) ≥ 1 − zT(x)X−1(x̃)z(x), ∀x ∈ X̄ . (19)

Therefore, we have Xh ⊆ X̄ with the definitions of X̄ and Xh
in (8) and (5), respectively. On the other hand, for any x ∈ Xh
with h(x) given by (17), we have

zT(x)X−1(x̃)z(x) ≤ 1, ∀x ∈ Xh. (20)

According to Proposition 2, (11) implies

F1(x) ≥ 0, ∀x ∈ X̄ . (21)

Under the dynamics (7) and the control law (18), the definition
in (17) implies

ḣ(x) = −zT(x)

⎡

⎣
∑

j∈J

∂X−1(x̃)

∂xj

(
Ajz

)

+
〈

X−1(x̃)M
(

A + BYX−1(x̃)
)〉

⎤

⎦z(x) (22)
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= zT(x)X−1(x̃)F1(x)X
−1(x̃)z(x), (23)

≥ 0, (24)

for all x ∈ X̄ , where we have leveraged the fact that ż(x) =
M(A + BYX−1(x̃))z(x) and ∂X−1(x̃)

∂xj
= −X−1(x̃) ∂X(x̃)

∂xj
X−1(x̃)

[7, Lemma 5] in deriving (23), and (24) is due to (21). As
a result, condition (4) can always be satisfied for any x ∈ X̄
under the control law u(x) defined by (18). Therefore, h(x) is
a valid CBF.

According to Proposition 2, (14) implies

[
1 CiX(x̃)
∗ X(x̃)

]

≥ 0

for all x ∈ X̄ , which, via Schur complement, further indi-
cates X(x̃)CT

i CiX(x̃) ≤ X(x̃) for all x ∈ X̄ . Multiplying
the preceding inequality by zT(x)X−1(x̃) and its transpose
from the left and right, respectively, leads to |Ciz(x)|2 ≤
zT(x)X−1(x̃)z(x), ∀x ∈ X̄ , ∀i ∈ Z

p̃
1, which, together with (20)

and the fact that Xh ⊆ X̄ , indicates |Ciz(x)| ≤ 1 for all x ∈ Xh

and for all i ∈ Z
p̃
1. As a result, Xh ⊆ X ⊆ X .

Proof of (b): According to Proposition 2, (15) implies[
1 D̃jY(x)
∗ X(x̃)

]

≥ 0 for all x ∈ X̄ for all j ∈ Z
q̃
1, which, via

Schur complement, further indicates X−1(x̃)YT D̃T
j D̃jYX−1(x̃)

≤ X−1(x̃) for all x ∈ X̄ for all j ∈ Z
q̃
1. Multiplying the

preceding inequality by z(x) and its transpose from the right
and left, respectively, and considering the control law (18),
we have |D̃ju|2 ≤ zT(x)X−1(x̃)z(x), which, together with (20),
implies |D̃ju| ≤ 1 for all x ∈ Xh for all j ∈ Z

q̃
1. As a result,

the control law (18) satisfies u(x) ∈ U , for all x ∈ Xh. If
x(0) ∈ Xh, by contradiction, it is easy to show that u(x(t)) ∈ U ,
ḣ(x(t)) ≥ 0, and x(t) ∈ Xh for all t ≥ 0. The proof is
complete.

Problem (10) is a convex optimization problem, as the cost
function to be maximized is concave, and all the constraints are
SOS constraints with affine dependence on decision variables.

Remark 5: To reduce the conservatism of problem (10), a
number of workarounds may be considered. First, one can
replace h0(x) in any of (11)–(15) with −ci(x) (i ∈ Z

p
1) to

ensure that corresponding conditions hold in X instead of
X̄ to reduce the conservatism. This procedure will lead to
increased computational cost since a multiplier needs to be
introduced for each −ci(x) with i ∈ Z

p
1. As an example, one

can replace l0h0(x) in (11) with
∑

i∈Zp
1

li0 · (−ci(x)) where

li0 ∈ �[x, v]. Second, one could try to increase the com-
plexity of polynomial decision variables such as X(x̃) and
Y(x) by increasing the degrees and/or states that the variables
depend on.

B. Refining CBFs via Iterative SOS Optimization

The use of the (potentially non-unique) linear-like form (7)
in Section III-A, the constraint ḣ(x) ≥ 0 through (11) (which is
more restrictive than needed by Definition 1), and/or the inner-
approximation of X and U adopted in Theorem 1 can lead to
conservative results. To reduce the conservatism, motivated
by [12], we now present an iterative procedure, summarized
in Algorithm 1, to alternatively update h(x) and u(x), as well
as associated multipliers.

Remark 6: Since Y(x̃) is a polynomial matrix and z(x) is a
polynomial vector, h(x) and u(x) from solving problem (10)

Algorithm 1 Iterative SOS Optimization for Refining a CBF
Input: Initial CBF h(x) and controller u(x) with a polynomial
form from solving problem (10), an extended class K function
α(·), MaxIter and Tol
Step 0: With h(x) fixed, solve

max
lh ∈ �[x], u ∈ R

m[x], ε ≥ 0

li0x ∈ �[x] ∀i ∈ Z
p
1, lju ∈ �[x] ∀j ∈ Z

q
1

ε (25)

s.t. Lf h(x) + LBh(x)u(x) + α(h(x)) − lhh(x) − ε ∈ �[x],(26)

−h(x) − li0x ci(x) ∈ �[x], ∀i ∈ Z
p
1, (27)

1 − Dju(x) − ljuh(x) ∈ �[x], ∀j ∈ Z
q
1, (28)

where the dependence of h on x is omitted. If (25) is feasible,
set k = 1, select a N-dimensional column vector, y(x), whose
entries are all monomials in x such that h(x) = yT(x)Q0y(x)
for some symmetric matrix Q0, and go to Iterative Update;
otherwise, go to Output.
Iterative Update:
• Step 1 (h(x) update): Fixing u(x), lh(x) and lju(x) (j ∈ Z

q
1),

solve

max
Q ∈ SN , μ0 ∈ R, lix ∈ �[x] ∀j ∈ Z

q
1

μ0 (29)

s.t. Lf h(x) + LBh(x)u(x) + α(h(x)) − lhh(x) ∈ �[x], (30)

−h(x) − lixci(x) ∈ �[x], ∀i ∈ Z
p
1, (31)

1 − Dju(x) − lju(x) h(x) ∈ �[x], ∀j ∈ Z
q
1, (32)

Q ≥ μ0IN, Q(1, 1) = 1, (33)

where h(x) = yT(x)Qy(x). Set μ(k) = μ0.
• Evaluation: if k == 1 or (k < MaxIter and μ(k) − μ(k −
1) > Tol), set k ← k + 1 and go to Step 2; otherwise, go to
Output.
• Step 2 (u(x) update): Fixing h(x), solve

max
lh ∈ �[x], lju ∈ �[x] ∀j ∈ Z

q
1, u ∈ R

m[x], ε ≥ 0
ε (34)

s.t. (26) and (28). (35)

Go to Step 1.
Output: a CBF h(x) and a controller u(x).

are guaranteed to have a polynomial form if we restrain X(x̃)
to be a constant matrix.

The following theorem gives an analysis of Algorithm 1.
Theorem 2: Consider Algorithm 1. Suppose the

optimization problem (25) in Step 0 is feasible with an
appropriate selection of the monomials for u(x), lh(x), lix(x)
(i ∈ Z

p
1), and lju(x, v) (j ∈ Z

q
1). Then, the following statements

hold:
(a) Problems (34), and (29) are always feasible for k ≥ 1.
(b) The value of the objective function from solving (29) is

monotonically increasing, i.e., μ(k) ≥ μ(k − 1) for all k ≥ 2.
(c) The function h(x) output by Algorithm 1 is a valid CBF

according to Definition 1. Besides, Xh ⊆ X with Xh defined
in (5). Moreover, if x(0) ∈ Xh, under the controller u(x), we
have u(t) ∈ U and x(t) ∈ X for all t ≥ 0.

Proof [Proof of (a)]: Let us first consider the optimization
problem (29) in Step 1 for k = 1. Select the monomials

2740
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for lix so that li0x from Step 0 can be fully represented by
those monomials. Then, by comparing the constraints of the
optimization problems (25) and (29) and considering the fact
that l(x) ∈ �[x] if l(x)−β ∈ �[x] for any β ≥ 0, one can see
that the constraints of (29) can be satisfied with lix(x) = li0x (x),
Q = Q0, and μ0 set to be the smallest eigenvalue of Q.
Similarly, the optimized variables u(x), lh(x) and lju(x) (j ∈ Z

q
1)

from Step 0 and h(x) from Step 1, together with ε = 0, satisfy
all the constraints of (34).

Next, consider the case of k ≥ 2. For Step 1, by comparing
the constraints of problems (34), and (29), one can see that
all the constraints of (29) can be satisfied with μ0, Q and
lix ∈ �[x] (i ∈ Z

p
1) from Step 1 at iteration k − 1 and u(x),

lh(x) and lju(x) (j ∈ Z
q
1) from Step 2 at iteration k − 1. For

Step 2, the constraints of (34) can be satisfied with u(x), lh(x)
and lju(x) (j ∈ Z

q
1) from Step 2 at iteration k−1 and h(x) from

Step 1 at iteration k, together with ε = 0.
Proof of (b): As shown in the proof of (a), for k ≥ 2, μ(k−1)

(obtained at iteration k−1) is a candidate for μ0 to ensure the
feasibility of (29) at iteration k. Therefore, μ(k) ≥ μ(k − 1)

for k ≥ 2.
Proof of (c): If (25) in Step 0 is infeasible, the h(x)

output by Algorithm 1 is exactly the one obtained from solv-
ing (10). Under such a case, (c) is the same as statement
(b) of Theorem 1 and thus holds according to Theorem 1.
Otherwise, the functions h(x) and u(x), produced as outputs
by Algorithm 1, should satisfy the constraints (30)–(32)
in problem (29). Notice that (30) implies ḣ(x) = Lf h(x) +
LBh(x)u(x) ≥ −α(h(x)) for all x ∈ X̄ . Therefore, h(x) is a
valid CBF according to Definition 1. Moreover, (31) implies
that for any i ∈ Z

p
1, for all x satisfying ci(x) ≥ 0, we have

−h(x) ≥ 0, which further suggests that Xh ⊆ X , where
X is defined in (2). Furthermore, (32) indicates that for all
x ∈ Xh, Dju(x) ≤ 1, ∀j ∈ Z

q
1. Thus, for any x ∈ Xh, following

the control law u(x) will ensure that the input constraints (3)
and the CBF condition (4) are satisfied simultaneously. It is
straightforward to show that if x(0) ∈ Xh, then u(x(t)) ∈ U ,
ḣ(x(t)) ≥ −α(h(x(t))), and x(t) ∈ Xh for all t ≥ 0. Therefore,
(c) is proved.

Remark 7: Maximizing μ0, i.e., the smallest eigenvalue of
Q, in (29), is a proxy mechanism for maximizing the volume
of Xh = {x|h(x) = yT(x)Qy(x) ≥ 0}, denoted by vol(Xh).

Remark 8: By removing (15), one can solve problem (10)
to synthesize CBFs without considering input constraints.
Similarly, by removing (28) and (32), one can use Algorithm 1
to refine CBFs without input constraints.

Remark 9: If we only consider that x(0) is in the CBF-
defined set, we can replace h0(x) in (26), and (30) with h(x)
so that CBF condition (4) only needs to hold in Xh instead of
X . This can possibly further improve the volume of Xh.

From the proof of Theorem 1, we notice that h(x) and u(x)
from solving (10) satisfy

ḣ(x) = Lf h(x) + LBh(x)u(x) ≥ 0, ∀x ∈ X̄ , (36a)

x ∈ X , u(x) ∈ U , ∀x ∈ Xh, (36b)

with Xh ⊆ X . On the other hand, the constraints (26)–(28)
of problem (25) in Step 0 aim to ensure

ḣ(x) + α(h(x)) − ε ≥ 0, ∀x ∈ X̄ , (37a)

x ∈ X , u(x) ∈ U , ∀x ∈ Xh, (37b)

Fig. 2. CBFs in the presence of control limits under z(x) = x (top
left) and z(x) = [x1 x2 x3

2 ]T (top right) as well as control input trajecto-
ries (bottom) under the controllers from Algorithm 1 given an initial state
(illustrated by circles).

for some constant ε ≥ 0. By comparing the constraints (36)
and (37) we conjecture that h(x) and u(x) from solving (10)
have a high chance to satisfy (37).

Instead of using the controller u(x) output by Algorithm 1,
we can alternatively compute the min-norm control signal at
each time instant by solving a QP problem [1]:

min
u

‖u‖ s.t. Lf h + LBhu ≥ −α(h(x)) and u ∈ U . (38)

From the analysis in Theorem 2, we know that the optimization
problem is always feasible as long as x(0) ∈ Xh.

IV. SIMULATION RESULTS

We now test the proposed approach on two numerical exam-
ples. We used MATLAB with YALMIP [21] and Mosek [22]
to solve all the optimization problems. All codes are available
at https://github.com/boranzhao/cbf-sos.

Example 1: Consider a system with an unstable equilibrium

at the origin:

[
ẋ1
ẋ2

]

=
[

x1
−x1 + 0.5x2 + x3

2

]

+
[

1
0

]

u, where x =
[x1, x2]T ∈ R

2 and u ∈ R are the state and control vectors
of the system. The state constraints are given by x ∈ X =
{x|x2

1 ≤ 1, x2
2 ≤ 1}, illustrated by the red boxes in Fig. 2. The

control input is constrained by |u| ≤ 1.
For applying Theorem 1 for initial CBF design, we tested

both z(x) = x and z(x) = [x1 x2 x3
2]T for obtaining the linear-

like dynamics (7), and the degrees of X and Y to be 0 and
2, respectively, for both cases. Additionally, we selected P0
(used in defining h0(x) via (8)) to be 2 and 3, respectively,
for z(x) = x and z(x) = [x1 x2 x3

2]T , to get the smallest X̄
such that X ⊆ X̄ . To reduce the conservatism, we replaced
the term dependent on h0(x) in each of (11)–(15) with a term
dependent on ci(x) so that the corresponding condition holds
in X instead of X̄ , as explained in Remark 5. For comparisons,
we also included the CBFs obtained using X̄ . For refining the
CBF via Algorithm 1, we chose the degrees of y(x) and u(x) to
be 1 and 3, respectively, for z(x) = x, while they were selected
to be 3 and 5, respectively, for z(x) = [x1 x2 x3

2]T . The initial
and refined CBFs obtained are depicted in Fig. 2. One can see
that different linear-like representations led to different results.
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Fig. 3. CBFs in the absence (left) and presence (right) of control limits.
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Fig. 4. State trajectories (left) and control inputs (right) under different
initial states. The red star denotes the origin, while the red dashed lines
denote control limits.

Moreover, z(x) of a higher dimension tends to yield CBFs with
larger invariant sets at the price of increased computational
cost. Figure 2 also depicts state and input trajectories given
an initial state. As expected, the states remained in Xh and the
input constraints were satisfied.

Example 2: Consider a system borrowed from [12], where
x = [x1, x2, x3]T ∈ R

3 and u = [u1, u2]T ∈ R
2 are the state

and control vectors of the system. The unsafe regions are char-
acterized by four spheres defined by qi(x) < 0 (i = 1, 2, 3, 4),
where the expression of the polynomial function qi(x) is
given in [12]. The safe region is therefore characterized by
X = {x ∈ R

3|ci(x) ≤ 0, i = 1, 2, 3, 4}, where ci(x) = −qi(x),
i = 1, 2, 3, 4. The control inputs are constrained by |ui| ≤ 1
for i = 1, 2. For applying Theorem 1 for an initial CBF, we
selected z(x) = x, and the degrees of X and Y to be 0 and
2, respectively. Additionally, we selected P0 (used in defining
h0(x) via (8)) to be 10. For the redesign via Algorithm 1, we
chose the degrees of y(x) of u(x) to be 2 and 4, respectively.
The initial and refined CBFs in the absence and presence of
input constraints are depicted in Fig. 3.

To verify if the function h(x) from Algorithm 1 is indeed
an CBF, we simulated the system under a few initial states in
Xh, and the min-norm control law in (38). As shown in Fig. 4,
for all the tested initial states, the system states stayed in Xh,
and the control limits were respected.

V. CONCLUSION

This letter presents an SOS optimization-based method
to synthesize CBFs for nonlinear polynomial systems with
input constraints. The method consists of an initial design
step that jointly searches for an initial CBF and a con-
trol law through SOS optimization based on a linear-like
representation of the nonlinear dynamics, and an iterative
redesign step that refines the initial CBF by alternatively

updating it and the control law through SOS optimization.
Numerical examples validate the effectiveness of the proposed
approach.

Our future work includes extending the proposed method to
synthesize CBFs under model uncertainties.
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