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Abstract— Uneven terrain necessarily transforms periodic
walking into a non-periodic motion. As such, traditional stability
analysis tools no longer adequately capture the ability of a bipedal
robot to locomote in the presence of such disturbances. This moti-
vates the need for analytical tools aimed at generalized notions of
stability – robustness. Towards this, we propose a novel definition
of robustness, termed δ-robustness, to characterize the domain on
which a nominal periodic orbit remains stable despite uncertain
terrain. This definition is derived by treating perturbations in
ground height as disturbances in the context of the input-to-
state-stability (ISS) of the extended Poincaré map associated with
an orbit. The main theoretic result is the formulation of robust
Lyapunov functions that certify δ-robustness of periodic orbits.
This yields an optimization framework for verifying δ-robustness,
which is demonstrated in simulation with a bipedal robot walking
on uneven terrain.

I. INTRODUCTION

Achieving stable bipedal locomotion is a challenging con-
trol task—especially when locomoting on rough terrain. One
approach with demonstrated success is to generate nominal
walking behaviors, encoded by periodic orbits, and then use
either feedback controllers or online planning to drive the
system to these nominal behaviors [1], [2]. A benefit of this
approach is that the stability of the nominal gait can then be
analyzed using the method of Poincaré sections for systems
with impulse effects [3], [4], i.e., one need only check the
eigenvalues of the Poincaré map. Yet this notion of stability
is inherently local and does not provide provable guarantees
of stability in the presence of disturbances such as those
experienced with varying terrain height.

There have been approaches that have aimed to analyze
the robustness of bipedal walking. Examples include the gait
sensitivity norm [5], and the transverse linearization [6]. Yet
these tools do not provide theoretical certificates of robustness.
Similarly, existing work has synthesized bipedal walking gaits
that are maximally robust to known environmental distur-
bances [7]–[10]. While these have worked well in practice,
again there is a lack of theoretic tools to formally asses their
robustness, i.e., characterizing the domain on which behaviors
are stable. As a step in this direction, input-to-state stability
(ISS) [11] has been effectively leveraged in the context of
robotic walking and running for uncertain dynamics [12], [13].
However, this previous work limits the class of disturbances,
d, that can be handled to those captured in a control-affine
form (i.e., ẋ = f(x) + g(x)u(x) + g(x)d).
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Fig. 1. A depiction of (left) the configuration coordinates for a seven-link
walker and (right) the uncertain guard condition.

In contrast, our work formulates a notion of robust walk-
ing that quantifies the gap between stability and robustness
mathematically by explicitly considering disturbances to the
guard condition (commonly selected to be the ground height).
By considering this non-affine class of disturbances, our work
is able to define what it means for a periodic orbit to be
certifiably robust to uncertain terrain as illustrated in Fig.
1. Specifically, we define the δ-robustness of periodic orbits
as the maximum disturbance in the guard condition that can
be accommodated while remaining stable to a neighborhood.
The main result of our paper is the formulation of robust
Lyapunov functions that certify the robustness of periodic
orbits to disturbances in the environment. The leads to an
algorithm for certifying the δ-robustness of walking gaits, as
demonstrated in simulation with a seven-link bipedal robot
walking on uneven terrain.

II. PRELIMINARIES

Walking naturally lends itself to be modeled as a hybrid
system because of the presence of both continuous dynamics
(during the swing phase) and discrete dynamics (at swing foot
impacts) [14]. Additionally, the dynamics of walking can be
separated into those that can be controlled using actuation, and
those that are uncontrollable – termed the zero dynamics.

Hybrid Systems. Consider a hybrid control system with states
x ∈ X ⊂ Rn and a control input u ∈ U ⊂ Rm. Given a
continuously differentiable function1 h : X → R, let D ⊂ X
denote the admissible domain on which the continuous-time
dynamics evolve and S ⊂ D denote the guard (also commonly

1Note that h must be selected such that it does not lie within the null space
of the actuation matrix, i.e., Lgh(x) ̸= 0

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 2853



called the switching surface), defined as:

D = {x ∈ X | h(x) ≥ 0}, (1)

S = {x ∈ X | h(x) = 0, ḣ(x) < 0}. (2)

For states x− ∈ S, a discrete impact map ∆ : S → D, termed
the reset map is applied. Thus, the complete hybrid system
can be modeled as:

HC =

{
ẋ = f(x) + g(x)u x ∈ D \ S, (3)
x+ = ∆(x−) x− ∈ S, (4)

where (3) and (4) denote the continuous-time and discrete-
time dynamics respectively. It is assumed (as is typical) that
all quantities in HC are locally Lipshitz continuous, e.g., the
impact map ∆ is locally Lipschitz. This follows from the
assumption of perfectly plastic impacts [15]. Importantly, note
that for impact maps based on rigid-body contacts [16], the
impact map does not depend on the ground height.

Given a locally Lipschitz feedback controller u = k(x), the
result of applying this to the hybrid control system results in
a hybrid system:

H =

{
ẋ = fcl(x) := f(x) + g(x)k(x) x ∈ D \ S, (5)
x+ = ∆(x−) x− ∈ S, (6)

The local Lipschitz continuity of the continuous dynamics (5)
implies that solutions exist and are unique locally. We will
use the flow notation for these solutions, φt(x0), which is
the solution to the continuous dynamics at time t ∈ R≥0

with initial condition x0 ∈ D. Under the assumption of non-
Zenoness, the flow of the hybrid system is given by:

φt(x0) = φt−τk(x
+
k ), t ∈ [τk, τk+1)

where τk are the “impact” times and x+
k the post-impact states,

determined by the consistency conditions:

x+
k = ∆(x−

k ), x−
k = φτk−τk−1

(x+
k−1) ∈ S, (7)

for k ≥ 1, with τ0 = 0 and x0 ∈ D the initial condition.
When x0 ∈ S one trivially takes x−

1 = x0 and τ1 = τ0.

Periodicity of Hybrid Systems. The flow φt(x0) of (5) is
periodic with period T ∈ R≥0 if there exists a point x∗ ∈
S satisfying φT (∆(x∗)) = x∗. The periodic orbit associated
with this periodic flow is denoted:

O := {φt(∆(x∗)) ∈ D | 0 ≤ t ≤ TI(x
∗) = T}, (8)

with TI : S̃ → R being the time-to-impact function:

TI(x) = inf{t ≥ 0 | φt(∆(x)) ∈ S}. (9)

As proven in Lemma 3 of [17], the time-to-impact function
is continuous at points x ∈ S̃ satisfying the conditions
S̃ := {x ∈ S | 0 < TI(x) < ∞}. Thus, TI is well-defined
for S̃. The periodic orbit, O, is exponentially stable if it is
exponentially stable as a set: for x0 ∈ D:

∥φt(x0)∥O ≤ Me−αt∥x0∥O

where ∥x∥O = infy∈O ∥x− y∥ is the set distance.
The exponential stability of this periodic orbit O can be

analyzed via the Poincaré map. In particular, S is a Poincaré

section (and well-defined as such due to the assumption that
ḣ(x) < 0), and associated with this Poincaré section is the
Poincaré map P : S̃ → S defined as:

P (x−) := φTI(x−)

(
∆(x−)

)
. (10)

The Poincaré map describes the evolution of the hybrid system
as a discrete-time system:

x−
k+1 = P (x−

k ), k = 0, 1, . . . , (11)

wherein x−
k is just given as in (7). In [3] (see also [18], Theo-

rem 2.1), it was proven that a periodic orbit O is exponentially
stable if and only if x∗ ∈ O∩S is an exponentially stable fixed
point of the discrete-time system (11). This is summarized in
the following theorem:

Theorem 2.1 ([3]): A periodic orbit O is exponentially
stable if and only if for the fixed point P (x∗) = x∗ ∈ S,
there exist M > 0, α ∈ (0, 1), and some δ > 0 such that:

∀ x ∈ Bδ(x
∗) ∩ S̃ =⇒

∥P i(x)− P (x∗)∥ ≤ Mαi∥x− x∗∥,

with P i(x) denoting the Poincaré map applied i ∈ N≥0 =
{0, 1, . . . , n, . . . } times.

III. AN ISS PERSPECTIVE ON WALKING: δ-ROBUSTNESS

This section provides the key formulation of robustness
considered throughout this paper—that of δ-robustness. The
core concept behind this definition is stability in and of itself
is not a sufficiently rich concept to capture robustness, since it
is purely local. Thus, we define a notion of robustness lever-
aging the extended Poincaré map (which extends the Poincaré
map to consider general guard conditions) and input-to-state
stability, wherein the inputs are the disturbances associated
with uncertain guard conditions.

Motivation. Practically, the stability of periodic orbits can
be analyzed by evaluating the eigenvalues of the Poincaré
return map linearized around the fixed point. Specifically, if
the magnitude of the eigenvalues of DP (x∗) = ∂P

∂x (x
∗) is less

than one (i.e. max |λ(DP (x∗))| < 1), then the fixed point is
stable [3], [19]. While this property implies that the Poincaré
map is robust to sufficiently small perturbations, it is often
incorrectly assumed that the magnitude of the eigenvalues say
something deeper about the broader robustness of the periodic
orbit to perturbations. This is not the case, as the following
example illustrates.

Example 3.1: Consider a seven-link bipedal robot as shown
in Fig. 1. To illustrate how the eigenvalues associated with the
linearization fail to tell the whole story, we will consider the
robustness of two gaits to differing ground height conditions.
As illustrated in Fig. 2, the classic Poincaré analysis does
not accurately reflect the robustness of periodic orbits to local
disturbances in the guard condition. That is, the gait with the
smaller maximum eigenvalue (magnitude) is more fragile to
changing ground heights.

Uncertain Guard Conditions. To formulate a notion of
robustness, uncertain guard conditions are considered—this,
for example, captures uncertain ground height for walking
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Fig. 2. The phase portraits at the top of the figure illustrate the walking
for uncertain guards Sdk with dk ∼ U(−δ, δ) (here δ = 1.5cm) for k =
500 steps. Visualizations of the walking gaits for three step conditions are
provided at the bottom. The results demonstrate that a periodic orbit with
max |λ(DP0(x∗))| < 1 (on the left) is not robust to variations in the guard
condition (the orbit diverged after only 13 steps), while a periodic orbit with
a larger |λ| (on the right) is comparatively more robust. This motivates the
need for an ISS perspective.

robots. Specifically, as done in [9], the Poincaré map can be
extended to explicitly consider changes to the guard condition
(i.e., h(x) = d). First, define a general guard as:

Sd = {x ∈ X | h(x) = d, ḣ(x) < 0}, (12)

with d ∈ D and D := [d−, d+] ⊂ R for some d− < 0 < d+.
Using this general guard definition, the previous guard (2) is
now denoted as S0. Under the assumption that Sd ⊂ D for all
d ∈ D, we have a corresponding hybrid system:

Hd =

{
ẋ = fcl(x) := f(x) + g(x)k(x) x ∈ D \ Sd, (13)
x+ = ∆(x−) x− ∈ Sd, (14)

Next, we must modify the time-to-impact function to be
defined on a neighborhood of the fixed point x∗. In particular,
the time-to-impact function exists as a result of the implicit
function theorem [20] applied to the implicit function (of time)
h(φt(∆(x))) which therefore satisfies: h(φT (∆(x∗))) = 0,
and ḣ(φT (∆(x∗))) < 0, for x∗ ∈ O ∩ S. Thus, there exists
an explicit function Te : Bρ(x

∗) ⊂ D → R, for some ρ > 02,
termed the extended time-to-impact function satisfying:

h(φTe(x)(∆(x))) = 0, ∀ x ∈ Bρ(x
∗). (15)

It follows that TI in (9) is just TI = Te|S , wherein the
Poincaré map is given by considering only x ∈ Bρ(x

∗) ∩ S.
This function can be further extended (as a partial function)
to account for varying guards: Te : Bρ(x

∗)× D ⇀ R:

Te(x0, d) := inf{t ≥ 0 | φt(∆(x0)) ∈ Sd}. (16)

Importantly, this is a partial function because (by the implicit
function theorem) it is only well-defined for d = 0 and by
continuity sufficiently small d− and d+. Using this extended
time-to-impact function, we can define the extended Poincaré

2We assume throughout the paper that for all ρ > 0 of interest, the domain
D of the continuous dynamics is appropriately chosen so that Bρ(x∗) ⊂ D.

map as a partial function: Pd : Bρ(x
∗) ⇀ Sd:

Pd(x
−) := φTe(x−,d)(∆(x−)). (17)

This allows us to frame walking with uncertain guards as a
discrete-time control system.

Connections with Input-to-State Stability. It is important to
note that we can view (17) as a dynamical system evolving
with an “input” given by the guard height: d = h(x). In
particular, this leads to the discrete-time dynamical system:

xk+1 = P(xk, dk) := Pdk
(xk), (18)

for some sequence of dk ∈ [d−, d+] ⊂ R, k ∈ N≥0,
determining the guard height specific to step k ∈ N≥0 such
that xk+1 ∈ Sdk

. The result is a partial function:

P : Bρ(x
∗)× [d−, d+] ⇀ S[d−,d+] :=

⋃
d∈[d−,d+]

Sd,

wherein we assume that Bρ(x
∗) ⊂ S[d−,d+] (or a smaller ρ

is chosen so that this holds). The partial function nature of
P implies that solutions may not exist for all time, i.e., the
solution xk might leave the ball Bρ(x

∗) on which P is well-
defined.

Given the discrete-time system (18), and the fact that
we view the input d as a disturbance, there are obvious
connections with input-to-state stability [21]. In our setting,
the discrete-time system xk+1 = P(xk, dk) (with dk viewed
as an input) is input-to-state stable (ISS) if:

∥xk − x∗∥ ≤ β(∥x0 − x∗∥, k) + γ(∥d∥∞) (19)

for k ∈ N≥0, β a class KL function, and γ a class K function.
Note that here ∥d∥∞ = max{−d−, d+} since d : N≥0 →
[d−, d+] is scalar valued and takes values in an interval. Also
note that, in the context of locomotion, we are especially
interested in exponential stability. To certify exponential ISS,
the class KL function becomes: β(r, k) = Mαkr for M > 0
and α ∈ (0, 1). The end result is the exponential ISS (E-ISS)
condition:

∥xk − x∗∥ ≤ Mαk∥x0 − x∗∥+ γ(max{−d−, d+}) (20)

This allows us to formulate a notion of robustness.

δ-Robustness. We now have the necessary components to
present the key concept of this paper: δ-robustness. The goal
in formulating this notion of robustness is to find a single
scalar constant, δ ≥ 0, that characterizes the robustness of
a periodic orbit O in the context of uncertain guard height.
In this context, we wish to leverage (20)—yet the class K
function γ gives a degree of freedom that is undesirable in
designing a metric for robustness. This observation leads to
the following definition:

2855



Fig. 3. On the left, the non-robust periodic orbit (as illustrated on the left
of Fig. 2) does not satisfy the conditions for δ-robustness for δ = 0.015
(specifically, there does not exist a forward invariant set W ). In comparison,
the robust orbit (as illustrated on the right of Fig. 2) satisfies the definition
of δ-robustness with γ = 36.8 and δ = 0.015m.

Definition 3.2: The periodic orbit O is δ-robust for a given
δ > 0 if for the discrete-time dynamical system in (18) with
d− = −δ and d+ = δ, that is:

P :Bρ(x
∗)× [−δ, δ] → S[−δ,δ]

xk+1 = P(xk, dk), dk ∈ [−δ, δ], (21)

there exists a forward invariant set W ⊂ Bρ(x
∗) and for all

x0 ∈ W :

∥xk − x∗∥ ≤ Mαk∥x0 − x∗∥+ γδ, ∀k ∈ N≥0, (22)

for some γ > 0, M > 0, and α ∈ (0, 1). The periodic orbit is
robust if it is δ-robust for some δ > 0, and the largest scalar
δ such that O is δ-robust is the robustness of O.

This seemingly simple definition encodes a surprising
amount of information. First, the forward invariance of W ⊂
Bρ(x

∗) implies that P : Bρ(x
∗) × [−δ, δ] → S[−δ,δ] is a

function (rather than a partial function) when restricted to the
set W . Additionally, the actual δ-robustness condition (22)
is an ISS condition, albeit slightly stronger to remove the
dependence on the class K function and replace this with the
constant γ. Even so, the connections with ISS are important
since the associated machinery can be leveraged.

To provide an example of how ISS can inform our thinking
on δ-robustness, consider the case when O is exponentially
stable, i.e., xk+1 = P(xk, 0) has an exponentially stable fixed
point: x∗ = P0(x

∗), i.e., the 0-input system is exponentially
stable. There are no guarantees that O is thus δ-robust (see [21]
where a counter example shows that given arbitrarily bounded
disturbances, then local asymptotic stability is not enough to
guarantee ISS). That is, stability does not imply robustness.

Example 3.3: Returning to the example of the seven-link
walker, we can heuristically calculate the δ-robustness asso-
ciated with the two gaits. Specifically, Fig. 3 illustrates the
ISS-perspective of δ-robustness for the orbits first illustrated
in Fig. 2. As shown, the orbit that was robust in Fig. 2
satisfies the condition that W ⊂ Bρ(x

∗) is forward invariant
(δ = 1.5cm in this example), and ∥xk−x∗∥ remains bounded
for γ = 36.8. Comparatively, the orbit that was not robust
in Fig. 2 experienced a pre-impact state that was outside of
Bρ(x

∗) and therefore W was not forward invariant.

IV. LYAPUNOV CONDITIONS FOR δ-ROBUSTNESS

In this section we present the main theoretic result: Lya-
punov conditions for the δ-robustness of periodic orbits. These
conditions, and constructions, follow naturally from the ISS

perspective employed in defining δ-robustness. But care is
needed given the complexity of the Poincaré map. Importantly,
these conditions will lead to an approach for the verification
of δ-robustness, as presented in the next section.

Definition 4.1: Consider the discrete-time dynamical sys-
tem in (21). A function V : Bρ(x

∗) → R≥0, for Bρ(x
∗) as in

(15), is a robust Lyapunov function if:

k1∥x− x∗∥c ≤ V (x) ≤ k2∥x− x∗∥c (23)
∥x− x∗∥ ≥ χd =⇒ (24)

∆V (x, d) := V (P(x, d))− V (x) ≤ −k3∥x− x∗∥c

for χ, k1, k2, k3, c > 0 and all x ∈ Bρ(x
∗).

Remark 4.2: Note that (24) can be equivalently restated as:

V (P(x, d))− V (x) ≤ −k4∥x− x∗∥c + 1

2
σ|d|c, (25)

where σ > 0. In particular, the corresponding quantities are
related via: k3 = 1

2k4 and χ = k
− 1

c
4 σ

1
c .

Main result. We can now state the main result of the paper.
To do so, recall that a Lyapunov sublevel set is given by:

Ωr = {x ∈ Rn | V (x) ≤ r}. (26)

This will be essential in establishing:
Theorem 4.3: Consider the discrete-time system xk+1 =

P(xk, dk) in (21) with associated periodic orbit O. If there
exists a robust Lyapunov function, V : Bρ(x

∗) → R≥0, and:

δ < δmax :=

(
k1

χck2

) 1
c

ρ, (27)

then the periodic orbit O is δ-robust with:

W = Ωr(δ), for r(δ) := k2(χδ)
c (28)

γ =

(
k2
k1

) 1
c

χ, M =

(
k2
k1

) 1
c

, α =

(
1− k3

k2

) 1
c

.

This theorem is, overall, a variation on Lemma 3.5 in [21].
The proof here follows a similar overall arc, although there
are key differences made necessary by the fact that P is only
a partial function. This motivates the first Lemma.

Lemma 4.4: The function P : Bρ(x
∗) × [−δ, δ] → S[−δ,δ]

given in (21) is well-defined for all x ∈ Bρ(x
∗), i.e., for all

x ∈ Bρ(x
∗), P(x, d) exists and satisfies P(x, d) ∈ S[−δ,δ].

By construction of the extended Poincaré map, P0 is well-
defined on Bρ(x

∗), i.e., for all x ∈ Bρ(x
∗) it follows that

P(x, 0) ∈ S0, i.e., h(φTe(x,0)(∆(x))) = 0. Therefore:

h(φt(∆(x))) =

∫ t

Te(x,0)

ḣ(φτ (∆(x)))dτ.

But ḣ(x) < 0 for all x ∈ S[−δ,δ] by definition. Therefore, on
the closed set defined by −δ ≤ h(x) ≤ δ, ḣ takes a minimum
and maximum value: h < h < 0. This implies that:

h(t− Te(x, 0)) ≤ h(φt(∆(x))) ≤ h(t− Te(x, 0)).

Thus, there exists a t (possibly negative) such that
h(φt(∆(x))) = d. This t = Te(x, d).

Since P is well-defined, we can now find a set such that
xk+1 = P(xk, dk) is defined for all k, i.e., a forward invariant
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set contained in Bρ(x
∗), using Lyapunov sublevel sets.

Lemma 4.5: If δ < δmax, with δmax in (27), then for
r(δ) := k2(χδ)

c it follows that:

Bχδ(x
∗) ⊂ Ωr(δ) ⊂ Bρ(x

∗).

Moreover, the set Ωr(δ) is forward invariant.
For x ∈ Bχδ(x

∗):

∥x− x∗∥ < χδ ⇒ V (x) ≤ k2∥x− x∗∥c < k2(χδ)
c = r(δ)

and therefore Bχδ(x
∗) ⊂ Ωr(δ). Now if r(δ) < k1ρ

c (which
is equivalent to the condition (27)) it follows that:

V (x) ≤ r(δ) ⇒ k1∥x− x∗∥c ≤ V (x) ≤ r(δ) < k1ρ
c

And therefore: Ωr(δ) ⊂ Bρ(x
∗). Finally, since for δ < δmax

we have Bχδ(x
∗) ⊂ Ωr(δ), it follows that on the boundary of

Ωr(δ), namely ∂Ωr(δ), condition (24) is active and therefore:
∆V (x, d) < 0. The forward invariance of Ωr(δ) follows.

Lemma 4.5 gives an upper bound on the δ-robustness of a
given periodic orbit O, namely δmax, based upon the domain
of definition of P. It also establishes the forward invariance
of Ωr(δ). Leveraging this, we can prove the main result.

[Proof of Theorem 4.3] Let x0 ∈ Ωr(δ), wherein the forward
invariance of Ωr(δ) (Lemma 4.5) implies xk ∈ Ωr(δ) ⊂
Bρ(x

∗) for all k ∈ N≥0. Thus both P and V are well-defined.
We consider two cases: x0 /∈ Bχδ(x

∗) and x0 ∈ Bχδ(x
∗).

∥x0 − x∗∥ ≥ χδ: In this case the implication (24) is active:

∆V ≤ −k3
k2

V =⇒ V (xk) ≤
(
1− k3

k2

)k

V (x0)

where the implication follows from applying the inequality on
the right recursively (see also the comparison lemma [22]).
Therefore, using the inequalities in (23) we have:

∥xk − x∗∥ ≤
(
k2
k1

) 1
c

︸ ︷︷ ︸
M

(
1− k3

k2

) k
c

︸ ︷︷ ︸
αk

∥x0 − x∗∥. (29)

Finally, note that k3/k2 < 1 as otherwise V (xk) would be
negative for k = 1 which is impossible. Therefore, α < 1.
∥x0 − x∗∥ < χδ: While the implication in (24) no longer

holds, we still have xk ∈ Ωr(δ). As a result:

k1∥xk − x∗∥c ≤ V (kk) ≤ r(δ) =k2(χδ)
c

=⇒ ∥xk − x∗∥ ≤
(
k2
k1

) 1
c

χ︸ ︷︷ ︸
γ

δ (30)

Therefore, for M , α in (29) and γ in (30) we have:

∥xk − x∗∥ ≤ max{Mαk∥x0 − x∗∥, γδ}
≤ Mαk∥x0 − x∗∥+ γδ

as desired, i.e., δ-robustness is established with W = Ωr(δ)

the required forward invariant set.

V. ALGORITHMIC VERIFICATION OF δ-ROBUSTNESS

Finally, to verify the δ-robustness of a given periodic orbit
O, we will synthesize an optimization framework that lever-

Fig. 4. Results of the algorithmic approach to Opt. (33) for the gaits shown
in Fig. 2 with χmax = 50. As shown, the gaits were determined to be δ-
robust for δ∗ = 0 and δ∗ = 6mm, respectively.

ages the previously presented robust Lyapunov conditions.

Problem Setup. Assume the existence of a stable periodic
orbit O and so xk+1 = P(xk, 0) has an exponentially stable
fixed point x∗. For simplicity we will take x∗ = 0 (achieved
via the simple coordinate transformation x 7→ x − x∗). As a
result, the linearization:

xk+1 = Axk := DP(0, 0)xk

is exponentially stable. The Lyapunov matrix P = PT > 0 is
obtained by solving the discrete-time Lyapunov equation:

ATPA− P = −Q

for Q = QT > 0. The end result is that the discrete-time
Lyapunov function V (x) = xTPx satisfies:

λmin(P )∥x∥2 ≤ V (x) ≤ λmax(P )∥x∥2 (31)

V (Ax)− V (x) ≤ −λmin(Q)∥x∥2. (32)

and thereby establishes exponential stability of the linear
system (and the nonlinear system locally). Unlike stability,
it is not guaranteed that this Lyapunov function can be used
to establish robustness. Yet we will use it as a “guess” for a
robust Lyapunov function in order to develop an algorithm to
establish the robustness of a given gait O.

Optimization Problem. Recall that the invariant set used to
establish δ robustness was defined in Lemma 4.5, namely
Ωr(δ). In this case:

Ωr(δ) = {x ∈ Rn|V (x) = xTPx ≤ r(δ) := k2(χδ)
c}.

Per the proof of Lemma 4.5 we therefore have:

Br1(0) ⊂ Ωr(δ) ⊂ Br2(0),

with:

r1 := χδ, r2 :=

(
λmax(P )

λmin(P )

) 1
2

χδ.

Then with the goal of finding the largest δ∗ > 0 such that O
is δ robust, we formulate the following optimization problem:

(δ∗, χ∗) = argmax
δ,χ>0

δ (33)

s.t. V (P(x, d))− V (x) ≤ −k∥x∥2

∀ r1 < ∥x∥ < r2, ∀ d ∈ [−δ, δ],

where k ∈ (0, 1) is a user-defined variable, and we take Q = I
(wherein λmin(Q) = 1) to remove decision variables.

Since this optimization problem is bilinear and nonconvex,
it is easier to approach algorithmically. Concretely, as outlined
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Fig. 5. Illustration of the Lyapunov condition in (33) for 100 random samples
x ∈ Br1 (0) with d ∼ U(−6mm, 6mm). As shown, the Lyapunov condition
is satisfied for the gait identified as being δ-robust for δ = 6mm with χ = 34
(Fig. 6 shows the corresponding ISS bound).

Fig. 6. Verification of δ-robustness for δ = 6mm and χ = 34 (selected based
on the algorithm results). As shown in the figure, Gait 1 was not δ-robust while
Gait 2 was δ-robust with M , γ, and α defined using the relationships derived
in Theorem 4.3 and V (x) = xTPx.

in Algorithm3 1, this procedure consists of slowly increasing
χ for each candidate δ and checking the Lyapunov condition
in (33) for random samples x ∈ Br1(0). The advantage of
this approach is that it is guaranteed to identify sets {χ, δ}
that certify δ-robustness (assuming one exists and that ∆χ is
sufficiently small). We demonstrate the algorithm for each of
the two gaits illustrated in Fig. 2 with the results provided
in Fig. 4. As expected, the second gait illustrated in Fig.
2 and Fig. 3 was verified to be δ-robust, with δ∗ = 6mm.
Notably, this value is smaller than the 15mm ground heights
empirically demonstrated in Fig. 2 due to the worst-case
guarantees afforded by ISS. A visualization of the Lyapunov
condition for 100 random samples (x ∈ Br1(0)) is provided
in Fig. 5 with the corresponding ISS bound in Fig. 6.

VI. CONCLUSION

In this work, a novel notion of robustness, δ-robustness,
was formulated from the perspective of input-to-state sta-
bility. Lyapunov conditions were also derived to certify δ-
robustness for a nominal periodic orbit. Future work includes
directly evaluating δ-robustness in the gait generation process

3The implementation of the algorithm, as well as its application towards
evaluating the δ-robustness of bipedal walking gaits, is provided in the repos-
itory: https://github.com/maegant/deltaRobustness.git

Algorithm 1 Algorithmic Approach to (33)
1: δ = 0, χ0 = 1, N = num. samples, {∆δ,∆χ, χmax} ∈ R>0, k ∈ (0, 1)
2: Procedure TESTDELTA(δ, χδ )
3: for i = [1, . . . , N ] do
4: Sample x′ = x − x∗ such that ∥x′∥ = χδδ
5: if V (P(x′, d)) − V (x′) ≤ −k∥x′∥2, ∀d ∈ [−δ, δ] then
6: Repeat TestDelta(δ + ∆δ,1)
7: else
8: if χδ + ∆χ > χmax then
9: Terminate with δ∗ = δ − ∆δ, χ∗ = χδ∗

10: else
11: Repeat TestDelta(δ,χδ + ∆χ)
12: end if
13: end if
14: end for

to systematically generate periodic orbits that are robust to
uncertain terrain. Additionally, sampling methods can be lever-
aged to obtain probabilistic guarantees on δ-robustness. Lastly,
the discrete-time Lyapunov condition can be translated to a
stochastic condition in order to obtain more realistic (albeit
probabilistic) estimates of the δ-robustness.

REFERENCES

[1] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models,
feedback control, and open problems of 3D bipedal robotic walking,”
Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[2] B. Griffin and J. Grizzle, “Nonholonomic virtual constraints and gait
optimization for robust walking control,” The International Journal of
Robotics Research, vol. 36, no. 8, pp. 895–922, 2017.

[3] B. Morris and J. W. Grizzle, “A restricted Poincaré map for determining
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