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Abstract— For linear systems with uncertainties and exter-
nal disturbances, we present an uncertainty estimation and
composite control (UECC) to achieve reference tracking and
uncertainty estimation simultaneously. In this proposed UECC,
we extract the uncertainty information from the error dynamics
equation instead of the system dynamics. By reformulating
the error dynamics equation as an algebraic equation using
auxiliary variables, the need to measure state derivatives in
the estimator and controller design is eliminated. Unlike time-
delay control (TDC) and uncertainty and disturbance estimator
(UDE) methods, we avoid the use of time delay and additional
filtering operations to circumvent the noise amplification and
oscillations in the control signal. Comparative simulations are
provided to verify the effectiveness of the proposed method.

I. INTRODUCTION

For many practical applications, the mathematical model
used in control designs might not be able to precisely de-
scribe the actual system behavior due to desired assumptions
or imposed linearization. Moreover, systems commonly op-
erate in environments where unpredictable system parameter
variations and undesired external disturbances are possible
[1]. These uncertainties or unexpected disturbances will af-
fect the stability and control performance of systems. Hence,
it is critical to effectively address these uncertainties without
relying on an accurate mathematical model, which would
significantly reduce the modeling burden while improving
the robustness of systems [2], [3].

To address these uncertainties, some advanced control
approaches have been developed, such as adaptive control [4]
and robust control [5]. However, adaptive control is mainly
used for handling linearly parameterized uncertainties, and
robust control is derived to address the worst-case control
designs at the price of sacrificing the nominal control perfor-
mance. Recently, the disturbance/uncertainty estimation and
attenuation techniques-based control schemes are considered
to be another powerful strategy to deal with uncertainties [6],
[7], [8]. Unlike the adaptive control that adjusts control gains
or identifies system parameters, the disturbance/uncertainty
estimation-based methods extract information of uncertain-
ties from the system dynamics and input signals, and then
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incorporate the extracted information into feedback control to
modify the control actions directly. Due to the simple struc-
ture, the disturbance/uncertainty estimation-based methods
have been widely studied [9] and the references therein.

In the early 1990s, Youcef-Toumi and Ito first proposed
a comprehensive control method named time delay control
(TDC) that can simultaneously achieve uncertainty compen-
sation and reference tracking [1]. TDC methods use past
observation of uncertainties and control inputs to modify
control actions directly through a small time delay, which
creates a class of control strategies that are computationally
inexpensive and easy to implement. Hence, as stated in
[10], the algorithm extension of TDC and various applica-
tions in different systems are gradually presented. However,
TDC methods inherently require all system states and their
derivatives to be accessible for feedback. In [11], the authors
pointed out that there exist oscillations in the control signal
when using TDC methods, and the introduced time delay also
brings difficulties into the system analysis. To avoid using
the state derivative and get rid of the side effects induced
by time delay operation, the uncertainty and disturbance es-
timator (UDE)-based control was proposed [11], [12], where
the time delay operation is replaced by an extra low-pass
filter. However, with the development of UDE-based control
approaches, some issues still need to be handled. As stated
in [13], the additional low-pass filters might lead to windup
if the system input is subject to a constraint. Moreover, the
time constant in low-pass filters is usually chosen as a small
coefficient to guarantee that the bandwidth is wide enough to
cover the spectrum of uncertainties. However, this may lead
to noise amplification if the measured states contain noise,
especially when using a first-order low-pass filter [14].

With the wish to eliminate the side effects induced by time
delay or additional filtering operations, a new uncertainty
estimation and composite control (UECC) is proposed in this
paper, and the asymptotic convergence of reference tracking
and uncertainty estimation is achieved simultaneously. In this
proposed UECC, we first divide the controller into nominal
control, uncertainty compensation, and error feedback term.
With the help of nominal control, all unmodeled dynamics
and external disturbances can flow to the error dynamics
equation. Consequently, we can extract the information of
uncertainties from the error dynamics equation, not just from
the system dynamics. In this situation, it is more convenient
for us to employ existing observers to estimate uncertainties.
Furthermore, we reconstruct the error dynamics equation
as an algebraic equation instead of a differential equation,
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which allows us not to measure the state derivatives. Based
on the reconstructed error dynamics equation, an alternative
uncertainty estimator is presented without using time delay
or additional filtering operations. Finally, comparative simu-
lation results are provided to verify the effectiveness of the
proposed UECC.

Notation: λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues of the corresponding matrices. (·)T ,
(·)−1 and (·)+ are the transpose, inverse, and generalized
inverse of matrices. ∥ · ∥ is the 2-norm for vectors and the
induced 2-norm for matrices. I denotes the identity matrix
with the corresponding dimension. The Laplace transforma-
tion of a signal x(t) is denoted by the capital letter X(s),
and s is the Laplace operator.

II. PROBLEM FORMULATION

The linear systems to be studied are given as

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t) + d(t), (1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rr is the
control input vector, A ∈ Rn×n is the known state matrix,
B ∈ Rn×r is the control matrix with full column rank r,
d(t) ∈ Rn is the unknown disturbance vector, ∆A ∈ Rn×n

and ∆B ∈ Rn×r are unknown system matrices that denote
the system parameter variations.

The reference model that generates the desired system
behavior is given as

ẋm(t) = Amxm(t) +Bmc(t), (2)

where xm(t) ∈ Rn is the reference state vector, Am ∈ Rn×n

is the Hurwitz matrix, Bm ∈ Rn×r is the reference input
matrix, and c(t) ∈ Rr is an external bounded command.
The error dynamics between (1) and (2) is given as

ė = Ame+ (Amx+Bmc−Ax−Bu−Fd) , (3)

where e(t) = xm(t)− x(t) is the tracking error, and Fd(t) =
∆Ax(t) + ∆Bu(t) + d(t) is the lumped uncertainty.

If it is possible to determine a controller u(t) to make the
term between brackets in (3) be zero at any time, the error
e(t) would decay at the rate dictated by Am. However, this
decay rate is usually unsatisfied in practice. Therefore, one
desired error dynamics with a faster decay rate is written as

ė(t) = (Am +K) e(t), (4)

where K ∈ Rn×n is the error feedback matrix such that
Am +K is Hurwitz. Combining (3) and (4), we have

Amx+Bmc−Ax−Bu−Fd = Ke. (5)

Then, the controller u(t) is designed as

u(t) = B+
(
Amx+Bmc−Ax−Ke− F̂d

)
, (6)

where B+ = (BTB)−1BT is the pseudo inverse and can
be calculated for det(BTB) ̸= 0, F̂d is the estimation of
Fd, and u consists of three parts, nominal control un =
Amx+Bmc−Ax, uncertainty compensation ud = F̂d, and
error feedback term Ke. Note that a too large feedback gain

K may lead to oscillations in control signals. Hence, the
robustness and the convergence rate should be considered
when we set the feedback matrix. Moreover, as reported in
[1], [11], the pole placement technology can be employed to
choose K.

Substituting (6) into (3), the error dynamics becomes

ė = Aee−F̃d+
(
I −BB+

)
(Amx+Bmc−Ax− ud −Ke)

(7)
where Ae = Am +K is the Hurwitz matrix and F̃d = Fd −
F̂d is the estimation error. To guarantee that the error (7)
vanishes as time goes to infinity, the following structural
constraint must be met.(

I −BB+
)
(Amx+Bmc−Ax− ud −Ke) = 0. (8)

Obviously, if B is invertible, i.e., n = r and rank(B) =
n, the above structural constraint is always met since I −
BB+ = I − BB−1 = 0. If not, the choice of Am and K
would be somewhat restricted due to rank(I−BB+) = n−r.
In this situation, as reported in [1], [15], since the canonical
form can guarantee that the rest n − r system states are
controlled automatically, the system described in canonical
form meets such constraint. This is also called the matching
condition [14]. Hence, for the system with n states and r
inputs, each term in (1) can be partitioned as

x(t)=

[
xq(t)
xr(t)

]
,A=

[
0 | Iq
Ar

]
,B=

[
0
Br

]
,

∆A=

[
0

∆Ar

]
,∆B=

[
0

∆Br

]
,d(t)=

[
0

dr(t)

]
, (9)

where xq ∈ Rn−r and xr ∈ Rr are the system states,
Ar ∈ Rr×n is the system matrix, Br ∈ Rr×r is a nonsigular
matrix, ∆Ar ∈ Rr×n and ∆Br ∈ Rr×r denote the unmod-
eled dynamics, and dr ∈ Rr is the unknown disturbance.
Then, the lumped uncertainty can be described as Fdr(t) =
∆Arx(t) + ∆Bru(t) + dr(t). The reference model matrices
and feedback gain matrix are accordingly given as

Am =

[
0 | Iq
Amr

]
, Bm =

[
0

Bmr

]
,K =

[
0
Kr

]
, (10)

where Amr ∈ Rr×n is the reference model matrix, Bmr ∈
Rr×r is the nonsigular matrix, and Kr ∈ Rr×n is the
feedback gain.

Combining (9) and (10), one can derive

I −BB+ =I −
[

0
Br

]
B−1

r (BT
r )

−1
[
0 | BT

r

]
=

[
I

0

]
, (11)

and

Amx+Bmc−Ax− ud −Ke =

[
0
φ

]
, (12)

where φ = Amrx + Bmrc − Arx − udr − Kre and udr =
F̂dr. Substituting (11) and (12) into (8), we can verify that
the plant (1) described in canonical form (9) always meets
the structural constraint (8). Therefore, we assume that the
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remaining contents satisfy the constraint (8). Then, the error
dynamics (7) is rewritten as

ė(t) = Aee(t) + ud(t)−Fd(t), (13)

which shows the convergence set of e depends on the
estimation error F̃d only. If we can get a good estimation of
Fd and incorporate it into ud, a satisfied reference tracking
can be guaranteed simultaneously. Therefore, this paper aims
to design an uncertainty estimator and achieve satisfied
reference tracking even with large parameter variations in
∆A and ∆B, and the unexpected disturbance d(t). For this
purpose, the following assumptions and lemma are used.
Assumption 1. The state variable x(t) and control signal
u(t) in (1) are accessible.
Assumption 2. The external disturbance d(t) and and its
time derivative ḋ(t) are available.
Assumption 3. The solution of (1) is supposed to be
uniformly bounded.
Lemma 1. (see Theorem 4.6 in [16]) If matrix Ae is Hur-
witz, then for any given positive definite symmetric matrix
Q, there exists a positive definite symmetric matrix P that
satisfies the following Lyapunov equation

AT
e P + PAe = −Q.

Assumptions 1 and 2 are quite general in the community
of disturbance/uncertainty observer design. Considering the
controller (6) with bounded c(t), the lumped uncertainty
Fd(t) can be viewed as a function of x(t) and d(t). Note that,
for practical applications, hard constraints and energy restric-
tions make the system state continuous and bounded. Addi-
tionally, as reported in [17], since the disturbance/uncertainty
observer is mainly designed for control purposes, we can al-
ways employ feedback control to guarantee the boundedness
of the system state. Hence, based on Assumptions 1-3, we
assume without loss of generality that there exist unknown
constants ζd and ζ to meet the inequalities ∥Fd(t)∥ ≤ ζd
and ∥Ḟd(t)∥ ≤ ζ.

III. UNCERTAINTY ESTIMATION

As shown in [1], [10]–[13], [15], the uncertainty infor-
mation is extracted from the system dynamics. Specifically,
time delay [1] or extra filtering operation [11] is applied to
each term within (1) to estimate the lumped uncertainties.
Note that, with the help of nominal control un and error
feedback term Ke in (6), the error dynamics equation (13)
contains all unmodeled dynamics and external disturbances.
Therefore, we could extract the uncertainty information from
the error dynamics equation (13), not just from the system
dynamics (1).

A. Related Works

TDC methods [1] assume that all signals remain consistent
during a small enough period L. Then, the past observation
of uncertainties and control inputs are adopted to update the
control actions directly. Hence, by applying a small time
delay L to both sides of (13), Fd can be estimated by

ud(t) = F̂d(t) = Aee(t−L) + ud(t−L)− ė(t−L), (14)

where ė(t−L) is the time derivative of e(t−L). Substituting
(14) into (6), the control law of TDC is derived as

u(t) =B+[Amx+Bmc−Ax−Ke−Aee(t− L)
+ ud(t− L)− ė(t− L)]. (15)

From (14) and (15), one can find that TDC inherently
requires all states and their derivatives to be accessible for
uncertainty estimation and feedback control. In addition, as
reported in [11], the introduced time delay operations may
excite oscillations in control signals and bring difficulties to
the system analysis. To eliminate these side effects induced
by time delay, UDE-based control schemes are proposed
[11], [12], where a low-pass filter replaces the time delay
operation. Furthermore, the whole design of the estimator
and controller is carried out in the frequency domain. Hence,
the lumped uncertainty Fd in (13) is first written in the
frequency domain as

Fd(s) = (Ae − sI)E(s) + Ud(s). (16)

Then, UDE methods apply a low-pass filter to the right
hand of (16) to replace the time delay such that we have

Ud(s) = F̂d(s) = [(Ae − sI)E(s) + Ud(s)]Gf (s), (17)

which yields

Ud(s) =
Gf (s)

1− Gf (s)
(Ae − sI)E(s), (18)

where Gf (s) is a strictly proper low-pass filter with unity
steady-state gain and broad enough bandwidth. Substituting
(18) into (6), the control law of UDE in the frequency domain
is written as

U(s) =B+[AmX(s) +BmC(s)−AX(s)

−KE(s)− Gf (s)

1− Gf (s)
(Ae − sI)E(s)]. (19)

From (18) and (19), since Gf (s) is strictly proper and
sGf (s) is physically implementable, the measurement of
state derivative is avoidable. In addition, the oscillations in
control signals are also avoidable due to the time delays
being replaced by additional filtering operations. However,
with the wide application of UDE-based control schemes,
some issues still need to be resolved. As presented in (19),
since sGf (s) is commonly chosen as a first-order low-pass
filter 1

τs+1 [11], [18], the term Gf (s)
1−Gf (s)

in (19) becomes 1
τs .

Although the resulting integral action is of great importance
to achieve satisfactory steady-state reference tracking, it
might lead to integral windup if the system input is subject to
a constraint [13]. Moreover, the term sGf (s)

1−Gf (s)
in (19) would

become 1
τ . This might lead to noise amplification if the state

x contains measurement noise [14], especially when the time
constant τ is chosen as a small parameter.
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B. Proposed Uncertainty Estimator

To address the issues induced by time delay and extra
filtering operations, we will introduce another approach to
extract the uncertainty information from the error dynamics
equation (13) without using time delays and extra filters.
Hence, a set of auxiliary variables are first defined as

ω̇0(t) = Aeω0(t) + ud(t), (20)

ω̇1(t) = Aeω1(t)−Fd(t). (21)

Then, the error dynamics equation (13) is rewritten as

e(t) = ω0(t) + ω1(t), (22)

where the error dynamics (13) is described as an algebraic
equation instead of a differential equation. Furthermore,
the information of ud(t) and Fd(t) are implicit in ω0(t)
and ω1(t), respectively. This provides a mapping from the
accessible variables e(t) and ud(t) to the unknown Fd(t).
Thus, a feasible uncertainty estimator can be given as

ud(t) = F̂d(t) = Ae(e(t)− ω0(t)). (23)

in which the state derivatives are unnecessary to measure.

C. Convergence Analysis

Theorem 1. For the controlled system (1) with the pro-
posed uncertainty estimator (23), the estimation error F̃d

would exponentially converge to a compact set around zero
defined by

ΩF̃d
:=

{
F̃d | ∥F̃d∥2 ≤ η2ζ2λmax(P )

ηλmin(Q)− λmax(P )

}
,

where λmin(Q) > λmax(P )/η and η > 0 is a tuning
parameter.
Proof : Based on (13) and (20), the time derivative of F̂d

given in (23) is derived as

˙̂Fd = Ae(ė(t)− ω̇0(t)) = Ae(F̂d −Fd), (24)

with F̃d = Fd −F̂d. Then, the time derivative of F̃d can be
further given as

˙̃Fd = Ḟd − ˙̂Fd = Ḟd +AeF̃d. (25)

Select a Lyapunov function as VF̃d
= F̃T

d P F̃d, and
calculate its derivative along (25) as

V̇F̃d
=
(
Ḟd +AeF̃d

)T

P F̃d + F̃T
d P

(
Ḟd +AeF̃d

)
=F̃T

d

(
AT

e P + PAe

)
F̃d + 2F̃T

d P Ḟd

≤− λmin(Q)∥F̃d∥2 + 2λmax(P )∥F̃d∥∥Ḟd∥

≤ −
(
λmin(Q)− λmax(P )

η

)
∥F̃d∥2 + ηζ2λmax(P )

≤− α1VF̃d
+ β1, (26)

where α1 = ηλmin(Q)−λmax(P )
ηλmax(P ) , β1 = ηζ2λmax(P ). η > 0 is

a tuning parameter, and λmin(Q) > λmax(P )/η is available

by appropriately choosing matrix Q. Then, we continue to
solve (26) and have

0 ≤ VF̃d
(F̃d) ≤ VF̃d

(F̃d(0))e
−α1t +

β1

α1
(1− e−α1t), (27)

where VF̃d
(F̃d(0))e

−α1t will converge to zero and β1

α1
(1 −

e−α1t) will converge to β1

α1
=

η2ζ2λ2
max(P )

ηλmin(Q)−λmax(p)
such

that limt→+∞ ∥F̃d∥2 ≤ β1

α1λmax(P ) holds. Moreover, if the
derivative of Fd is zero, i.e., ζ = 0, the estimation error
F̃d would exponentially converge to zero. If ζ ̸= 0, the
compact set ΩF̃d

could be reduced by appropriately choosing
matrices Ae and Q. For example, the parameter η is selected
as 1/λmax(P ), and the compact set ΩF̃d

is rewritten as
ζ2

λmin(Q)−λ2
max(p)

. In this situation, according to Lemma 1, we
can appropriately choose matrices Am,K in (4) and increase
the value of λmin(Q) so as to reduce the compact set ΩF̃d

.
This completes the proof. □

IV. COMPOSITE CONTROL

A. Composite Control Implementation

In the above section, the related works on TDC and UDE-
based control methods are first investigated, then an alter-
native uncertainty estimator (23) is proposed to circumvent
these drawbacks induced by time delays or extra low-pass
filters (such as noise amplification and oscillations in control
signals). Substituting the proposed estimator (23) into (6),
we obtain a UECC method that allows for the asymptotic
convergence of reference tracking and uncertainty estimation
simultaneously. As presented in (6), the nominal control un

attempts to eliminate the unexpected known dynamics Ax
and inserts the desired dynamics Amx + Bmc; the error
feedback term Ke attempts to adjust the convergence of
the error dynamics; the uncertainty estimator ud attempts to
eliminate the parameter uncertainties ∆Ax(t)+∆Bu(t) and
external disturbances d(t). In addition, from (20) and (23),
there is a causality issue when using the proposed estimator
F̂d. To avoid the causality issue, the initial value of F̂d(0) is
set to zero since there is no past information for estimation
at the first sampling time.

For the proposed UECC with uncertainty estimator (23)
and composite controller (6), the implementation procedure
is summarized as follows: 1) Measure the current state infor-
mation x(t); 2) Calculate the tracking error e(t); 3) Compute
the uncertainty estimation vector F̂d(t); 4) Calculate the
control action u(t); 5) Repeat step 1.

B. Stability Analysis

Theorem 2. For the system (1) subject to uncertainties and
external disturbances, using the uncertainty estimator (23)
and composite controller (6), the closed-loop system is stable
for any bounded command c(t), and both the tracking error
and estimation error are ultimately bounded by ΩV .
Proof : With the matrix P derived from Lemma 1, a
Lyapunov function is selected as

V (e, F̃d) = eTPe+ F̃T
d P F̃d. (28)
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Calculate its derivative along (13) and (25) as

V̇ =ėTPe+ eTP ė+ ˙̃FT
d P F̃d − F̃T

d P ˙̃Fd

=eT
(
AT

e P + PAe

)
e− 2eTP F̃d

+ F̃T
d

(
AT

e P + PAe

)
F̃d + 2F̃T

d P Ḟd

≤− λmin(Q)∥e∥2 − λmin(Q)∥F̃d∥2 + 2λmax(P )·
∥e∥∥F̃d∥+ 2λmax(P )∥F̃d∥∥Ḟd∥

≤ −
(
λmin(Q)− λmax(P )

ϑ1

)
∥e∥2 −

(
λmin(Q)−

ϑ1λmax(P ) +
λmax(P )

ϑ2

)
∥F̃d∥2 + ϑ2λmax(P )ζ2

≤− α2V (e, F̃d) + β2, (29)

where
α2 = min

{
ϑ1λmin(Q)−λmax(P )

ϑ1λmax(P ) , ϑ2λmin(Q)−(1+ϑ1ϑ2)λmax(P )
ϑ2λmax(P )

}
,

β2 = ϑ2λmax(P )ζ2 > 0, and ϑ1, ϑ2 are the tuning
parameters satisfying

ϑ1 >
λmax(P )

λmin(Q)
> 0, ϑ2 >

λmin(Q)λmax(P )

λ2
min(Q)− λ2

max(P )
> 0,

which are available by appropriately choosing the matrices
Q and P . According to the time derivative of V (e, F̃d), we
have

0 ≤ V (e, F̃d) ≤ V (e(0), F̃d(0))e
−α2t +

β2

α2
(1− e−α2t),

which shows that V (e, F̃d) will converge to β2

α2
as time

goes to infinite. Therefore, both the error dynamics (13) and
estimation dynamics (25) are asymptotic stability. As a result,
e and F̃d will converge to a compact set around zero denoted
by

ΩV :=

{
e, F̃d | ∥e∥2, ∥F̃d∥2 ≤ β2

α2λmax(P )

}
.

From the derived compact set ΩV , we can find that both
e and F̃d will exponentially converge to zero if the lumped
uncertainty Fd is time-invariant, i.e., ζ = 0. If ζ ̸= 0, ΩV

can be further reduced by appropriately choosing matrices
Ae and Q. For example, ϑ1, ϑ2 are selected to satisfy
ϑ1 = ϑ2 = 1

λmax(P ) such that ΩV can be rewritten as
ζ2

λmin(Q)−(1+λ2
max(P )) . In this situation, we can increase the

value of λmin(Q) through the appropriate design of matrices
Am and K to reduce the compact set ΩV in terms of ζ ̸= 0.

Moreover, for the reference model (2), Am is a Hurwitz
matrix, and the given external command c(t) is bounded,
then the reference state xm is bounded. Since the tracking
error e is bounded, the system state x is also bounded. For
the composite controller (6), the bounded variables c, x, e
and F̂d guarantee that the control signal is bounded. Hence,
we can conclude that all signals in the related closed-loop
system are bounded for any bounded time-varying external
command. This completes the proof. □

V. NUMERICAL EXAMPLE

In this section, a benchmark example of a nonlinear mass
spring damper system is used to verify the effectiveness of
the proposed UECC, which is given as[

ẋ1

ẋ2

]
=

[
0 1

−0.5−∆a1 −1.2−∆a2

] [
x1

x2

]
+

[
0

1 + ∆b

]
u−

[
0

f(x, t)

]
+

[
0

d(t)

]
, (30)

where x1 and x2 are the displacement and velocity of mass
point, respectively. In this case, the lumped uncertainty is de-
noted as Fd = [0, dL]

T and dL = −∆a1x1−∆a2x2+∆bu−
f(x, t) + d(t). For the purpose of verification, we assume
that ∆a1 = 0.2,∆a2 = 0.5,∆b = 0.5, f(x, t) = 1.5x3

1. The
external disturbance d(t) is chosen as a compound signal
0.1sin(0.2πt) + 1(t− 15).

The reference model is chosen as[
ẋm1

ẋm2

]
=

[
0 1

−ω2
n −2ξωn

] [
xm1

xm2

]
+

[
0
ω2
n

]
c(t), (31)

where ωn = 5rad/s, ξ = 1 and c(t) is set as a sinusoidal
wave with amplitude 1rad and frequency π/6 rad/s. Con-
sidering the controlled system (30) and reference model (31),
we can easily check the structural constraint (8) is satisfied.
For comparison with TDC and UDE, L = 0.005s,K = 0
are the same as those in [1], τ = 0.005s,K = 0 are the
same as those in [11], and Kr used in UECC (10) is set as
[−50,−50]. The sampling rate is set as 0.001s.

The simulation results of reference tracking without noises
are presented in Fig. 1. One can find that all methods
can achieve satisfactory reference tracking and uncertainty
estimation. However, it should be noted that all system states
and their derivatives are assumed to be accessible when
using TDC, while there is no need for ẋ when using UDE
and UECC. To further test the robustness of these methods
under measurement noises, the system states x1 and x2 are
simultaneously imposed by white noises with a power of
0.001 (see Fig. 2(a)). The corresponding simulation results
are presented in Fig. 2. From Fig. 2, although all methods can
maintain a good tracking performance, there are oscillations
of different magnitudes in control signals and uncertainty
estimations. Since the noise would be amplified 1/τ times
when adopting a first-order low-pass filter in UDE, the
magnitude of oscillations is larger than that of UECC, as
shown in Fig. 2(b) and 2(c). Moreover, the mean absolute
error (MAE), the standard deviation (SD), and the integral
square error (ISE) are used to evaluate these simulation
results quantitatively. The performance indices of simulation
results are presented in Table I, in which all performance
indices of UECC are slightly smaller than that of TDC and
UDE even in the presence of noises.

VI. CONCLUSION

In this paper, we propose a UECC scheme to estimate
the lumped uncertainty and achieve reference tracking si-
multaneously. Instead of directly acquiring the uncertainty
information from the system dynamics, we extract it from
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Fig. 1. Simulation results of reference tracking without noises. (a) Tracking responses. (b) Control signals. (c) Estimated values of the lumped uncertainty.
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Fig. 2. Simulation results of reference tracking with noises. (a) Tracking responses. (b) Control signals. (c) Estimated values of the lumped uncertainty.

TABLE I
PERFORMANCE INDICES OF SIMULATION RESULTS

TDC UDE UECC
Without noise MAE 1.1631 1.1165 0.9214
(×10−4) SD 1.8393 1.7622 1.4192

ISE 1.4220 1.3081 0.8043
With noise MAE 5.1315 5.0218 4.9618
(×10−4) SD 8.0674 7.6989 7.6053

ISE 135 123 115

the error dynamics equation without using time delay or
extra filtering operations. Since the error dynamics equation
is reconstructed as an algebraic equation through auxiliary
variables, the state derivatives are unnecessary to measure.
Compared with TDC and UDE, the noise amplification and
oscillations in the control signal are avoidable. Simulation
results show that the proposed UECC can simultaneously
achieve good reference tracking and uncertainty estimation,
even with external disturbances or large parameter variations
in the system dynamics. Due to the simple structure and
intuitiveness, the proposed UECC is easily combined with
other advanced control approaches to further enhance the
performance of linear uncertain systems.
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[9] C. Kitsos, G. Besançon, and C. Prieur, “High-gain observer design
for some semilinear reaction-diffusion systems: a transformation-based
approach,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 629–634,
2020.

[10] S. B. Reddy, “New stability conditions for time delay control of
nonlinear systems,” in 2020 American Control Conference (ACC).
IEEE, 2020, pp. 1637–1644.

[11] Q.-C. Zhong and D. Rees, “Control of uncertain lti systems based
on an uncertainty and disturbance estimator,” Journal of Dynamic
Systems, Measurement, and Control, vol. 126, no. 4, pp. 905–910,
2004.

[12] Q.-C. Zhong, A. Kuperman, and R. Stobart, “Design of ude-based
controllers from their two-degree-of-freedom nature,” International
Journal of Robust and Nonlinear Control, vol. 21, no. 17, pp. 1994–
2008, 2011.

[13] Y. Wang, B. Ren, and Q.-C. Zhong, “Bounded ude-based controller for
input constrained systems with uncertainties and disturbances,” IEEE
Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1560–1570,
2020.

[14] B. Ren, Q.-C. Zhong, and J. Dai, “Asymptotic reference tracking and
disturbance rejection of ude-based robust control,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 4, pp. 3166–3176, 2016.

[15] K. Youcef-Toumi, Y. Sasage, J. Ardini, and S. Huang, “The application
of time delay control to an intelligent cruise control system,” in 1992
American Control Conference (ACC). IEEE, 1992, pp. 1743–1747.

[16] H. K. Khalil, Nonlinear Systems. Upper Saddle River, New Jersey,
USA: Prentice hall, 2001.

[17] Z. Zhao and B. Guo, “A nonlinear extended state observer based on
fractional power functions,” Automatica, vol. 81, pp. 286–296, 2017.

[18] B. Ren, Q.-C. Zhong, and J. Chen, “Robust control for a class of
nonaffine nonlinear systems based on the uncertainty and disturbance
estimator,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9,
pp. 5881–5888, 2015.

6506


