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Abstract— In this paper, we first introduce an information
measure, termed clarity, motivated by information entropy,
and show that it has intuitive properties relevant to dynamic
coverage control and informative path planning. Clarity
defines on a scale of [0, 1] the quality of the information
that we have about a variable of interest in an environment.
Clarity lower bounds the expected estimation error of any
estimator, and is used as the information metric in the
notion of perceivability, which is defined later on and is the
primary contribution of the paper.

Perceivability captures whether a given robotic (or more
generally, sensing and control) system has sufficient sens-
ing and actuation capabilities to gather desired informa-
tion about an environment. We show that perceivability
relates to the reachability of an augmented system, which
encompasses the robot dynamics and the clarity about the
environment, and we derive the corresponding Hamilton-
Jacobi-Bellman equations. Thus, we provide an algorithm
to measure an environment’s perceivability, and obtain op-
timal controllers that maximize information gain. In simula-
tions, we demonstrate how clarity is a useful concept for
planning trajectories, how perceivability can be determined
using reachability analysis, and how a Control Barrier Func-
tion controller can be used to design controllers to maintain
a desired level of information.

Index Terms— Information theory and control; Lyapunov
methods; Constrained control

I. INTRODUCTION

ROBOTS are often deployed to explore unknown or
unstructured environments, e.g., ocean gliders collecting

oceanographic data, or aerial robots searching for targets in
a disaster response. In this paper, we establish two concepts:
clarity and perceivability, to capture information acquisition
and their use in the design of informative controllers.

Informative Path Planning (IPP) seeks to design trajectories
that maximize the ‘amount of information’ collected subject
to budgetary constraints such as total energy or time [1]. ‘In-
formation’ is measured in many ways, e.g. entropy/mutual in-
formation [2]–[5], Fisher Information [6], the number of unex-
plored cells/frontiers or the area of Voronoi partitions [7]–[10],
Gaussian Processes [11], [12], and data-informativity [13].
Various techniques to solve IPP exist, including grid/graph-
search or sampling [4], [5], [14], [15]. While useful for
trajectory generation, such methods cannot quantify whether
information can be gathered in the first place.
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The main objective is to answer the following questions:
Given a platform (e.g., a robot) with onboard sensors, and an
environment in which information is to be collected, (1) does
the overall system have sufficient actuation and sensing capa-
bilities to gather information in a specified time, and (2) what
are optimal control strategies to collect the information?

To address these, we first introduce clarity as a measure
of the quality of information possessed. Clarity about a ran-
dom variable m, denoted q[m], lies in [0, 1], where q = 0
corresponds to the case where m is completely unknown, and
q = 1 to the case where m is perfectly known in an idealized
(noise-free) setting. Clarity is inspired by differential entropy,
but compared to the latter it takes finite values with finite
time derivatives. As a first contribution, we show that if m is
estimated using a Kalman Filter, the rate of change of clarity
has a similar structure to one assumed in dynamic coverage
controllers [16]–[18]. This establishes certain optimality prop-
erties for dynamic coverage control, rather than being viewed
as a heuristic for exploration.

The second and primary contribution is the definition of
perceivability, which quantifies the maximum achievable clar-
ity about the environment in a fixed time by a given system
(robot dynamics and sensory outputs). It depends on the
controllability of the system describing the robot dynamics, on
the observability of the system describing the environment’s
evolution. This coupling makes perceivability distinct from
standard notions of controllability (whether the robot state can
be driven to a desired state) or observability (whether the robot
state can be uniquely determined from sensory outputs).

We show that perceivability is linked to reachability analysis
of an augmented system including both the robot’s system
dynamics, and the environment’s clarity dynamics. We show
that perceivability can be determined by solving a Hamilton-
Jacobi-Bellman (HJB) equation, which allows us to determine
optimal controllers, i.e., those that maximize the quality of
information acquired about an environment.

In Sec. II and III we introduce clarity and perceivability,
respectively, and in Sec. IV we demonstrate these ideas.
Background material is presented where needed.

Notation: R,R≥0,R>0 are the set of reals, non-negative
reals, and positive reals. Sn++, Sn+ denote the set of symmet-
ric positive-definite/positive-semidefinite matrices in Rn×n.
|P | , tr (P ) denote the determinant and trace of a square matrix
P . U(a, b) denotes the uniform distribution with support
[a, b] ⊂ Rn. N (µ,Σ) denotes a normal distribution with mean
µ ∈ Rn and covariance Σ ∈ Sn++.
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II. CLARITY

To aid the reader, we use the following running example,
inspired by an oceanographic mission: we wish to create a
map of the ocean-surface temperature using sensors onboard
a surface vessel, or thermal images from an aerial vehicle,
both subject to ocean currents or winds. We require a suitable
information metric: for this, we propose clarity.

A. Definitions and Fundamental Properties
Definition 1. [19, Ch. 8] X is a continuous random variable
if its cumulative distribution F (x) = Pr(X ≤ x) is contin-
uous. The probability density function is f(x) = F ′(x). The
set where f(x) > 0 is the support set of X .

Differential entropy extends the notion of entropy [20] from
discrete to continuous random variables:

Definition 2. [19, Ch. 8] The differential entropy h[X] of a
continuous random variable X with density f(x) is

h[X] = −
∫
S

f(x) log f(x)dx (1)

where S is the support set of X .

While differential entropy shares many properties with
discrete entropy [19, Sec. 2.1], there are key differences. E.g.,
while discrete entropy is non-negative, differential entropy is
in [−∞,∞], i.e., it can be negative. We define clarity as:

Definition 3. Let X be a n-dimensional continuous random
variable with differential entropy h[X]. The clarity of X is

q[X] =

(
1 +

exp (2h[X])

(2πe)n

)−1

. (2)

The normalizing factor (2πe)n is introduced to simplify
some of the algebra, as in Theorem 1 and the next example:
Example 1. Consider X ∼ U(a, b), and Y ∼ N (µ, P ), where
a, b ∈ R, µ ∈ Rn, P ∈ Sn+. Then,

h[X] = log (b− a), h[Y ] = log
√

(2πe)n |P |,

q[X] =
1

1 + (b−a)2

2πe

, q[Y ] =
1

1 + |P |
.

Next, we establish some fundamental properties of clarity.

Property 1. For any n-dimensional continuous random vari-
able X , A ∈ Rn×n, and c ∈ Rn,

q[X] ∈ [0, 1] (clarity is bounded) (3)
q[X + c] = q[X] (clarity is shift-invariant) (4)
q[AX] ̸= q[X] (clarity is not scale-invariant) (5)

Proof. Of (3): Since h[X] ∈ [−∞,∞], q[X] = 1/(1 + s) for
some s ∈ [0,∞], i.e., q[X] ∈ [0, 1].

Of (4), (5): Follows from [19, Th. 8.6.3] (h[X+c] = h[X]),
and [19, Th. 8.6.4] (h[AX] = h[X] + log |A|).

In information gathering tasks, we seek to design trajectories
that minimize the estimation error. Let X be a random variable
of any distribution with clarity q[X]. Let X̂ be any estimate of
X , then E[(X−X̂)(X−X̂)T ] is the expected estimation error.

Theorem 1 shows for expected estimation error to approach 0
it is necessary that clarity approach 1.

Theorem 1. For any n-dimensional continuous random vari-
able X and any X̂ ∈ Rn, the determinant of the expected
estimation error is lower-bounded as∣∣∣E[(X − X̂)(X − X̂)T ]

∣∣∣ ≥ 1

q[X]
− 1, (6)

with equality if and only if X is Gaussian and X̂ = E[X].

Proof. Following the same arguments as in [19, Th. 8.6.6],∣∣∣E[(X − X̂)(X − X̂)T ]
∣∣∣ ≥ min

X̂∈Rn

∣∣∣E[(X − X̂)(X − X̂)T ]
∣∣∣

=
∣∣E[(X − E[X])(X − E[X])T ]

∣∣ = |var(X)|

and since a Guassian distribution has the greatest entropy of
a given variance [19, Th. 8.6.6],∣∣∣E[(X − X̂)(X − X̂)T ]

∣∣∣ ≥ e2h[X]

(2πe)n
=

1

q[X]
− 1.

Corollary 2. For any 1-D continuous random variable x and
any x̂ ∈ R, the expected estimation error is lower-bounded as

E[(x− x̂)2] ≥ 1

q[x]
− 1 (7)

with equality if and only if x is Gaussian and x̂ = E[x].

Proof. Use Thm. 1 with P ∈ S1++ =⇒ |P | = P .

Remark 1. Although there is a one-to-one mapping between
clarity and differential entropy (2), the primary benefits of clar-
ity are: (I) clarity is bounded over [0, 1] instead of [−∞,∞],
(II) the time derivatives, defined later in (12), are finite for
all q ∈ [0, 1]. This is particularly important for perceivability,
since numerical methods to solve the HJB equation, defined
later in (20), require bounded values and derivatives.

B. Connection between Clarity and Coverage Control
Consider the system

ẋ = f(x, u) (8)

where the state is x ∈ X ⊂ Rn, control input is u ∈ U ⊂ Rm.
The objective in coverage control is to design a controller

π : X → U for the system (8) such that closed-loop trajectories
gather information over a domain D ⊂ X . As in [16], let
c = c(t, p) denote the ‘coverage level’ about a point p ∈ D at
time t. [16] assumes the coverage increases through a sensing
function S : X × D → R≥0 (positive when p can be sensed
from x, and 0 else), and coverage decreases at a rate α : D →
R≥0. This results in the model

ċ = S(x, p)(1− c)− α(p)c. (9)

In [17], [18] the α term is ignored, and a point p is said to be
‘covered’ if c(t, p) reaches a threshold c∗.

However, given specifications on the robot, sensors, and
the environment, it is not clear how to systematically define
S, α, c∗. [16]–[18] resort to heuristic methods.

In many practical scenarios, measurements are assimilated
using a Kalman Filter. In principle, the coverage dynamics
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should reflect the information gathering mechanism, i.e., the
evolution of the quality of information about the environment
as it is estimated using the Kalman Filter. In deriving the
clarity dynamics, (see (12)), we notice similarities with (9).

Consider the simplest scenario, where we want to estimate
a scalar variable m ∈ R. We assume m is a stochastic process:

ṁ = w(t), w(t) ∼ N (0, Q), (10)
y = C(x)m+ v(t), v(t) ∼ N (0, R(x)), (11)

where y ∈ R is the measurement. Notice C(x), R(x) are
robot-state dependent, emphasizing that the quality of the
measurements can depend on the robot’s state. For simplicity,
assume x is known. The following demonstrates the setup:

Example 2. Let x be the quadrotor’s state, with position xpos ∈
R2 and altitude xalt. The quadrotor uses a downward facing
thermal camera with half-cone angle θ to measure the ocean’s
temperature m at a location p. Then C(x) is

C(x) =

{
1, if ∥xpos − p∥ ≤ xalt tan θ,

0, else

and, if the measurement variance is state-independent, R(x) =
R. The ocean temperature can change stochastically by (10).

Notice that the subsystem (10), (11) satisfies the assump-
tions of linear-time varying Kalman Filters [21, Ch. 4], since
for any given trajectory x(t), the measurement model is equiv-
alent to y = C(t)m + v(t), where C(t) = C(x(t)) by slight
abuse of notation. Therefore, the estimate has distribution
N (µ, P ), where µ, P evolve according to:

µ̇ = PC(x)R(x)−1(y − C(x)µ), Ṗ = Q− C(x)2

R(x)
P 2.

Since the clarity of a scalar Gaussian is q = 1/(1 + P ),

q̇ =
∂q

∂P
Ṗ =

−Ṗ

(1 + P )2
=

−1

(1 + P )2

(
Q− C(x)2

R(x)
P 2

)
and therefore the clarity dynamics are

q̇ =
C(x)2

R(x)
(1− q)2 −Qq2. (12)

Remark 2. Comparing (9) with (12), one may note that their
structure is remarkably similar. Clarity/coverage increase due
to the first term, and decrease due to the second. However, (12)
is nonlinear wrt q. Thus, although (9) has the right intuitive
characteristics to describe ‘coverage’, (12) has the correct
dynamics corresponding to information gathering.

Eq. (12) yields further insight. Clarity decays at a rate
−Qq2, i.e., due to the environment stochasticity. As clarity
increases, the rate of increase of clarity, C(x)2(1− q)2/R(x),
decreases: additional measurements have diminishing value.

Although nonlinear, (12) has closed-form solutions, since
it is a scalar differential Riccati equation [22, Sec. 2.15]. For
constant C(x) = C,R(x) = R, if C,R,Q > 0,

q(t) = q∞

(
1 +

2γ1
γ2 + γ3e2kQt

)
, (13)

where k = C/
√
QR, q∞ = k/(k + 1), γ1 = q∞ − q0, γ2 =

γ1(k − 1), γ3 = (k − 1)q0 − k.
As t → ∞, clarity monotonically approaches q∞ < 1: if m

is stochastic with non-zero variance, and measurements have
non-zero variance, perfect clarity (q = 1) is impossible.

Theorem 3. Let m ∈ Rnm be the environment state vector,
and y ∈ Rq be the sensed outputs. Suppose the environment
and measurement models are

ṁ = Am+ w(t) w(t) ∼ N (0, Q) (14a)
y = C(x)m+ v(t) v(t) ∼ N (0, R(x)) (14b)

with Q ∈ Snm
++, and R : X → Sq++. Assuming P (t) ∈ Snm

++

for all t (see [23, Sec. 11.2]) and a prior m ∼ N (µ, P ), then

Ṗ = AP + PAT +Q− PC(x)TR(x)−1C(x)P (15)

q̇ = q(1− q)
(
tr (C(x)TR−1C(x)P )− tr (2A+ P−1Q)

)
.

(16)

Proof. Eq. (15) is the standard covariance update for the
Kalman Filter. To derive (16), notice the clarity of a multi-
variate Gaussian is q = 1/(1 + |P |). Therefore,

q̇ = − 1

(1 + |P |)2
d

dt
(|P |)

Since P ∈ Snm
++, it is invertible. Using Jacobi’s formula:

q̇ =
− |P | tr (P−1Ṗ )

(1 + |P |)2
= q(1− q) tr (−P−1Ṗ )

since |P | /(1 + |P |)2 = q(1 − q). Substituting in (15), and
simplifying, we arrive at (16).

Again, we see the same structure: clarity increases at a rate
tr (C(x)TR(x)−1C(x)P ), and decreases at a rate tr (P−1Q).
Furthermore, since (15, 16) are independent of y, for trajectory
planning we can use the deterministic and fully known

Ẋ = f̃(X,u), q̇ = g(X, q), (17)

where X = [xT , vec(P )T ]T is an extended state.

III. PERCEIVABILITY

In this section, we introduce the concept of perceivability:
given a robot with certain sensing and actuation capabilities,
can the robot’s motion over a finite time achieve a desired
level of clarity with the collected sensory data? Formally,

Definition 4. A quantity m ∈ R that evolves according to (10)
is perceivable by the system (8, 11) with clarity dynamics1

g : X × [0, 1] → R, to a level q∗ ∈ [0, 1] at time T from an
initial state x0 ∈ X and clarity q0 ∈ [0, 1], if there exists a
controller π : [0, T ] → U s.t. the solution to[

ẋ
q̇

]
=

[
f(x, π(t))
g(x, q)

]
,

[
x(0)
q(0)

]
=

[
x0

q0

]
(18)

satisfies q(T ) ≥ q∗.

We define the set of initial conditions from which m is
perceivable as the perceivability domain:

1When using a Kalman Filter to estimate m, g is as in (12). In general,
other estimators could be used, and will lead to different expressions for g.

4926



Definition 5. The (q∗, T )-Perceivability Domain of a quantity
m ∈ R (that evolves according to (10)) by the system (8, 11)
is the set of initial states x0 and initial clarities q0 such that
m is perceivable to a level q∗ at time T :

D(q∗, T ) =
{
(x0, q0) : ∃π : [0, T ] → U ,

ẋ = f(x, π(t)), q̇ = g(x, q),

x(0) = x0, q(0) = q0, q(T ) ≥ q∗
}
. (19)

Our key insight is that perceivability is fundamentally a
question of the reachability of the augmented system (18). As
with backward reachable sets, the perceivability domain can
be determined by a Hamilton-Jacobi-Bellman (HJB) equation:

Theorem 4. Let V : [0, T ]×X × [0, 1] → R solve

∂V

∂t
+max

u∈U

(
∂V

∂x
f(x, u)

)
+

∂V

∂q
g(x, q) = 0, (20a)

V (T, x, q) = q ∀x ∈ X , q ∈ [0, 1]. (20b)

Then the (q∗, T )- perceivability domain of m ∈ R (that evolves
according to (10)) by the system (8, 11) is

D(q∗, T ) =
{
[xT

0 , q]
T : V (0, x0, q0) ≥ q∗

}
. (21)

Proof. Let L([t, T ],U) be the set of piecewise continuous
functions π : [t, T ] → U . Define V as the maximum clarity
reachable from (t, x, q):

V (t, x(t), q(t)) = max
π∈L([t,T ],U)

q(T ) s.t. (18)

By the principle of dynamic programming, for any δ > 0,

V (t, x(t), q(t)) = max
π∈L([t,t+δ],U)

V (t+ δ, x(t+ δ), q(t+ δ))

Using a Taylor expansion about δ = 0, as δ → 0,

V (t, x(t), q(t)) = max
u∈U

(
V (t, x(t), q(t)) +

∂V

∂t
δ

+
∂V

∂x
f(x, u)δ +

∂V

∂q
g(x, q)δ

)
which simplifies to (20).

After solving V , the optimal controller is [24, Ch. 4.2]

π(t, x, q) = argmax
u∈U

(
∂V

∂x
f(x, u)

)
(22)

IV. SIMULATIONS AND APPLICATIONS2

A. Energy-Aware Information Gathering

This example demonstrates the diminishing value of mea-
surements. Consider the quadrotor tasked with measuring
ocean temperature. It must fly to a target location, spend T
seconds collecting information, and fly back. As T increases,
more measurements are made and hence greater clarity is
achieved, but at an energy cost. We wish to optimize T to
maximize clarity and minimize energy. We model the energy
cost as E(t) = p0+p1T , where p0 is the energy cost of flying
to and back from the target, p1 is the hovering power draw.

2Code and videos: [25]

T = 0 s

T=10 s

T=20 s

T=40 s

T=80 s
T=160 s

T=320 s
T*=57.4 s

m
ax 

cl
arit

y/
kJ

Fig. 1. Clarity gained as a function of the measurement time. First,
the clarity increases rapidly. As the level of clarity approaches q∞ (red
dashed line), the rate of clarity accumulation decreases. The maximum
clarity/energy ratio is (green dashed line) is achieved at T ∗ = 57.4 s.
Parameters: R = 20.0, Q = 0.001, p0 = 36 kJ, p1 = 0.2 kW.

The pareto front of q(T ) against E(T ) is depicted in Fig. 1.
The diminishing value of measurements is clearly visible, as
between T ∈ [160, 320] s, the clarity only increases by 2.6%,
but increases by 49.7% for t ∈ [10, 20] s. To maximize the
clarity/energy ratio, the quadrotor should collect measurements
for T ∗ = 57.4 seconds (green tangent).

B. Coverage Control based on Clarity
Next, we demonstrate how clarity can be used in ergodic

coverage controller of [26]. The robot is exploring a unit
square, but certain regions have a greater target clarity than
others, as labelled in Fig. 2a. The challenge with ergodic
controllers is defining the fraction of time spent at each
position p, and uniform allocation is often used as a heuristic.
Since the target clarity has been specified, we can invert (13)
to determine the appropriate time allocation.

Fig. 2 compares the behaviour of three coverage controllers:
(A) a greedy controller hovers at the point p with maximum
(qT (p)−q(t, p)) until qT is reached, (B) the ergodic controller
in [26] with a uniform target distribution, and (C) the same er-
godic controller but with a target distribution based on clarity.
The proposed method (C) brings the mean of (q(t, p)−qT (p))
to 0 rapidly, and does not overshoot like controller B. Beyond
t = 35, q(t, p) increases further since the robot continues to
explore despite most cells having reached the target clarity.

C. Perceivability and Optimal Trajectory Generation
Here we demonstrate how perceivability can be determined

using (20). Consider a boat tasked with collecting information
that can only be measured from the green region in Fig. 3b.
To highlight the importance of actuation capabilities on per-
ceivability, we consider two models, a single integrator:

ẋ1 = u1 + wx(x), ẋ2 = u2 + wy(x)

with u1, u2 ∈ [−2, 2] m/s, and a Dubins Boat:

ẋ1 = v cosx3 + wx(x), ẋ2 = v sinx3 + wy(x), ẋ3 = u

where v = 2 m/s, and u ∈ [−1, 1] rad/s. For both, the sensing
model is as in (12), with C(x) = 1 when x is in the green
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Fig. 2. Coverage Controllers. (a-c) Snapshots of three controllers exploring a square region. The target clarity qT (p) is different in different regions
as labelled in (a). (d) Plot of the mean(q(t, p)− qT (p)) against t for each controller. Notice that using the proposed method, the mean clarity error
is close to 0 for t ∈ [20 − 35] seconds, and only increases later, when the entire region has higher clarity than the targets specified.
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Fig. 3. Perceivability and Optimal Trajectories. (a) The (q∗, T )-Perceivability Domain (states above blue surface) for single integrator using
q∗ = 0.7, T = 10.0 sec. (b) Optimal trajectories for the single integrator (orange) and the Dubins boat (blue) from the same initial conditions.
The heading of Dubins boat is shown with blue arrows. Due to the high ocean currents in the sensing region, both vehicles make multiple passes
through the sensing region to accumulate clarity. (c) Plot of clarity against time for both vehicles. Since the single integrator is more maneuverable
than the Dubins boat, the environment is perceivable to a level 0.7 in time 10 seconds for the single integrator but not for the Dubin’s boat.

square and 0 elsewhere, R(x) = 1.0, Q = 0.001. The ocean
current is wx(x) = max(0, 3x2), wy(x) = −0.5 m/s. Thus,
neither vehicle has sufficient control authority to remain within
the sensing range indefinitely.

To determine the perceivability domain, the backwards
reachability set of (18) is computed using [27], [28] (Fig. 3a).
The optimal controller (22) drives both vehicles from the same
initial condition (Fig. 3b). Due to the current, both vehicles
need to do loops to acquire clarity. The single integrator
(Fig. 3c) is able to reach q(T ) ≥ q∗, while Dubins boat is not.
Despite having the same sensing capabilities, the perceivability
is different due to different actuation capabilities.

Computing the 10-second perceivability domain took
450 seconds on a Macboook Pro (i9, 2.3GHz, 16GB). While
prohibitively slow for online applications, V can be precom-
puted offline. Future work will explore faster trajectory design
techniques, akin to RIG [1], or CBFs, as demonstrated next.

D. CBF-based Trajectory Generation
Here we demonstrate how Lyapunov methods can be used

to efficiently design controllers that maintain an information
constraint, avoiding the need to numerically solve the HJB
equation. Consider a 6D planar quadrotor system [29],

ẍ1 = u1 sinx3/m, ẍ2 = u1 cosx3/m− g, ẍ3 = u2/J

where x1, x2 is the position of the quadrotor in the vertical
plane, and x3 is the pitch angle. m, g, J are the mass, accel-
eration due to gravity, and moment of inertia. The quadrotor
is attempting a precision landing, using onboard sensors to
determine the landing spot xf . Given an estimate x̂f , an
optimal control problem (OCP) can be solved to reach x̂f .
However, since x̂f is estimated online, we must ensure x̂f

is accurate before approaching it. This can be encoded as
σ ≤ x2/2, which ensures that σ, the standard deviation of
the estimated landing site is less than half the altitude, x2. A
constrained OCP can be defined, but is numerically difficult
to solve since there are 7 state and 2 input dimensions.3

Instead, Lyapunov methods can be used to maintain the
constraint. Using σ2 = 1/q − 1, the safe set is

S = {[xT , q]T : h(x, q) = q − 4/(4 + x2
2) ≥ 0}

where h is a CBF of relative degree 2 [30]. Fig. 4 compares the
trajectories with and without the CBF-QP controller [31]. With
the CBF-QP controller the quadrotor slows down to ensure
high quality of information. Each iteration of the controller
takes about 1 ms, significantly faster than HJB methods.
This illustrates that by framing problems of information-based

3It took 480 s to compute the 0.05 s horizon value function on a coarse grid.
Over a finer grid, the RAM usage exceeded 60GB and MATLAB crashed.
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Fig. 4. Precision landing of a planar quadrotor. (a) In the nominal
controller, the quad descends rapidly and misses the target. (b) Using
the clarity based CBF-QP controller, the quad descends slowly. (c) Plot
of h against t, showing the CBF-QP keeps the system safe.

control using clarity/perceivability, Lyapunov methods can
be used to design controllers to maximize (or in this case
maintain) the quality of information gathered by a system.

V. CONCLUSION

The primary purpose of this paper is to introduce perceiv-
ability, the ability of a robotic system to obtain information
about the environment contingent on its actuation capabilities,
its sensing capabilities, the environment’s dynamics. As a met-
ric for information, we introduce clarity, a bounded rescaling
of differential entropy that takes values in [0, 1]. We have
shown how perceivability is linked to a reachability problem
of an augmented state, and through HJB equations, simulta-
neously determine a system’s perceivability and the optimal
control policy to maximize the final clarity. By using clarity,
the HJB-based algorithms can be evaluated numerically, since
(A) the range of the information state is bounded, and (B)
the clarity dynamics have finite derivative. In the simulations,
we demonstrate other ways that the clarity and perceivability
can be used, from minimizing the energy cost, or designing
CBF-QP controllers to maintain a desired level of information.

In this introductory paper, we considered stochastic envi-
ronments and measurement models, but deterministic robot
dynamics. The important case of stochastic robot dynamics
will be studied in the future. We also intend to investigate
a potential connection with data-informativity [13]: perhaps
data-informative trajectories can be designed using perceiv-
ability, to improve data-driven system identification.
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