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Abstract— We consider the problem of robust trajectory
optimization of constrained discrete-time linear systems under
bounded uncertainty. This paper extends our previous work
on robust trajectory planning for linear systems with control-
dependent uncertainties to a more general class of uncertainties,
including nominal-state-dependent uncertainties. In particular,
we show that if strong duality holds for the robust state
constraints, and if the uncertainties are bounded by convex
elementwise nonnegative functions of the nominal state and
control, the robust constraints can be equivalently reformulated
as deterministic convex constraints, enabling globally optimal
solutions with no conservatism. We first use convex duality
theory to reformulate robust linear inequality state constraints
as deterministic biconvex constraints . We then exploit the
elementwise nonnegativity of the uncertainty bounds to remove
the biconvexity in closed form, resulting in convex deterministic
constraints that can be handled by off-the-shelf solvers. These
two lemmas are our main contribution, and lead to our final
result, and equivalent convex reformulation of the original
robust optimization problem which allows efficient trajectory
optimization solutions under control and state dependent un-
certainties. We then demonstrate the practical applicability of
our method via numerical simulations.

I. INTRODUCTION

This paper describes a key useful generalization of our
previous work [1] on robust trajectory optimization of
discrete-time linear dynamical systems. As in that paper,
we consider discrete-time linear dynamical systems subject
to linear inequality constraints on the state, which must be
satisfied robustly for any realization of a perturbation which,
while unknown, is assumed to lie in a known set at each
time step. Our principal motivating real-world example is
optimal trajectory planning for orbital spacecraft rendezvous.
For such trajectory planning problems, the presence of uncer-
tainty in the dynamics has important performance and safety
implications. In [1], we described a method of generating
robust linearly-constrained trajectories subject to control-
dependent perturbations; this allowed us to incorporate the
common Gates maneuver error model [2] into a deterministic
convex optimization framework. Navigation uncertainty can
also create apparent dynamic disturbances: if the true state
of the vehicle is different from the measured state, the
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actual evolution of the state will not match what we predict
from the measured state. Autonomous vehicles often make
use of relative navigation techniques such as lidar [3] and
optical computer vision algorithms [4]. The navigation errors
these produce are often dependent on the vehicle state. For
example, vision-based systems require illumination of the
target, so that a chaser vehicle approaching from the dark
side of a target vehicle may have worse state estimates than
one approaching from the sunlit side; the performance of
lidar can be degraded by varying reflectivity on different
parts of the target vehicle; etc.. Thus, practical trajectory-
optimization techniques for spacecraft rendezvous should
ideally be able to handle state-dependent uncertainties. State-
dependent disturbances are also relevant outside the domain
of spacecraft trajectory planning; for example, aerodynamic
force disturbances on aircraft are often dependent on dy-
namic pressure, which is a function of airspeed. In this paper,
we extend our method to not only handle more general
control-dependent uncertainties, but to also handle state-
dependent uncertainties in a unified solution approach.

There are two broadly-prevailing methods for dealing
with uncertainty in trajectory planning [5]: the stochas-
tic approach, in which perturbations (and hence the state)
are modeled as random variables with known probability
distributions, and all constraints are converted to chance
constraints; and the “robust” approach, in which it is assumed
that all possible perturbations lie in known sets, and trajecto-
ries are planned which remain feasible for any realization of
the perturbations. We use the latter approach in this paper.

In the literature, uncertainties in the dynamics (and hence
in the state after any amount of propagation) are often han-
dled by simply applying buffered constraints to the nominal
trajectory, resulting in the nominal trajectory standing off
some distance from the desired boundary [6], [7], [8]. These
constraint buffers are often conservative, being computed
with heuristics or overapproximations of the true uncertainty
sets. Model-predictive control (MPC) is a popular approach
to handling state-dependent uncertainties in particular [9],
[10], [11]. This is again often accomplished by simplifying
the uncertainty sets to more tractable overapproximations,
thus introducing conservatism to the final trajectories. While
the method we present also essentially works by buffering the
state constraints, our method results in an exactly-equivalent
deterministic reformulation of the original robust constraint:
if strong duality holds for the original robust constraint, our
method results in a zero-conservatism equivalent determin-
istic problem.
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A. Notation

In the following sections, lowercase variables represent
vectors, and uppercase variables represent matrices. Rn is
the set of real vectors of dimension n, Rm×n is the set
of real m-by-n matrices, and ei is the i-th standard basis
vector (i.e., the i-th element of ei is one, and all others
are zero). The symbols ⪯ and ⪰ represent elementwise
vector and matrix inequalities, and the symbols ≤ and ≥
represent scalar inequalities. The function max(A,B) is the
elementwise maximum of A and B, and min(A,B) is the
elementwise minimum. In×n is the n-by-n identity matrix,
and 0m×n and 1m×n are m-by-n matrices of zeros and ones,
respectively. The constant matrix C1 is C1 =

[
1 −1

]
, and

the matrix Cn is
Cn = In×n ⊗ C1,

where ⊗ is the Kronecker product. for example:

C2 =

[
1 −1 0 0
0 0 1 −1

]
.

The notation (A)ij denotes the element of A in the i-th row
and j-th column; for vectors, the notation (a)i denotes the
i-th element.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-varying system
with state x, nominal control input u, external environmental
input v, perturbation w on the external input, and an addi-
tional state- and control-dependent perturbation n. Thus for
any time t = 1, 2, ...,

xt+1 = Atxt +Btut + Et(vt + wt) +Ktnt.

The external input terms v and w are included for generality;
in the case of spacecraft trajectory planning, this external
input might represent solar radiation pressure or aerodynamic
drag, for example. The separate perturbation n is assumed
to be dependent on the nominal state and control, and must
therefore be handled separately from the state- and control-
independent term w.

In the following sections we work with a stacked-variable
formulation of this problem, with the stacked matrices Āt,
B̄t, Ēt, and K̄t defined as:

Āt = AtAt−1...A0

B̄t =
[
AtAt−1...A1B0 AtAt−1...A2B1 · · · Bt

]
Ēt =

[
AtAt−1...A1E0 AtAt−1...A2E1 · · · Et

]
K̄t =

[
AtAt−1...A1K0 AtAt−1...A2K1 · · · Kt

]
.

For any vector variable at, the stacked form is defined as:
āt =

[
aT0 aT1 · · · aTt

]T
. Note then that for any time

t = 1, 2, ...,

xt = Āt−1x0+B̄t−1ūt−1+Ēt−1(v̄t−1+w̄t−1)+K̄t−1n̄t−1.

In the following, we also consider state propagation due
to nominal inputs, and define the following nominal system
dynamics

xn
t = Āt−1x0 + B̄t−1ūt−1 + Ēt−1v̄t−1 (1)

and the deviation from the nominal state is captured by

∆xt = K̄t−1n̄t−1 + Ēt−1w̄t−1. (2)

Note that xt = xn
t +∆xt.

In this paper, we impose a linear inequality constraint
Htxt ⪯ ht, where Ht ∈ Rmt×nx , ht ∈ Rmt . Since xt

depends on the unknown but bounded disturbances wt and
nt, we wish to apply this constraint robustly, so that it is
satisfied for any realization of wt and nt; thus we must
assume some known sets in which these perturbations lie.

For the state and control dependent uncertainty nt, we
make the following assumption:

Assumption 1. 0 ⪯ nt ⪯ f(xn
t , ut), where the function f

is convex and elementwise nonnegative for all xn
t and ut.

The above assumption bounds the set of possible un-
certainties as a function of the nominal state and control.
Hence the choice of the nominal state and control trajectories
implies a choice of uncertainties to be experienced by the
dynamics. As shown in [1], this uncertainty characterization
is used in spacecraft control problems for control dependent
uncertainties, via the Gates model [2].

Finally, for our uncertainty model we must assume known
bounds on the exogenous input uncertainty wt. In this case
we simply assume that the set of possible disturbances at
each time step is a known polytope:

Assumption 2. The external input perturbation wt is con-
strained to a polytope Gtwt ⪯ gt.

To express our uncertainty bounds in stacked form, we
define:

Ḡt =


G0

G1

. . .
Gt

 ,

f̄t(x̄
n
t , ūt) =


f(xn

0 , u0)
f(xn

1 , u1)
...

f(xn
t , ut)

 .

Then, an optimal control problem with cost function
J(x̄n

N , ūN−1) over time horizon t ∈ {1, 2, . . . , N} under the
above assumptions, and subject to polytopic state constraints,
is formulated as follows:

minimize
x̄n
N , ūN−1

J(x̄n
N , ūN−1) (3a)

subject to

xt = xn
t +∆xt satisfying eqs.(1), (2) t = 1, . . . , N, (3b)

Htxt ⪯ ht ∀(w̄t−1, n̄t−1) ∈ P̄t−1 t = 1, . . . , N (3c)

where

P̄k = {(ω, ν) | Ḡkω ⪯ ḡk, 0 ⪯ ν ⪯ f̄(x̄n
k , ūk)}.

In the following section we develop an equivalent dual
formulation of constraint (3c), and corresponding convex
representation of this robust optimization problem.

6262



III. LOSSLESS CONVEXIFICATION OF ROBUST STATE
CONSTRAINTS

Inspection of the constraint (3c) reveals that it can also be
expressed as follows:

max
(w̄t−1,n̄t−1)∈P̄t−1

eTi Htxt ≤ eTi ht, i = 1, . . . ,mt. (4)

Thus constraint (3c) is itself really a statement about the
optimal values of a collection of subsidiary maximization
problems. However, we can exploit the duality theory of con-
vex optimization to find upper bounds to these maximization
problems, and thus reduce our constraint to a set of tractable,
deterministic convex constraints.

The dual of a maximization problem is a minimization
problem, and any feasible cost of this dual minimization
problem is an upper bound on the primal maximization
problem [12]. Since upper bounds on the problems (4)
are what we desire for robust constraint satisfaction, re-
expressing this constraint in dual form provides a useful
technique to simplify our analysis. Similar duality-based
techniques have been utilized in set-based analysis of control
systems [13], [14], specifically for establishing invariant sets
for control systems [15], [16] and Markov chains [17], [18].
The transformation of our robust linear state constraint to a
set of deterministic convex constraints relies on the following
lemma.

Lemma 1. If strong duality holds for the problems (4), the
robust state constraint (3c) is equivalent to the following:
there exist elementwise nonnegative matrices Zt and Λt such
that:

ZtḠt−1 = HtĒt−1 (5a)
Λt ⪰ HtK̄t−1 (5b)

Ztḡt−1 + Λtf̄(x̄
n
t−1, ūt−1)︸ ︷︷ ︸

uncertainty buffer

⪯ ht −Htx
n
t .︸ ︷︷ ︸

nominal state constraint

(5c)

Proof. We bound the problems (4) above through duality.
To form the dual of problems (4), we first transform them
into a more convenient form. Through some straightforward
algebra, we can see that

max
(w̄t−1,n̄t−1)∈P̄t−1

eTi Htxt ≤ eTi ht

≡ max
(w̄t−1,n̄t−1)∈P̄t−1

eTi Ht (x
n
t +∆xt) ≤ eTi ht

≡ max
(w̄t−1,n̄t−1)∈P̄t−1

eTi Ht∆xt ≤ eTi (ht −Htx
n
t ) .

Expanding ∆xt and re-expressing the constraints on
(n̄t−1, w̄t−1), we arrive at the following equivalent formula-
tion of (3c):

max
w̄t−1,n̄t−1

eTi Ht

(
K̄t−1n̄t−1 + Ēt−1w̄t−1

)
≤ eTi (ht −Htx

n
t )

s.t. 0 ⪯ n̄t−1 ⪯ f̄(x̄n
t−1, ūt−1),

Ḡt−1w̄t−1 ⪯ ḡt−1.

The dual of this problem is:

min
λi,zi

λT
i f̄(x̄

n
t−1, ūt−1) + zTi ḡt−1

s.t. λi ⪰ 0, λi ⪰ eTi HK̄t−1, zi ⪰ 0,

zTi Ḡt−1 = eTi HtĒt−1.

Since, as stated before, any dual-feasible cost provides an
upper bound on the primal problem, then if strong duality
holds (and the duality gap at optimality is zero) our constraint
is equivalent to the following:

for i = 1, . . . ,mt, ∃λi ⪰ 0, zi ⪰ 0

such that

λi ⪰ eTi HK̄t−1

zTi Ḡt−1 = eTi HtĒt−1

zTi ḡt−1 + λT
i f̄(x̄

n
t−1, ūt−1) ⪯ eTi (ht −Htx

n
t ) .

Thus, stacking the i-dependent variables into the matrices
Zt =

[
z1 . . . zmt

]T
and Λt =

[
λ1 . . . λmt

]T
, we

arrive at the conclusions of the lemma.

The constraints of Lemma 1 are almost convex, but not
quite: constraint (5c) is biconvex, since Λt, x̄n

t−1, and ūt−1

are decision variables. However, we note the following:

Remark 1. If the left-hand-side (LHS) of constraint (5c)
is zero, this corresponds to the zero-uncertainty polytopic
state constraint. Any positive value of the LHS enforces
an uncertainty buffer holding the nominal trajectory away
from the polytopic constraint. Therefore we can minimize
conservatism by elementwise minimizing the LHS of (5c).

Also note that the biconvex terms in the LHS of constraint
(5c) are elementwise nonnegative. Therefore we can mini-
mize the biconvex contribution to the uncertainty buffer by
minimizing Λt elementwise, leading to the following lemma.

Lemma 2. The biconvex term Λtf̄(x̄
n
t−1, ūt−1) in con-

straint (5c) can be equivalently replaced by the term
Γtf̄(x̄

n
t−1, ūt−1), where Γt = max

(
0, HtK̄t−1

)
.

Proof. Since Λtf̄(x̄
n
t−1, ūt−1) is convex separately in Λt,

x̄t−1, and ūt−1, the minimum of this term can be found by
minimizing over each variable separately in succession. Since
Λt, and f̄(x̄n

t−1, ūt−1) are both elementwise nonnegative, we
can minimize over Λt in closed form by simply minimiz-
ing Λt elementwise. If any particular element (HtK̄t−1)ij
is nonnegative, then if we simply take the corresponding
element (Λt)ij to be equal to (HtK̄t−1)ij then we have
minimized that element (Λt)ij according to constraint (5b).

If on the other hand a particular element (HtK̄t−1)ij is
negative, then we cannot take the corresponding element of
(Λt)ij to equal (HtK̄t−1)ij , since Λt must be elementwise
nonnegative. In this case the minimum feasible value of
(Λt)ij is zero.

Careful inspection reveals that these optimal assignments
are equivalently expressed as Λ∗

t = max
(
0, HtK̄t−1

)
.

Defining Γt = Λ∗
t completes the proof.

Combining Lemmas 1 and 2 leads immediately to the
following theorem, which is the main technical result of this
paper.
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Theorem 1. If strong duality holds for the problems (4), the
robust state constraint (3c) is equivalent to the following:

Zt ⪰ 0,

ZtḠt−1 = HtĒt−1,

Ztḡt−1 + Γtf̄(x̄
n
t−1, ūt−1) ⪯ ht −Htx

n
t ,

where
Γt = max

(
0, HtK̄t−1

)
.

And thus we have rendered the robust state constraint (3c)
suitable for convex programming methods. Our final problem
formulation is thus:

minimize
x̄n
N , ūN−1

J(x̄n
N , ūN−1) (6a)

subject to

ZtḠt−1 = HtĒt−1, Zt ⪰ 0, (6b)
xn
t = Āt−1x0 + B̄t−1ūt−1 + Ēt−1v̄t−1 t = 1, . . . , N, (6c)

Ztḡt−1 + Γtf̄(x̄
n
t−1, ūt−1) ⪯ ht −Htx

n
t (6d)

where
Γt = max

(
0, HtK̄t−1

)
.

Remark 2. The constraints of problem (6) are convex, i.e.,
the original robust trajectory planning problem is convexified
losslessly. Thus, the resulting optimization problem can be
solved to global optimality by a wide range of fast and reli-
able interior-point-method (IPM) and first-order gradient de-
scent solvers for convex optimization such as MOSEK [19],
ECOS [20], and the proportional-integral projected gradient
(PIPG) method [21].

IV. NUMERICAL EXAMPLES

We now show some example simulations. We start with
a simple two-dimensional double integrator toy problem to
demonstrate the basic functionality of the algorithm, and
then we show a problem with more complicated dynam-
ics and constraints, more reminiscent of a practical orbital
rendezvous problem. In both examples the dynamics are
first defined in continuous time; both are then discretized
by assuming piecewise-constant control and external inputs
between discretization points; i.e., we discretize with zeroth-
order hold [22].

A. Double Integrator Example

We start with continuous-time two-dimensional double
integrator dynamics (neglecting exogenous input and un-
certainty in this case for convenience) with state x =[
rx ry ṙx ṙy

]T
(position components rx, ry have units

of meters, velocity components ṙx, ṙy have units of m/s), and
control u =

[
ax ay

]T
(units of m/s2). This models a point

mass moving on a frictionless plane under the influence of
the force vector u. Our full continuous-time dynamics are:

ẋ =

[
02×2 I2×2

02×2 02×2

]
x+

[
02×2

I2×2

]
u+

[
Kx Ku

] [nx

nu

]
where

Kx =

[
0.1× C2 02×4

02×4 0.01× C2

]
, Ku =

[
02×4

C2

]
.

For the uncertainty bounds, we assume the following:

0 ⪯
[
nx

nu

]
⪯

[
5× fx(x, u)
0.1× fu(x, u)

]
(7)

where

fx(x, u) = 18×1 × |ry|,

fu(x, u) =

[
12×1 × |ax|
12×1 × |ay|

]
.

The coefficients 5 and 0.1 in equation (7) are simply relative
weighting parameters we used to tune this particular toy
problem; they have no analytical significance.

The structure and meaning of the matrices Kx and Ku

bear some explanation. Note that by Assumption 1, the per-
turbation n is elementwise nonnegative. If we wish to model
real-world perturbations ntrue which cannot be guaranteed
to be nonnegative, this can be done by representing each
element (ntrue)i by a pair of elements in n: one equal to
max(0, (ntrue)i) and one equal to −min(0, (ntrue)i). Both
of these elements of n are nonnegative, and by taking their
difference we can recover the entire range of the element
(ntrue)i. Thus, observe that the first row of Kx (for example)
has the effect of creating from the nonnegative first two
elements of nx a single “effective” perturbation component
(possibly negative) on the state rx, and similarly for the other
rows.

The perturbation term Kxnx, when coupled with the
uncertainty constraint function fx(x, u), represents position
and velocity uncertainty terms that are dependent on the
absolute value of the ry position component. In other words,
the farther our point mass is from the rx axis, the greater the
state uncertainty. The perturbation term Kunu, when coupled
with the uncertainty constraint function fu(x, u), represents
control uncertainty: an additional unknown control term
which is bounded by a function of the nominal control. These
control perturbation components are bounded proportionally
to the absolute value of the nominal control components:
the larger the nominal control, the larger the uncertainty on
it. For spacecraft maneuver planning, this is a reasonable
assumption in many cases; see for example [2] for a similar
model.

In addition to the above dynamics, we impose the fol-
lowing constraints: initial state at the origin, final position in
rx ∈ [2, 3], ry ∈ [1, 2], and final velocity in [-0.5, 0.5] in both
components. Note that we cannot constrain the final state to
a single point in the state space, due to the uncertainty in
the dynamics; exact equality constraints cannot be satisfied
robustly with nonzero uncertainty. Thus we impose the final
state box constraint as above.

Discretizing the continuous-time dynamics with zeroth-
order hold (20 discretization points, 0.1 second apart), we
then implement a minimum-control-effort trajectory opti-
mization problem in the Python programming language using
cvxpy [23] as a parsing layer, with ECOS [20] as the
underlying numerical solver. We compute three trajectories
for illustration: one with no uncertainty, one with only
control-dependent uncertainty, and one with both state- and
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Fig. 1: Double integrator nominal trajectories.

control-dependent uncertainty. These are shown in Fig. 1;
red arrows show control force direction and magnitude. Note
that the final position of the no-uncertainty trajectory is
at the boundary of the terminal box constraint, resulting
in the shortest possible trajectory and the least control
effort. The trajectory with only control-dependent uncertainty
terminates deeper into the terminal box constraint than the
zero-uncertainty case, because the nominal trajectory must
stand off from the feasible set boundary in order for the
constraint to be robustly satisfied. Finally, the trajectory with
both state- and control-dependent uncertainty stays near the
rx axis as long as possible before venturing up into the
high-uncertainty region away from the rx axis, to minimize
uncertainty growth and retain feasibility.

B. Orbital Dynamics Example
The main motivation of this work is the development

of algorithms for orbital spacecraft rendezvous. To demon-
strate the suitability of our method to these problems,
we assume linearized three-dimensional Clohessy-Wiltshire
(CW) dynamics [24], which capture the relative motion of
a chaser vehicle relative to a target vehicle in a circular
orbit; we assume state-dependent uncertainty. With state
x =

[
rx ry rz ṙx ṙy ṙz

]T
(position components rx,

ry , rz have units of meters, velocity components ṙx, ṙy , ṙz
have units of m/s) and control u =

[
ax ay az

]T
(units of

m/s2), the continuous-time dynamics are:

ẋ =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 −2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

x+

[
03×3

I3×3

]
u+Kxnx

where
Kx =

[
C3 03×6

03×6 0.1× C3

]
,

and ω is a mean-motion parameter that characterizes the
speed of orbital motion. In our simulation we use ω =
0.3 s−1. Note that this is several orders of magnitude larger
than is realistic for e.g. low Earth orbit; this was done simply
to make the nontrivial dynamics more visible over the short
time and distance span of the problem, and has no effect

on the general applicability of the algorithm. We assume the
following uncertainty bounds:

0 ⪯ nx ⪯ 0.05× ∥r − rlm∥2 × 112×1

where r is the three-dimensional position component of the
state (i.e., r =

[
rx ry rz

]T
), and rlm is the fixed position

of a “landmark” in space, in this example located at rlm =[
5 −2 0

]T
. This uncertainty bound represents the effect

of using relative navigation techniques about the landmark,
with state (and hence dynamics) uncertainty increasing with
distance from the landmark. For example, the landmark could
represent a space station which the chaser vehicle is scanning
with lidar in order to determine its own state.

The constraints are as follows: initial state at the origin,
final position in rx ∈ [9, 10], ry ∈ [−0.5, 0.5], rx ∈
[−0.5, 0.5], final velocity less than 0.1 m/s in all components,
control magnitude less than 50 m/s2 in all components for
all time. Our uncertainty function will tend to drive the
trajectory toward the landmark in order to reduce uncertainty;
in an actual relative navigation scenario, since the landmark
is likely another spacecraft, we do not wish to approach
in an uncontrolled manner. To simulate this, we impose
an additional constraint that ry be greater than -1 at all
times; this keeps the vehicle some distance away from the
landmark. We discretize the dynamics with zeroth-order hold
(100 discretization points, 0.02 seconds apart) in order to
solve the minimum-fuel trajectory optimization problem in
cvxpy.

We first show the result of a trajectory optimization ignor-
ing any uncertainty, for reference. The resulting trajectory
in the rx-ry plane is shown in Fig. 2. This displays the
standard phasing “hop” along the orbit track, with an initial
thrust pulse to set the vehicle in motion, and a terminal
pulse to stop the vehicle in the final bounding box. We also
show in gray 1000 trajectories subject to the perturbations
we ignored in planning the nominal trajectory; note that
many of these violate the terminal box constraint. Compare
this to the nominal trajectory generated with knowledge of
the uncertainty, shown in Fig. 3. In order to prevent the
uncertainty from growing until the final bounding constraint
is no longer feasible, the vehicle dips down into the low-
uncertainty region near the landmark, while respecting the
keep-out plane constraint. Note that this plane constraint
is also applied robustly: the nominal trajectory stands off
some distance from the constraint. We also show 1000
perturbed trajectories in gray; note that all of them respect
all constraints.

V. CONCLUSION

We have extended our previous duality-based robust opti-
mization approach [1] to a much larger class of uncertainty
sets, encompassing not only more general control-dependent
uncertainty, but also now including state-dependent uncer-
tainty as well. This broadens the relevance of our prior work
to more sophisticated real-world error models, such as are
often found when using relative navigation methods to plan
vehicle rendezvous trajectories. We have demonstrated the
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Fig. 2: CW dynamics, no uncertainty considered in plan-
ning. Nominal dynamics result in a feasible trajectory, but
perturbed dynamics cause constraint violation.

Fig. 3: CW dynamics, planning for uncertainty. All trajecto-
ries (nominal and perturbed) remain feasible.

practicality of our technique by the implementation of repre-
sentative numerical examples. This technique is also readily
adaptable to non-convex problems (including nonconvexity
in the uncertainty bounding function f(xn, u)) by the use of
successive convex programming techniques such as in [25].
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