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Abstract— Incremental input-to-state stability plays an im-
portant role in the analysis of nonlinear systems, as it opens
up the possibility for accurate performance characterizations
beyond classical approaches. In this paper, we are interested in
deriving conditions for incremental stability of a specific class of
discontinuous dynamical systems containing a so-called hybrid
integrator. Recently, it was shown that hybrid integrators
have the potential for overcoming fundamental performance
limitations of linear time-invariant control, thereby making
them interesting for use in, e.g., high-precision motion control
applications. The main contribution of this paper is to show
that these hybrid integrators have incremental input-to-state
stability properties, and that, under an incremental small-gain
condition, the feedback interconnection of a hybrid integrator
and a linear time-invariant plant is incrementally input-to-state
stable.

I. INTRODUCTION

The idea of developing nonlinear control strategies that can
overcome some of the fundamental limitations of linear time-
invariant (LTI) control for LTI systems already dates back to
the 1950’s when J.C. Clegg introduced its celebrated inte-
grator with resetting mechanism [1]. Since its introduction,
the Clegg integrator has inspired many alternative strategies
including generalized reset elements [2], [3], [4], [5], split-
path integrators [7], [8], switching controllers [6], and hy-
brid integrator-gain systems (HIGS) [9], [10], [11]. HIGS
recently gained much attention due to its ability to overcome
fundamental limitations of linear feedback control [10] and
various engineering successes were reported in industrial
applications such as wafer scanners [14] and atomic force
microscopes [11]. These promising results motivate further
exploration of HIGS-based controller strategies.

Unfortunately, the potential performance benefits when
transitioning from the linear to the nonlinear controller realm
as with HIGS-based control come at the cost of an increased
complexity in system analysis and design. As stability is
a prerequisite for control system performance, a particular
challenge to be solved for the non-smooth and even discon-
tinuous control strategies mentioned above lies in the devel-
opment of constructive tools for stability analysis. Over the
years, many tools for stability analysis have been proposed,
ranging from signal-based approaches [16], [31] to Lyapunov
techniques [3], [9] and graphical methods [4], [12]. Most
of these methods, however, primarily focus on stability of
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some equilibrium point, typically the zero equilibrium, or an
equilibrium set. Although important, these approaches do not
provide any information regarding the qualitative behaviour
of solutions with respect to each other. For example, it is
well-known that, contrary to LTI systems, general nonlinear
systems are sensitive to their initial conditions, meaning that
starting from a different initial state can result in completely
different system behaviour. To qualify nonlinear system
performance, it is therefore of interest to study the behaviour
of different solutions (related to the same input) with respect
to each other. One of the notions that precisely does this is
known as incremental input-to-state stability [18] abbreviated
as δ-ISS. Proving the δ-ISS property leads to the guarantee
that for, e.g., periodic inputs there exists a unique periodic
limit solution that is independent of the initial conditions
[18]. This opens up possibilities for accurate performance
characterizations beyond, for instance, the classical L2-gain.
Namely, incrementally stable systems allow for studying
specific response characteristics in the presence of specific
inputs (e.g., periodic inputs), possibly better reflecting the
actual performance objective of the control system than
an L2-gain property would. Besides, the δ-ISS property
guarantees robustness in the sense that small deviations in
the input lead to small deviations in the output [19]. Notions
closely related to incremental stability are known in the
literature as convergence [17] and contraction [20], [13].

Sufficient conditions for verifying incremental stability
of continuous (and possibly non-smooth) nonlinear systems
have been proposed in, e.g., [15], [18], [21], [24]. However,
conditions for incremental stability of discontinuous dynam-
ical systems such as the earlier discussed reset and hybrid
integrator-gain systems are scarcely available in the litera-
ture. Notable exceptions are [23], [25], [26], where sufficient
conditions for discontinuous piecewise affine (PWA) systems
are formulated in terms of linear matrix inequalities (LMIs).
Recently, we have started to address this shortcoming by
deriving sufficient conditions for δ-ISS of HIGS, focussing
on the complete closed-loop dynamics as a whole [27]. The
first main contribution of the current paper is to demonstrate
that under appropriate assumptions, the hybrid integrator
possesses a δ-ISS property. The second main contribution is
a novel and “composite” condition that guarantees the feed-
back interconnection of such hybrid integrator and an LTI
plant to be δ-ISS. Here, we do not use as in [27] a Lyapunov-
based dissipativity mechanism that requires certain passivity
properties of the plant. Instead, our new conditions are based
on a small-gain argument and guarantee δ-ISS for plants that
possibly violate the earlier passivity requirements [27]. This
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is demonstrated in the paper through a numerical example.
The remaining part of the paper is organized as follows.

In Section II the system setting and problem formulation are
discussed. The incremental closed-loop system along with its
properties are provided in Section III. The main results are
presented in Section IV, and a numerical example is given
in Section V. Conclusions are given in Section VI.

Notation: The space of essentially bounded measurable
signals is denoted by L∞ and is endowed with the L∞-norm,
defined as ‖x‖∞ = ess supt ‖x(t)‖. A function w : R≥0 →
R is said to be bounded piecewise continuous, denoted by
w ∈ PC, if w is bounded, i.e., supt ‖x(t)‖ < ∞, and there
is a set of times {tk}k∈N ⊂ [0,∞) with t0 = 0, tk+1 > tk
for all k ∈ N, limk→∞ tk = ∞, w is continuous for all
t 6∈ {tk}k∈N, and limt↓tk w(t) = w(tk), k ∈ N

II. SYSTEM SETTING

In this paper we consider the Lur’e-type system as de-
picted in Fig. 1, representing the negative feedback intercon-
nection of an LTI plant P (possibly containing LTI control
elements), and a hybrid integrator H, the latter which will
be specified in detail below.

P
−

H +

v

yp

zu

w

Fig. 1: Feedback interconnection of an LTI system P and a
hybrid integrator H.

The LTI plant P in Fig. 1 is given by

P :

{
ẋp = Axp +Bv + Fw,

yp = Cxp
(1)

with state xp(t) ∈ Rm, external input w(t) ∈ Rp, control
input v(t) ∈ R, and output yp(t) ∈ R at time t ∈ R≥0.
We assume that the matrices (A,B,C) describe a minimal
realization of the system P in (1).

A. Hybrid integrator-gain system

The hybrid integrator-gain systemH is given by the scalar-
state switched differential algebraic equation

H :


ẋh = fh(xh, z), if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2,

u = xh

(2a)
(2b)
(2c)

with state xh(t) ∈ R, input z(t) := yp(t) = Cxp(t) ∈ R,
output u(t) = −v(t) ∈ R at time t ∈ R≥0, and where fh :
R×R→ R is a nonlinear function. Note that (2) is equivalent
to the description used in [27] and generalizes [9], where
fh was restricted to be linear. Allowing fh to be nonlinear
provides additional freedom in controller design, and allows

to include a broader class of controllers, e.g., variable-gain
or anti-windup integrators. The parameter kh ∈ R≥0 relates
to the gain-mode constraint u = khz. Here, z is assumed to
be (locally) absolutely continuous, and ż denotes the time-
derivative, which exists for almost all times t. The flow sets
F1 and F2 dictating the active mode in (2) are given by

F1 =

{
(z, u, ż) ∈ R3 | zu ≥ u2

kh
∧ (z, u, ż) 6∈ F2

}
, (3a)

F2 =
{

(z, u, ż) ∈ R3 | u = khz ∧ fh(xh, z)z > khżz
}
(3b)

of which the union forms the [0, kh]-sector defined as

F = F1 ∪ F2 =

{
(z, u, ż) ∈ R3 | zu ≥ u2

kh
, ż ∈ R

}
. (4)

The sets F1 and F2 in (3) define regions where H
operates in either a dynamic mode or a static mode, and
are designed as to keep the input-output pair (z, u) within
the sector F , thereby guaranteeing the input z and output
u to have the same sign at all times. Intuitively, such
sign equivalence helps in reducing the phase lag typically
induced by LTI integrators/low-pass filters as a consequence
of Bode’s gain-phase relationship, and may benefit robust
performance and stability properties when placing a hybrid
integrator in closed-loop with an LTI plant. A detailed
discussion on the construction of the sets in (3) and (4),
along with a visualization, can be found in [9, Section 3],
whereas examples (both industrial and academic) motivating
and demonstrating the performance potential of the hybrid
integrator are given in, e.g., [14], [9], [10].

In developing our main results, we make the following
assumptions regarding the vector field in (2a).

Assumption 1. The function fh in (2) satisfies fh(0, 0) = 0,
and fh(0, z)z ≥ 0 for all z ∈ R.

Assumption 2. There exist constants c1 > 0 and c2 ∈ R
such that fh satisfies for all xh′, z′, xh′′, z′′ ∈ R

(fh(x′h, z
′)− fh(x′′h, z

′′))δxh ≤ −c1δx2h + c2δxhδz, (5)

where δxh := x′h − x′′h, and δz := z′ − z′′.
We pose Assumption 1 for ensuring (xh, z) = (0, 0) to be

an equilibrium point of (2) for zero input, and for ensuring
that for xh = 0, z 6= 0 the vector field governed by the
dynamics in (2a) points toward the interior of F so that tra-
jectories of (2) cannot escape the [0, kh]-sector in (4) through
the sector boundary line (z, u) = (z, 0). Assumption 2 is
reminiscent of a dissipativity condition, and plays a central
role in proving the δ-ISS property for H (Theorem 1). Note
that Assumptions 1 and 2 are trivially satisfied for functions
fh of the form fh(xh, z) = gh(xh) + ωhz with ωh ≥ 0, g
being a globally Lipschitz continuous function, and g(0) = 0.

B. Closed-loop dynamics
Due to the piecewise nonlinear nature of H in (2), the

closed-loop system admits the compact state-space form

Π :

{
ẋ = Ax+ Bw + bh(x,w),

y = Cx (6)
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with states x(t) = [x>p (t), xh(t)]> ∈ Rn, n = m + 1 input
w(t) ∈ R, output y(t) ∈ R at time t ∈ R≥0, and where the
function h : Rn × R→ R is given by

h(x,w) =

{
fh(xh, Cxp) if (z, u, ż) ∈ F1,

khCAxp + khCFw if (z, u, ż) ∈ F2.
(7)

Clearly, ẋh = h(x,w), i.e., h denotes the discontinuous
right-hand side of (2) (after differentiating the algebraic
constraint in (2b)). The system matrices are given by

A =

[
A −B
0 0

]
, B =

[
F
0

]
, b =

[
0
1

]
, and C =

[
C>

0

]>
,

(8)
where the matrices A,B,C, F result from (1).

To show the existence and forward completeness of so-
lutions to (6), we can rely on the well-posedness result in
[22, Theorem 8] as the closed-loop system (6) fits precisely
in the framework of extended projected dynamical systems
(ePDS) studied in [22]. Solutions to (6) are considered in
the sense of Carathéodory, i.e., locally absolutely continuous
(AC) functions x : [0, T ] → Rn that satisfy (6) for almost
all times t ∈ [0, T ]. It was shown in [22, Section II] that for
ePDSs, and thus for system (6) that fits within this class [9],
Carathéodory solutions coincide with Krasovskii solutions
(see Theorem 3 in [22]). Using the linearity of the plant
dynamics and the bound in Assumption 2, the results in [22]
guarantee the existence of solutions globally, i.e., on [0,∞),
given an initial condition x(0) = x0 and with input w ∈ PC.

C. Problem formulation and definitions

The main problem considered in this paper is to derive
conditions for δ-ISS of the closed-loop system (6). To make
the analysis precise, a definition is provided next1.

Definition 1 ([18]). The closed-loop system (6) is said to
be incrementally input-to-state stable (δ-ISS) if there exist
a KL-function β and a K-function γ such that for any
w′, w′′ ∈ PC, and x′(0), x′′(0) ∈ Rn all corresponding
solutions to (6) satisfy

‖x(t, x′(0), w′)− x(t, x′′(0), w′′)‖ ≤ β (‖x′(0)− x′′(0)‖, t)
+ γ
(

sup
0≤τ≤t

‖w′(τ)− w′′(τ)‖
)
,

for all times t ∈ R≥0.

III. INCREMENTAL SYSTEM

For studying δ-ISS of the closed-loop system in (6), we
consider the incremental form of the closed-loop system
dynamics in (6). In particular, define δx(t) := x′(t) −
x′′(t) ∈ Rn as the difference between two trajectories
x′(t) = x(t, x′(0), w′) and x′′(t) = x(t, x′′(0), w′′) gen-
erated by (6) subject to inputs w′, w′′ ∈ PC, and initial
conditions x′(0), x′′(0) ∈ Rn consistent with the region of

1We adopt standard definitions for class K- and KL-functions, see, e.g.,
[30, Chapter 4, Section 4.4].

H where trajectories live, i.e., (z(0), xh(0), ż(0)) ∈ F . The
incremental form of (6) reads

δΠ :

{
δẋ = Aδx+ Bδw + b∆(x′, w′, x′′, w′′),

δy = Cδx (9)

with incremental input δw(t) = w′(t) − w′′(t) ∈ R,
incremental output δy(t) := y′(t) − y′′(t) ∈ R at time
t ∈ R≥0, and where

∆(x′, w′, x′′, w′′) = δẋh = h(x′, w′)− h(x′′, w′′) =
fh(x′h, z

′)− fh(x′′h, z
′′), if (q′, q′′) ∈ F1 ×F1,

khδż, if (q′, q′′) ∈ F2 ×F2,

fh(x′h, z
′)− khż′′, if (q′, q′′) ∈ F1 ×F2,

khż
′ − fh(x′′h, z

′′), if (q′, q′′) ∈ F2 ×F1

(10)

with δxh(t) := x′h(t) − x′′h(t) ∈ R the increment of the
integrator state in (2), δz(t) := z′(t) − z′′(t) = δyp(t) ∈ R
the incremental input at time t ∈ R≥0, and where (q′, q′′) =
(q′>, q′′>)> with q = (z, u, ż) the signals that determine
mode switching of the system.

We will exploit a particularly useful property (derived
from Assumption 2) of the incremental dynamics in (10),
which we will use here in a new manner. It essentially shows
that (10) inherits the incremental dissipativity property (5) in
a subregion of the incremental input-output (δz, δu)-space2.

Property 1 ([27]). Suppose Assumption 2 is satisfied. Then,
the incremental system in (10) satisfies for all (δz, δxh) ∈ Ω

(δẋh)δxh ≤ (−c1δxh + c2δz)δxh (11)

where

Ω := R2\
{

(δz, δxh) ∈ R2 | δzδxh ≥
1

kh
δx2h

}
. (12)

In the next section, we will exploit Property 1 as follows:
When regarding δz(t) as an input to the incremental sys-
tem in (10), one may also recognize from the dissipation
inequality in (11) that δx2h could resemble a local δ-ISS
Lyapunov function [18]. Combining this with the fact that for
all (δz, δxh) 6∈ Ω we have ‖δxh‖ ≤ kh‖δz‖, in fact, suggests
(10) to be δ-ISS. This hints toward the possibility for
applying an incremental small-gain result, which is favorable
from a “compositional” design perspective. That is, we can
shape properties of the plant P to guarantee the negative
feedback interconnection with H to be δ-ISS.

IV. MAIN RESULTS

In this section, we will formalize the ideas outlined above.
We start by formally demonstrating that the hybrid integrator-
gain system in (2) is δ-ISS, which is our first main result.

Theorem 1. Consider the hybrid integrator-gain system H
in (2). Suppose that Assumptions 1–2 are satisfied and,
furthermore, suppose that supτ∈R≥0

‖δz(τ)‖ <∞. Then, (2)

2Contrary to [27] we make no assumption on P regarding the relative
degree from w and u to yp = z, such that ż may directly depend on w and
u. It can easily be shown that in this case Property 1 still remains valid.
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is δ-ISS in the sense of Definition 1 and all corresponding
solutions satisfy for all t ∈ R≥0

‖δxh(t)‖ ≤ e−εt‖δxh(0)‖+ γz

(
sup
τ∈R≥0

‖δz(τ)‖
)

(13)

with γz = max
{
kh,

c2
c1−ε

}
and 0 < ε < c1.

Proof. Consider the set

M :=
{

(δz, δxh) ∈ R2 | ‖δz‖ ≤ ρ, ‖δxh‖ ≤ γzρ
}
, (14)

where ρ := supτ∈R≥0
‖δz(τ)‖. Note that ρ is finite due to

the assumption that δz is bounded. The set M in (14) is
visualized in Fig. 2 by (the interior of) the black rectangle
for the case kh < c2

c1−ε .
Suppose that a trajectory is outside the set M , i.e.,

(δz(t), δxh(t)) 6∈M . Note from the fact that −ρ ≤ δz(t) ≤
ρ that this implies ‖δxh(t)‖ > γzρ ≥ γz‖δz(t)‖. As such
(δz(t), δxh(t)) ∈ Ω, see also Fig. 2. Then, it immediately
follows from Property 1 (with c1 > 0) that (11) satisfies

(δẋh)δxh ≤ −c1δx2h + c2δxhδz

= −εδx2h + (−c1 + ε)δx2h + c2δxhδz

≤ −εδx2h,
(15)

where we used ‖δz(t)‖ ≤ 1
γz
‖δxh(t)‖ ≤ c1−ε

c2
‖δxh(t)‖ and

thus

(−c1 + ε)δx2h + c2δxhδz ≤ (−c1 + ε)δx2h +
c2
γz
δx2h ≤ 0.

From (15) for (δxh(t), δz(t)) 6∈ M , it follows from similar
arguments as in the proof of [28, Lemma 2.14]) that M is
a positively invariant set, i.e., if there exists a t0 such that
(δxh(t0), δz(t0)) ∈ M , then (δxh(t), δz(t)) ∈ M for all
t ≥ t0. Now let t1 = inf {t ≥ 0 | δxh(t) ∈M} ≤ ∞. Then
it follows that

‖δxh(t)‖ ≤ γzρ = γz sup
τ∈R≥0

‖δz(τ)‖ for all t ≥ t1. (16)

For 0 ≤ t < t1, (δxh(t), δz(t)) 6∈ M and, consequently,
(15) holds almost everywhere on [0, t1). By the Bellmann-
Grönwall lemma this leads to

‖δxh(t)‖ ≤ e− ε2 t‖δxh(0)‖ for all t ≤ t1. (17)

Combining (16) and (17) leads to (13).

Building upon Theorem 1, we formulate our second main
result in terms of a small-gain theorem for δ-ISS of (6).

Theorem 2. Consider the closed-loop system (6) and sup-
pose that its trajectories are bounded. Suppose the matrix A
in (1) is Hurwitz and the small-gain relation

γ̄zγu < 1 (18)

is satisfied, where γ̄z = max
{
kh,

c2
c1

}
and γu =∫∞

0
|CeAτB|dτ . Then the closed-loop system in (6) is δ-ISS

in the sense of Definition 1.

Proof. Without loss of generality we can assume (possibly
after a state transformation) that C in (1) satisfies ‖C‖ =

δz

δxh

M

ρ−ρ

Ω

Ω

δẋh < 0δẋh < 0

δẋh > 0δẋh > 0

c2
c1−ε

kh

Fig. 2: Mechanism underlying the ISS property of the
incremental system in (10).

1 such that ‖δz(t)‖ = ‖Cδxp(t)‖ ≤ ‖δxp(t)‖. Since by
assumption trajectories of the non-incremental system in (6),
i.e., the interconnection of the LTI system in (1) and H in (2)
remain bounded, it follows that ‖δz(t)‖ < ∞ for all t ≥ 0.
As such, the incremental input δz to (10) is bounded, and
the bound (13) in Theorem 1 holds for 0 < ε < c1 and γz .

Observe that the solution of the incremental LTI system
in (9) is given by

δxp(t) = eAptδxp(0) +

∫ t

0

eA(t−τ)Bδv(τ)dτ

+

∫ t

0

eA(t−τ)Fδw(τ)dτ.

(19)

Since both δu = δxh and δw are bounded, an upper-bound
on the output of (9) can be obtained as

‖δz(t)‖ ≤ ‖Cδxp(t)‖ ≤ ke−λt‖δxp(0)‖

+ γu

(
sup

0≤t′≤t
‖δu(t′)‖

)
+ γw

(
sup

0≤t′≤t
‖δw(t′)‖

)
(20)

with ‖δu(t)‖ = ‖δv(t)‖, γu =
∫∞
0
|CeAτB|dτ < ∞, and

γw =
∫∞
0
|CeAτF |dτ < ∞, where boundedness follows

from the fact that A is Hurwitz (see also [30, p. 174]). Take ε
such that γz = max {kh, c2/(c1 − ε)} is such that γzγu < 1,
which, under the hypothesis γ̄zγu < 1 is always possible
(take for instance 0 < ε < c1 − γuc2 < c1).

By applying the small-gain theorem for ISS systems [29,
Theorem 2.1] (see [17, Theorem 2.1.13] within the incre-
mental context and [16] within the context of discontinuous
systems3) with γzγu < 1 the δ-ISS property follows.

A few remarks regarding Theorem 2 are in order.

3We care to highlight that, even though [29] treats continuous systems, the
proofs only rely on signal properties, rather than properties of the dynamics.
The fact that we consider discontinuous dynamics therefore does not change
the validity of the arguments, see also [16, Section II].

911



Remark 1. A crucial assumption in Theorem 2 is that trajec-
tories of the non-incremental closed-loop system (6) remain
bounded, i.e., supτ∈R≥0

‖x(τ)‖ < ∞. This assumption can
be verified using different tools such as, e.g., the circle-
criterion or LMI-based methods, see [9].

Remark 2. It is interesting to observe that γu =∫∞
0
|CeAτB|dt corresponds to the induced L∞-norm of the

single-input single-output (SISO) LTI system described by
Gyu(s) = C(sI − A)−1B, which is equivalent to the L1-
norm of its impulse response function g(t) = CeAtB (for
zero initial conditions and zero noise). As such, γu can be
obtained from measurement data [33].

V. NUMERICAL EXAMPLE
To demonstrate the applicability of the tools that are

presented in this paper, consider the feedback interconnection
as depicted in Fig. 3.

C P

H

y

−

w
z u = −v

P

Fig. 3: Feedback control scheme with nonlinearity H.

Here, the plant P is a mass-spring-damper system that is
described by the transfer function

P (s) =
1

s2 + 2β0ω0s+ ω2
0

, (21)

with natural frequency ω0 = 54 · 2π rad/s and dimensionless
damping coefficient β0 = 0.009. Such systems typically
arise in, e.g., microelectromechanical (MEM) nanoposition-
ing applications such as atomic force microscopes [11] and
piezo-actuated motion stages that are used in the lithography
industry [4], and thus are of relevance to high-precision
motion control applications. The LTI controller C is given
by

C(s) = kp

(
s+ ωi
s

)(
ω2
lp

s2 + 2βωlps+ ω2
lp

)
(22)

with kp = 7 · 104 N/m, ωi = 4.75 · 2π rad/s, ωlp = 6.5 · 2π
rad/s, and βlp = 0.8. The hybrid integrator H is as given in
(2) with fh(xh, z) = −αxh + ωhz, and α, ωh ∈ R>0, and
furthermore kh = 0.6. Note that the function fh satisfies
Assumptions 1–2 with c1 = α and c2 = ωh. From an
engineering point-of-view, the use of a hybrid integrator H
as an add-on to the existing LTI controller C may induce ad-
ditional gain at low-frequencies to provide better disturbance
rejection properties, without introducing the 90 degrees phase
lag that is typically associated with an LTI integrator. This
potentially allows for balancing steady-state performance and
transient time-domain response in a more desired manner.
Although a detailed discussion on the performance enhancing

benefits of introducing a hybrid integrator into an otherwise
LTI control system is not included due to space limitations,
extensive motivations and successful (industrial) applications
can be found in our previous works [9], [10], [14].

The feedback configuration in Fig. 3 can be rearranged
into an equivalent Lur’e form as depicted earlier in Fig. 1.
In this context we find P in (1) to be described by

P(s) =
[
Gyu(s) Gyw(s)

]
= C(sI −A)−1

[
B F

]
,

with

Gyu(s) =
−P (s)C(s)

1 + P (s)C(s)
, Gyw(s) =

P (s)

1 + P (s)C(s)
. (23)

By design, the poles of these transfer functions lie in the
open left-half complex plane, such that (due to minimality
of P) the matrix A in (1) is Hurwitz. Moreover, the non-
incremental closed-loop system in Fig. 3 is ISS by virtue of
the circle-criterion [9, Theorem 6.1] and thus trajectories are
bounded - this is an assumption used in Theorem 2.

By means of numerical computation we have found the
L1-norm of the impulse response to be equal to γ = 1.4214
(where the impulse response is considered over a time win-
dow t ∈ [0, 104] seconds, guaranteeing sufficient settling).
As such, we can guarantee the closed-loop system in Fig. 3
to be δ-ISS for γz < 0.7035. Since kh = 0.6, the ratio ωh/α
should satisfy ωh/α < 0.7035. The output of the hybrid
integrator (with α = 0.9 · 2π and ωh = 0.6 · 2π rad/s) when
the system is simulated with an input w(t) = sin(6·2πt) and
for two different sets of initial conditions x′(0), x′′(0) ∈ Rm
is shown in Fig. 4. As a consequence of the incremental
stability property, the solutions asymptotically converge to a
unique limit solution (indicated in black in Fig. 4) that has
the same fundamental period of 6 Hz as the input w [18].
Note that this response is continuous, but not smooth.
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Fig. 4: Closed-loop response resulting from a sine input and
different initial conditions x′(0), x′′(0) ∈ Rm (depicted by
the grey lines) and the steady-state solution (depicted in
black).

It is interesting to compare this result with the conditions
presented in [27]. For this purpose consider again the choice
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α = 0.9·2π and ωh = 0.6·2π rad/s, such that ωh/α = 2/3 <
0.7035 and thus the system is δ-ISS according to Theorem 2.
When testing the LMI conditions [27, Theorem 3], however,
it turns out that no feasible solution exists, and thus δ-ISS
cannot be verified by means of the results in [27]. This is
explained as follows. A necessary condition for the LMIs in
[27, Theorem 3] to be feasible is that the frequency-domain
inequality

khωh‖Gyu(jω)‖2 + Re {W (jω)Gyu(jω)}+ 2α > 0 (24)

with W (jω) = khα + 2ωh − khjω is satisfied for all
ω ∈ R ∪ {∞} (this condition results from applying the
Kalman-Yakubovich-Popov lemma [32] to equation (17b)
in [27]). However, for the chosen values of α, ωh, and kh
the frequency-domain inequality in (24) is violated, and
thus no solution to the LMIs exists. On the other hand,
for cases where ωh/α > 0.7035, and thus the small-gain
condition is violated, the conditions in [27] may still yield
feasible results; take for instance α = ωh = 3 · 2π rad/s.
The observations illustrate that the small-gain conditions
require different properties of the plant P as compared to
the passivity-based conditions in [27] and thus both papers
are of independent interests.

VI. CONCLUSIONS

In this paper we have presented conditions for δ-ISS of
(closed-loop) hybrid integrator-gain systems. First, we have
shown that a hybrid integrator itself is δ-ISS (Theorem 1).
Second, this property is used in combination with a small-
gain argument to show δ-ISS when the integrator is placed
in feedback with an LTI system (Theorem 2). The conditions
can be tested by computing the L1-norm of the linear sys-
tem’s impulse response. We have shown through a numerical
example that the results presented in this paper complement
previous Lyapunov-based δ-ISS conditions, in the sense that
these allow for verifying incremental stability of systems for
which this was not possible with existing tools.

Important directions for future work include studying the
connection between the new small-gain result and Lyapunov-
based results in [27] as well as extending the results to multi-
dimensional systems.
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