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Abstract— We investigate the stability and robustness prop-
erties of a continuification-based strategy for the control of
large-scale multiagent systems. Within this framework, one
transforms the microscopic, agent-level description of the sys-
tem dynamics into a macroscopic continuum-level, for which
a control action can be synthesized to steer the macroscopic
dynamics towards a desired distribution. Such an action is
ultimately discretized to obtain a set of deployable control
inputs for the agents to achieve the goal. The mathematical
proof of convergence toward the desired distribution typically
relies on the assumptions that no disturbance is present and
that each agent possesses global knowledge of all the others’
positions. Here, we analytically and numerically address the
possibility of relaxing these assumptions for the case of a one-
dimensional system of agents moving in a ring. We offer com-
pelling evidence in favor of the use of a continuification-based
strategy when agents only possess a finite sensing capability and
spatio-temporal perturbations affect the macroscopic dynamics
of the ensemble. We also discuss some preliminary results about
the benefits of adding an integral action in the macroscopic
control solution.

I. INTRODUCTION

Continuification (or continuation) control was first pro-
posed in [1] as a viable approach to control the collective
behavior of large-scale multiagent systems. The key idea of
continuification consists of three fundamental steps: (i) find-
ing a macroscopic description (typically a partial differential
equation, PDE) for the collective dynamics of the multiagent
system of interest; (ii) designing a macroscopic control action
to attain the desired collective response; (iii) discretize the
macroscopic control action to obtain feasible control inputs
for the agents at the microscopic level.

This methodology tackles problems in which the control
goal is formulated at the macroscopic dynamics level, but
control actions can be exerted only at the microscopic agent
scale [2]. Applications of the approach are related, but not
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limited to, multi-robot systems [3]–[6], cell populations [7]–
[9], neuroscience [10], [11], and human networks [12], [13].

Such an approach was used in [14] to control the distribu-
tion of a multiagent system swarming in a ring, leading to an
effective control scheme for the multiagent system to achieve
a desired distribution. Crucially, to prove convergence of
the macroscopic collective dynamics towards the desired
distribution, two key assumptions were made. Firstly, that
agents possess unlimited sensing capabilities so as to know
the positions of all other agents in the swarm. Secondly, that
no disturbance or perturbation is affecting the dynamics.

The aim of this paper is to remove these often unreal-
istic assumptions and study the performance, stability, and
robustness of the continuification approach in the presence of
limited sensing capabilities, spatio-temporal disturbances, or
perturbations of the agents’ interaction kernel. In particular,
we prove that semiglobal asymptotic or bounded convergence
can still be achieved under these circumstances. As we
undertake this task, we offer insights into the role of the
control parameters in changing the size and shape of the
region of asymptotic stability of the desired distribution.

After providing some useful notation and mathematical
preliminaries in Section II, we briefly recall the approach of
[14] in Section III. Then, we assess the robustness properties
of the continuification control approach in Sections IV and V.
Finally, in Section VI, we show some preliminary results on
the addition of an integral control action at the macroscopic
level to improve the robustness of the microscopic dynamics,
in the presence of perturbations or limited sensing. Theoret-
ical results are illustrated by numerical simulations.

II. MATHEMATICAL PRELIMINARIES

Here, we offer some useful notation and mathematical
concepts that will be used throughout the paper.

Definition 1 (Unit circle) We define S := [−π, π] as the
unit circle.

Definition 2 (Lp-norm on S [15]) Given a scalar function
of S and time h : S × R≥0 → R, we define its Lp-norm on
S as

∥h(·, t)∥p :=

(∫
S
|h(x, t)|p dx

)1/p

. (1)

For p = ∞,

∥h(·, t)∥∞ := ess supS |h(x, t)|. (2)

For the sake of brevity, we denote these norms as ∥h∥p,
without explicitly indicating their time dependencies.
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Lemma 1 (Holder’s inequality [15]) Given f1, . . . , fn ∈
Lp, we have∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
1

≤
n∏

i=1

∥fi∥pi , if

n∑
i=1

1

pi
= 1. (3)

For instance, if n = 2, we have ∥f1f2∥1 ≤ ∥f1∥2∥f2∥2, as
well as ∥f1f2∥1 ≤ ∥f1∥1∥f2∥∞.

We denote with “ ∗ ” the convolution operator. When
referring to periodic domains and functions, the operator
needs to be interpreted as a circular convolution [16].

Lemma 2 (Young’s convolution inequality [15]) Given
two functions, f ∈ Lp and g ∈ Lq ,

∥f ∗ g∥r ≤ ∥f∥p ∥g∥q, if
1

p
+

1

q
=

1

r
+ 1, (4)

where 1 ≤ p, q, r ≤ ∞. For instance, ∥f ∗g∥∞ ≤ ∥f∥2∥g∥2.

We denote time and space partial differentiation with the
subscripts t and x, respectively. It can be shown [16] that
the derivative of the convolution of two functions (f ∗g)(x),
can be computed as (f ∗g)x(x) = (fx ∗g)(x) = (f ∗gx)(x).

Lemma 3 (Comparison lemma [17]) Given a scalar ordi-
nary differential equation (ODE) vt = f(t, v), with v(t0) =
v0, where f is continuous in t and locally Lipschitz in v, if
a scalar function u fulfills the differential inequality

ut ≤ f(t, u(t)), u(t0) ≤ v0, (5)

then

u(t) ≤ v(t), ∀ t ≥ t0. (6)

III. CONTINUIFICATION CONTROL

As in [14], we consider a group of N identical mobile
agents moving in S. The dynamics of the i-th agent can be
expressed as

ẋi =

N∑
j=1

f
(
{xi, xj}π

)
+ ui, (7)

where xi is the angular position of agent i on S, {xi, xj}π is
the angular distance between agents i and j wrapped on S,
ui is the velocity control input, and f : S → R is a periodic
velocity interaction kernel modeling pairwise interactions
between the agents. For a more detailed description, see [14].

Assuming the number of agents to be sufficiently large,
the macroscopic collective dynamics can be adequately ap-
proximated through the mass balance equation [18]

ρt(x, t) + [ρ(x, t)V (x, t)]x = q(x, t), (8)

where ρ : S×R≥0 → R≥0 is the density profile of the agents
on S at t such that

∫
S ρ(x, t) dx = N for any t, and V is

the velocity field, which can be expressed as

V (x, t) =

∫ π

−π

f ({x, y}π) ρ(y, t) dy = (f ∗ ρ)(x, t), (9)

with the function f encapsulating all-to-all interactions in
the continuum. The function q represents the macroscopic

control input, which we first write as a mass source/sink to
simplify derivations, but then recast as a velocity field.

The boundary and initial conditions are given as follows:

ρ(−π, t) = ρ(π, t), ∀t ≥ 0, (10)

ρ(x, 0) = ρ0(x), ∀x ∈ S. (11)

We remark that V is periodic by construction, as it comes
from a circular convolution. This ensures that, in the open-
loop scenario, when q = 0, mass is conserved, that is
d/dt

∫
S ρ(x, t) dx = 0 (integrating by parts).

Given some desired periodic smooth density profile,
ρd(x, t), associated with the target agents’ configuration,
and such that ∥ρd∥2 ≤ M and ∥ρdx∥2 ≤ L at any t, the
continuification control problem is that of finding the control
inputs ui, i = 1, 2, . . . , N in (7) such that

lim
t→∞

∥ρd(·, t)− ρ(·, t)∥2 = 0, (12)

for agents starting from any initial configuration xi(0) =
xi0, i = 1, . . . , N .

To solve this problem, we first choose q in (8) as

q(x, t) = Kpe(x, t)−
[
e(x, t)V d(x, t)

]
x

− [ρ(x, t)V e(x, t)]x , (13)

where Kp is a positive control gain, e = ρd − ρ, V d = (f ∗
ρd), V e = (f ∗ e), and we consider the reference dynamics

ρdt (x, t) +
[
ρd(x, t)V d(x, t)

]
x
= 0, (14)

fulfilling initial and boundary conditions similar to those of
(8), namely (10) and (11). As shown in [14], this ensures
that the density ρ globally asymptotically converges to ρd.

Then, we recast the macroscopic controlled model (8) to
include q as a control action on the velocity field, that is,

ρt(x, t) + [ρ(x, t)(V (x, t) + U(x, t))]x = 0, (15)

where U is an auxiliary function computed from the linear
PDE

[ρ(x, t)U(x, t)]x = −q(x, t). (16)

Integrating (16), we obtain (assuming ρ ̸= 0)

U(x, t) = − 1

ρ(x, t)

[∫
q(y, t) dy + q(−π, t)

]
. (17)

Finally, we compute the velocity input acting on agent i
at the microscopic level by spatially sampling U at xi

ui(t) = U(xi, t), i = 1, 2, . . . N. (18)

The main limitation of this approach is the non-local
nature of the control action. Since (13) is based on the
convolution V e, agent i must have global knowledge of e to
compute ui. Moreover, as the choice of q is based on some
cancellations of the macroscopic dynamics of the system, the
robustness to structural perturbations needs to be properly
assessed. In this study, we address both of these issues.
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Fig. 1: Steady-state value of the KL divergence, D∞
KL at

the end of a monomodal regulation trial, for different values
of ∆ and Kp (Kp = 10 in blue, Kp = 100 in orange and
Kp = 1000 in yellow). In the inset, we show the repulsive
interaction kernel used in the simulations.

IV. LIMITED SENSING CAPABILITIES

To relax the assumption of unlimited sensing, we assume
agents can only sense an interval [−∆,∆], with ∆ > 0
centered at their position. Then, the macroscopic control
action in (13) becomes

q̂(x, t) = Kpe(x, t)−
[
e(x, t)V d(x, t)

]
x

−
[
ρ(x, t)V̂ e(x, t)

]
x
, (19)

where V̂ e = (f̂ ∗ e), and f̂ is a modified velocity interaction
kernel defined as

f̂(z) = f(z)Π(z,∆), (20)

with Π(z,∆) being the rectangular window of size 2∆

Π(z,∆) =

{
1 if |z| ≤ ∆,

0 otherwise.
(21)

Using q̂ instead of q as input to the macroscopic model
(8) yields the following error dynamics:

et(x, t) = −Kpe(x, t) +
[
ρd(x, t)Ṽ (x, t)

]
x

−
[
e(x, t)Ṽ (x, t)

]
x
, (22)

where Ṽ = (g ∗ e) with g := f̂ − f .

Theorem 1 (Stability under limited sensing) The control
strategy (19) achieves semiglobal stabilization of the error
system (22) so that, for any initial condition in a compact
set ∥e(·, 0)∥2 < γ with γ > 0, choosing Kp sufficiently large
ensures the error converges asymptotically to 0.

Proof: Choosing ∥e∥22 as a candidate Lyapunov func-
tion for (22), we get (omitting dependencies for simplicity)

(∥e∥22)t = 2

∫
S
eet dx = −2Kp∥e∥22 −

∫
S
e2Ṽx dx

+ 2

∫
S
(eρdxṼ + eρdṼx) dx, (23)

(a) ∆ = 0.1π (b) ∆ = 0.4π

(c) ∆ = 0.7π (d) ∆ = π

Fig. 2: Steady-state (t = tf ) comparison between the agents
distribution (blue line) and the desired one (orange line)
when the agents are started from the initial distribution
shown as a black line, for increasing sensing abilities of
the agents when Kp = 10. Panel (d) shows the case when
sensing is unlimited. In the inset of each panel, we display
the discrete formation of the agents at the end of the trial.

where we computed product derivatives and used integration
by parts taking into account the periodicity of the functions.
Using the definition of L1-norm (see Definition 2), applying
Holder’s inequality with n = 3, p1 = p2 = 2, and p3 =
∞ (see Lemma 1), invoking Young’s convolution inequality
with r = ∞ and p = q = 2 (see Lemma 2), and recalling
the assumption on the L2- boundedness of ρd and ρdx by
constants L and M , we find∣∣∣∣∫

S
eρdxṼ dx

∣∣∣∣ ≤ ∫
S
|eρdxṼ |dx = ∥eρdxṼ ∥1 ≤

≤ ∥e∥2∥ρdx∥2∥Ṽ ∥∞ ≤ L∥e∥22∥g∥2,
(24)

∣∣∣∣∫
S
eρdṼx dx

∣∣∣∣ ≤ ∫
S
|eρdṼx|dx = ∥eρdṼx∥1 ≤

≤ ∥e∥2∥ρd∥2∥Ṽx∥∞ ≤ M∥e∥22∥gx∥2,
(25)

∣∣∣∣∫
S
e2Ṽx dx

∣∣∣∣ ≤ ∫
S
|e2Ṽx|dx = ∥eeṼx∥1 ≤

≤ ∥e∥22∥Ṽx∥∞ ≤ ∥e∥32∥gx∥2.
(26)

Using these bounds, from (23) we can write

(∥e∥22)t ≤ (−2Kp + 2M∥gx∥2 + 2L∥g∥2 + ∥gx∥2∥e∥2)∥e∥22.
(27)

Then, choosing Kp > (M + γ/2)∥gx∥2 + L∥g∥2, guaran-
tees that the error asymptotically tends to 0; thus proving
semiglobal stability1.
We remark that (i) as ∆ becomes smaller, ∥g∥2 and ∥gx∥2
increase, requiring a larger value of Kp to ensure conver-
gence, and (ii) in the limit of local dynamics about the

1Theorem 1 in [14] should be equivalently interpreted.
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origin, where we neglect cubic terms in e, one can choose
Kp = M∥gx∥2 + L∥g∥2.

Numerical validation: We consider the same framework,
control discretization and numerical set-up as in [14]. In
particular, we refer to a mono-modal regulation scenario,
where a repulsive swarm of N = 100 agents, starting evenly
displaced in S, is required to achieve a desired density profile
given by a von Mises function, with mean µ = 0 and
concentration coefficient k = 4. The pairwise interactions
between agents is modelled via a repulsive Morse potential,
depicted in the inset of Fig. 1, given by

f(x) = sign(x)
[
−Ge−|x|/L + e−|x|

]
, (28)

where the characteristic parameters, modulating the strength
and characteristic distance of the attractive term, are G =
L = 0.5, making the repulsion term dominant.

We run several trials of duration tf = 6. In each trial, we
consider a different sensing radius ∆, spanning from 0.1π
to π. At the end of each trial, we record the steady-state
Kullback-Leibler (KL) divergence , D∞

KL, between ρ̂ and ρ̂d

(equivalent to ρ and ρd, but normalized to sum to 1) [19].
The results of such a numerical investigation are reported
in Fig. 1, for different values of Kp. They show that: (i)
for large values of Kp, performance is independent from the
specific sensing radius that is given to the agents, and (ii) for
smaller values of Kp, a limited knowledge of the domain can
still guarantee a performance level that is comparable to the
case of ∆ = π. For example, when considering Kp = 10,
choosing ∆ = 0.4π makes D∞

KL comparable to the value
obtained for unlimited sensing capabilities. We also report
in Fig. 2 the final configuration of the swarm for different
values of the sensing radius, when Kp = 10. We remark
that the non-zero D∞

KL comes from the discretization process,
and it approaches 0 in the limit of an infinite number agents.

V. STRUCTURAL PERTURBATIONS

Next, we assess the robustness of the approach to two
classes of perturbations, the first acting additively on the
macroscopic velocity field and the second on the interaction
kernel.

A. Spatio-temporal perturbations of the velocity field

We assume that perturbations of the microscopic dynamics
can be captured at the macroscopic level by means of
some spatio-temporal velocity field d(x, t) affecting (8). The
macroscopic controlled model becomes

ρt(x, t) + [ρ(x, t)(V (x, t) + d(x, t))]x = q(x, t), (29)

where we assume d(−π, t) = d(π, t) for any t and d, dx ∈
L∞ at any t so that that there exist two positive constants D1

and D2 bounding the L∞-norm of d and dx, respectively.
Substituting (13) into (29) and taking into account the

reference dynamics (14) yields

et(x, t) = −Kpe(x, t) +
[
(ρd(x, t)− e(x, t))d(x, t)

]
x
.

(30)

Fig. 3: Phase portrait of system (36), bounding ∥e∥22 in the
presence of spatio-temporal disturbances.

Theorem 2 (Bounded convergence in the presence of
velocity perturbations) There exists a threshold value D2 <
κ < +∞ such that, if 2Kp > κ, the dynamics of the squared
error norm is bounded and

lim sup
t→∞

∥e(·, t)∥2 ≤ 2LD1 + 2MD2

κ−D2

Hence, the upper bound on the steady-state error can be
made arbitrarily small by choosing κ sufficiently large.

Proof: Taking into account (30), we write the dynamics
of ∥e∥22 (omitting dependencies for simplicity) as

(∥e∥22)t = 2

∫
S
eet dx = −2Kp∥e∥22 −

∫
S
e2dx dx

+ 2

∫
S
(eρdxd+ eρddx) dx, (31)

where we computed product derivatives and applied inte-
gration by parts exploiting the periodicity of the functions.
Similarly to the proof of Theorem 1, we apply Definition 2,
Holder’s inequality with n = 3, p1 = p2 = 2 and p3 = ∞
(see Lemma 1), and exploit the bounds on ρd, ρdx, d and dx,
to derive the following inequalities for the terms in (31):∣∣∣∣∫

S
eρdxddx

∣∣∣∣ ≤ ∫
S
|eρdxd|dx = ∥eρdxd∥1 ≤

≤ ∥e∥2∥ρdx∥2∥d∥∞ ≤ LD1∥e∥2,
(32)

∣∣∣∣∫
S
eρddx dx

∣∣∣∣ ≤ ∫
S
|eρddx|dx = ∥eρddx∥1 ≤

≤ ∥e∥2∥ρd∥2∥dx∥∞ ≤ MD2∥e∥2,
(33)

∣∣∣∣∫
S
e2dx dx

∣∣∣∣ ≤ ∫
S
|e2dx|dx = ∥eedx∥1 ≤

≤ ∥e∥22∥dx∥∞ ≤ D2∥e∥22.
(34)

Hence, we obtain

(∥e∥22)t ≤ (−2Kp +D2) ∥e∥22+(2LD1 + 2MD2) ∥e∥2.
(35)

For convenience, we rewrite (35) as

ηt ≤ −aη + c
√
η := h(η), (36)

where η = ∥e∥22, a = 2Kp −D2, and c = 2LD1 + 2MD2.
Under the assumption that 2Kp > D2 (a > 0), the phase
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Fig. 4: Time evolution of the KL divergence when a constant
disturbance of amplitude d̂ switches on at t = 3. In the inset,
a zoom of the second half of the trial is given.

portrait of the bounding field h yield an asymptotically stable
equilibrium at (see Fig. 3)

c2

a2
=

(2LD1 + 2MD2)
2

(2Kp −D2)2

(with basin of attraction R>0). Thus, using Lemma 3, η is
bounded by c2/a2. Moreover, choosing 2Kp > κ > D2,
the stable equilibrium of the bounding field h can be moved
arbitrarily closer to the origin.

Numerical validation: We consider the same scenario
presented in the previous section but assuming that a dis-
turbance d(x, t) = d̂ w(t), where d̂ is a constant and w(t) =
step(t − tf/2), is acting on the macroscopic dynamics.
Setting Kp = 10 and considering different values of d̂,
we obtain the results reported in Fig. 4. As expected, in
the presence of the disturbance, the KL divergence remains
bounded and decreases as the control gain Kp increases.
For example, the steady-state value of the KL divergence
decreases from 0.06 when Kp = 10 to less than 0.02 when
Kp ≥ 100.

B. Interaction kernel perturbation

Next, we consider the case where structural perturbations
affect the interaction kernel. We assume that the interaction
kernel, f̃ , used to compute the macroscopic control action
is different from the actual interaction kernel, f , influencing
the agents’ motion. We compute the control input as

q̃(x, t) = Kpe(x, t)−
[
e(x, t)Ṽ d(x, t)

]
x

−
[
ρ(x, t)Ṽ e(x, t)

]
x
, (37)

where Ṽ d = (f̃ ∗ ρd) and Ṽ e = (f̃ ∗ e).
Substituting (37) into (8) and considering the reference

dynamics (14), the error dynamics becomes

et(x, t) = −Kpe(x, t) +
[
e(x, t)Ũd(x, t)

]
x

+
[
ρd(x, t)Ũ e(x, t)

]
x
−
[
e(x, t)Ũ e(x, t)

]
x
, (38)

where, letting g̃ = f̃ − f be the mismatch between the
interaction kernels, we have

Ũd(x, t) = Ṽ d(x, t)− V d(x, t) = (g̃ ∗ e)(x, t), (39)

Ũ e(x, t) = Ṽ e(x, t) + V e(x, t) = (g̃ ∗ e)(x, t). (40)

Theorem 3 (Stability with kernel perturbation) For any
positive γ and initial condition e(x, 0) in the compact
set ∥e(·, 0)∥2 < γ, if Kp is sufficiently large then (38)
asymptotically converges to 0.

Proof: Assuming ∥e∥22 to be a candidate Lyapunov
function for (38), we get

(∥e∥22)t =
∫
S
eet dx = −2Kp∥e∥22 −

∫
S
e2Ũ e

x dx

+

∫
S
e2Ũd

x dx− 2

∫
S
(eρdxŨ

e + eρdŨ e
x) dx. (41)

where we computed the product derivatives and used in-
tegration by parts by exploiting the fact that Ũd and Ũ e

are periodic by construction (they come from a circular
convolution). Using similar arguments to those above, we
can establish upper bounds for the terms in (41) as follows:∣∣∣∣∫

S
eρdxŨ

e dx

∣∣∣∣ ≤ ∫
S
|eρdxŨ e|dx = ∥eρdxŨ e∥1 ≤

≤ ∥e∥2∥ρdx∥2∥Ũ e∥∞ ≤ L∥g̃∥2∥e∥22,
(42)

∣∣∣∣∫
S
eρdŨ e

x dx

∣∣∣∣ ≤ ∫
S
|eρdŨ e

x|dx = ∥eρdŨ e
x∥1 ≤

≤ ∥e∥2∥ρd∥2∥Ũ e
x∥∞ ≤ M∥g̃x∥2∥e∥22,

(43)

∣∣∣∣∫
S
e2Ũ e

x dx

∣∣∣∣ ≤ ∫
S
|e2Ũ e

x|dx = ∥eeŨ e
x∥1 ≤

≤ ∥e∥22∥Ũ e
x∥∞ ≤ ∥g̃x∥2∥e∥32,

(44)

∣∣∣∣∫
S
e2Ũd

x dx

∣∣∣∣ ≤ ∫
S
|e2Ũd

x |dx = ∥eeŨd
x∥1 ≤

≤ ∥e∥22∥Ũd
x∥∞ ≤ ∥e∥22∥∥ρd∥2∥g̃x∥2 ≤ M∥g̃x∥2∥e∥22.

(45)

Using these bounds in (41) we obtain

(∥e∥22)t ≤ (−2Kp + 3M∥g̃x∥2 + 2L∥g̃∥2 + ∥g̃x∥2∥e∥2)∥e∥22.
(46)

Then, choosing Kp > ∥g̃x∥2γ/2 + 3M∥g̃x∥2/2 + L∥g̃∥2
ensures the convergence of the error to 0.
Note that, in the limit of local analysis, where we neglect
cubic terms in e, Kp = 3M∥g̃x∥2/2 + L∥g̃∥2.

Numerical validation: We consider again the scenario
used in Section IV but we assume that a perturbed kernel
is used to compute the macroscopic control action q. Specif-
ically, we test robustness against the two perturbed kernels
f̃1 and f̃2, obtained by setting the characteristic parameters
in (28) to G = L = 0.1 and G = L = 0.9, respectively.

Setting Kp = 10, we obtain results shown in Fig. 5
where we observe an increase in the steady-state mismatch
between the distribution of the agents and the desired density
as the kernel becomes more different than the nominal one
(f̃2 being the worst case). Our numerical results confirm
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Fig. 5: Time evolution of the KL divergence when the
perturbed kernels f̃1 and f̃2 shown in the inset are used to
compute the control action, instead of the nominal kernel f .

(a) (b)

Fig. 6: Effects of a macroscopic integral action when (a)
agents possess limited sensing with ∆ = 0.1π and (b) when
their interaction kernel is perturbed and set equal to f̃2. We
compare the cases of Ki = 0 and Ki = 0.1, for Kp = 10.

that the steady-state mismatch decreases as Kp increases.
Specifically, choosing Kp > 100, yields a value of D∞

KL

lower than 0.05.

VI. ADDING A MACROSCOPIC INTEGRAL ACTION

In all the examined cases, some bounded mismatch be-
tween the desired and steady-state distribution of the agents
remains, especially when Kp is low. To resolve this issue,
we explored the addition to the macroscopic control law in
(13) of an integral action Ki

∫ τ

0
e(x, τ) dτ, with Ki being

a positive control gain. Such a modified control action is
then descretized as in (18). We observe that the resulting
control strategy still ensures convergence, while reducing the
steady-state error due to discretization and the presence of
perturbations. (See Fig. 6 for some representative cases.)

These findings suggest the advantages of adding an inte-
gral action to compensate for disturbances and perturbations
within a continuification-based control strategy.

VII. CONCLUSIONS

We investigated the stability and robustness properties of a
continuification control strategy for a set of agents in a ring.
We quantified the extent to which the approach presented
in [14] is affected by (i) limited sensing capabilities of the
agents; (ii) presence of spatio-temporal disturbances; and
(iii) structural perturbations of the interaction kernel. In all
cases, we establish the mathematical proofs of semiglobal

asymptotic or bounded convergence – the latter in the form of
a residual steady-state mismatch that can be made arbitrarily
small by increasing the control gain. We also reported
preliminary results about the addition of a spatio-temporal
integral action at the macroscopic level.
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