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Abstract— Most of the current literature focused on cen-
tralized learning is centered around the celebrated average-
consensus paradigm and less attention is devoted to scenar-
ios where the communication between the agents may be
imperfect. This paper presents three different algorithms of
Decentralized Federated Learning (DFL) in the presence of
imperfect information sharing modeled as noisy communication
channels. The first algorithm, Federated Noisy Decentralized
Learning (FedNDL1) comes from the literature, where the
noise is added to the algorithm parameters to simulate the
scenario of the presence of noisy communication channels. This
algorithm shares parameters to form a consensus with the
clients based on a communication graph topology through a
noisy communication channel. The proposed second algorithm
(FedNDL2) is similar to the first algorithm but with added
noise to the parameters and it performs the gossip averaging
before the gradient optimization. The proposed third algorithm
(FedNDL3), on the other hand, shares the gradients through
noisy communication channels instead of the parameters. The-
oretical and experimental results show that under imperfect
information sharing, the third scheme that mixes gradients is
more robust in the presence of a noisy channel compared with
the algorithms from the literature that mix the parameters.

I. INTRODUCTION

In many applications, massive amounts of data are being
generated from devices which are collected in centralized
data centers and subsequently used for training machine
learning models. However, challenges such as limited com-
munication bandwidth, and privacy concerns make central-
ized learning unreliable and non-scalable. This led to an
advancement in decentralized optimization (DFL) algorithms
[1], [2] such as the Decentralized Federated Learning [3]
and Federated Learning (FL) [4] that has applications in
several domains like hospitals, smart cities, and connected
vehicles [5], [6].

A. Related work

Common approach to decentralized optimization is
consensus-based gradient descent methods [1], [7], [8],
which share the computed parameter with other clients. The
parameters are then averaged from all the clients based on a
network topology that dictates the communication structure
of the learning paradigm. These decentralized topologies
minimize critical bottlenecks of centralized methods, such as
communication latency, and bandwidth, as well as improve
scalability and efficiency in large-scale settings [8], [9].
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While communication efficiency is one of the critical
elements and challenges for distributed learning and efforts,
including communication compression, have been made in
this regard [3], [10]–[14], these methods generally assume
that the communication channels are noiseless. The perfor-
mance of the trained model in the presence of noise should be
one of the critical criteria in choosing the machine learning
framework to ensure the robustness and safety of emerging
applications that rely on distributed learning.

The effect of imperfect information sharing such as noisy
communication or quantization noise in an average consensus
algorithm in a distributed framework was studied in [15],
[16]. However, the impact of various levels of noise has not
been studied. Additionally, the study in [15] is limited to
consensus problems only and does not encompass unique
challenges that arise in modern decentralized optimization
and learning, e.g., the inherent non-convexity of the learning
objective. Other works including [17]–[21] study the impact
of noise in server-assisted FL. These works require a server
and have restrictive assumptions that typically are not satis-
fied in practical settings or are hard to verify.

In this paper, our primary focus is on DFL in the presence
of noise in communication channels. Recently, [22]–[25]
studied the performance of a two-time scale method [26]
for DFL with channel noise while requiring the convexity
of the objective function, uniformly bounded gradients, and
access to the deterministic gradients. Note that these three
considerations are very restrictive assumptions, especially in
emerging settings in large-scale learning.

B. Contribution

Motivated by the existing gap between perfect information
and noisy decentralized learning, in this paper, we model
the presence of noise in the communication channels as a
random vector with zero mean and different variances and
study the performance of three decentralized FL algorithms
by adding the noise to the parameters. The first algorithm,
Federated Noisy Decentralized Learning (FedNDL1) was
recently considered in [2], where the parameters were not
subjected to any communication noise. In our analysis of
this algorithm, we added noise to the parameters after the
local SGD update. The new parameter with the noise is
then exchanged with other clients through the gossip/mixing
matrix and the global parameters are updated. This iteration,
also known as communication rounds, continues throughout
the training. The mixing matrix can be defined as a weighted
adjacency matrix of a given communication graph.In the
second algorithm (FedNDL2), which is related to [1], the
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noise is added before the consensus and local SGD update. In
the third algorithm (FedNDL3), considered in the noiseless
case in [27], the noise is added to the gradients instead of
the parameters, and the result is exchanged with the clients.

We demonstrate, theoretically and empirically, that there
are benefits in using FedNDL3 in the imperfect information
setting that communicates the gradients. The intuition which
is formalized theoretically is that the parameters are sensitive
to the added noise while the gradients, which are already
imperfect, are resilient. Therefore, the error stemming from
weaker consensus in FedNDL3 is not as severe as the
detrimental impact of noise on FedNDL1 and FedNDL2.

II. PROBLEM STATEMENT

In this section, we describe the problem structure, assump-
tions, and the proposed algorithms that we analyzed in this
paper. We start with a standard DFL setup in which n clients
have their own local datasets and collaborate with each other
to update the global parameters. Formally, the problem can
be represented as

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(xi)
]
, (1)

where fi : Rd → R for i ∈ {1, . . . , n} is the local objective
function of the ith client node. The stochastic formulation
of the local objective function can be written

fi(xi) = Eξi∼Di
[ℓ(xi, ξi)], (2)

where ξi is the data that has been sampled from the data
distribution Di for the ith client. The function ℓ(xi, ξi) is
the loss function evaluated for each client and for each
data sample ξi. Here xi ∈ Rd is the parameter vector of
client i, and X ∈ Rd×n is the matrix formed using these
parameter vectors. The primary objective of the clients is
to achieve optimality through collaboration i.e., xi = x∗ =
argminx∈Rd f(x), which is a global minimizer.

Definition 1 (Mixing matrix). The mixing/gossip matrix,
W = [wij ] ∈ [0, 1]n×n, is a non-negative, symmetric (W =
W⊤) and doubly stochastic (W1 = 1,1⊤W = 1⊤) matrix,
where 1 is the column vector of unit elements of size n

We next describe three different scenarios of noise injec-
tion, resulting in three different algorithms.
FedNDL1: In this algorithm, each client in parallel performs
updates first, see—lines 4–6, and then communicates the
updated parameters to their neighbors. The communication
depends on the topology of the communication graph, i.e.,
the mixing matrix, W , through a noisy channel (line 7).

x
(t+1)
i =

n∑
j=1

wij (x
(t+ 1

2 )
j + δ

(t)
j ), (3)

where δ(t)j ∈ Rd, is a zero mean random noise and x(t+
1
2 )

j is
the vector of parameters sent by client j. Since we assume
the noise to have a zero mean, the noise variance is

D2
t,j = E[∥δ(t)j ∥2]. (4)

FedNDL2: In this algorithm, we perform the consensus
step (line 9) before computing the individual gradients and

parameters(lines 10–12),

x
(t+ 1

2 )
i =

n∑
j=1

wij(x
(t)
j + δ

(t)
j ), (5)

FedNDL3: , In this algorithm,the clients share their gradients
over a noisy communication channel instead of the weights
followed by the SGD update. This idea comes from our
Noisy-FL motivation and the fact that SGD is inherently
a noisy process. So, pursuing this scenario gives more
flexibility to handle the noise as a part of the SGD process.

x
(t+1)
i = x

(t)
i − ηt

n∑
j=1

wij (g
(t)
j + δ

(t)
j ), (6)

where g(t)j refers to the gradient of client j at iteration t

Algorithm FedNDL1, FedNDL2, and FedNDL3

1: Input: For each node i initialize: x(0)i ∈ Rd, step size
{ηt}T−1

t=0 , mixing matrix W , noise from the communica-
tion channel δ(t)

2: for t = 0, . . . , T do
3: FedNDL1:
4: Run in parallel for each client i
5: Sample ξ(t)i , compute g(t)i = ∇̃fi(x(t)i , ξ

(t)
i )

6: x
(t+ 1

2 )
i = x

(t)
i − ηtg

(t)
i

7: x
(t+1)
i =

∑n
j=1 wij (x

(t+ 1
2 )

j + δ
(t)
j )

8: FedNDL2:
9: x

(t+ 1
2 )

i =
∑n

j=1 wij (x
(t)
j + δ

(t)
j )

10: Run in parallel for each clients i
11: Sample ξ(t)i , g(t+

1
2 )

i = ∇̃fi(x
(t+ 1

2 )
i , ξ

(t)
i )

12: x
(t+1)
i = x

(t+ 1
2 )

i − ηtg
(t+ 1

2 )
i

13: FedNDL3:
14: Run in parallel for each client i
15: Sample ξ(t)i , compute g(t)i = ∇̃fi(x(t)i , ξ

(t)
i )

16: x
(t+1)
i = x

(t)
i − ηt

∑n
j=1 wij (g

(t)
j + δ

(t)
j )

17: end for

A. Assumptions

We now discuss the assumptions made in our analysis of
the algorithms. They are standard assumptions used in the
analysis of decentralized algorithms, see [2], [3], [28].

Assumption 1 (Smoothness). The objective function ℓ(x, ξ)
is L-smooth with respect to x, for all ξ. Each fi(x) is L-
smooth, that is,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y. (7)
Hence the function f is also L-smooth.

Assumption 2 (Bounded Variance). The variance of the
stochastic gradient of each client i is bounded,

E[||∇̃fi(xti, ξti)−∇fi(xti)||2] ≤ σ2,
where ξti denotes random batch of samples in client node
i for tth round, and ∇̃fi(xti, ξti) denotes the stochastic
gradient. In addition, we also assume that the stochastic
gradient is unbiased, i.e., E[∇̃(fi(x

t
i, ξ

t
i))] = ∇fi(xti).

Assumption 3 (Mixing matrix). The mixing matrix W
satisfies for ρ ∈ (0, 1],

∥(X̄ −X)W∥2F ≤ (1− ρ)∥X̄ −X∥2F ,
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which means that the gossip averaging step brings the
columns of X ∈ Rd×n closer to the row-wise average, that
is, X̄ = X 11⊤

n .

Note that standard topologies such as ring, torus, and fully-
connected satisfy the above assumption.

Assumption 4 (Bounded Client Dissimilarity (BCD)). For
all x ∈ Rd, where B is a constant.

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ B2,

The above assumption is made to limit the extent of
client heterogeneity. While gradient tracking methods [29]
don’t require this assumption, they suffer from increased
communication cost and the variance, which limits their
practicality [30]. Note that this assumption is only used in
the analysis of FedNDL1 and FedNDL2.

Assumption 5 (Noise model). The noise present due to
contamination of communication channel δ(t)i is independent,
has zero mean and bounded variance, that is, E[δ(t)i ] = 0

and E[||δ(t)i ||2] = D2
t,i <∞.

This assumption is specific to the imperfect information
sharing setup and is considered recently in [24], [25], [31].

Assumption 6 (Bounded Recursive Consensus Error). Let
the consensus error be defined as (C.E)t =

1
n∥X̄t −Xt∥2F .

We assume that the consensus error is upper bounded,
E[(C.E)t+1] ≤ αt E[(C.E)t] + γt,

where αt ∈ (0, 1) and γt ≥ 0.

Remark 1. We use the above assumption in the convergence
analysis of FedNDL3. Theoretically speaking Assumption 6
can be viewed as a general formulation of the recursive
upper-bound on the evolution of the consensus error in the
analysis of decentralized SGD—refer, e.g., [2]. Assumption 6
is trivially satisfied for the first two algorithms; FedNDL1
and FedNDL2. Please refer to the proof in [32]. This
assumption is also satisfied for FedNDL3 if the network
topology is fully connected or the union of a finite col-
lection of consecutive communication graphs is fully con-
nected; see Figure 2. We further note that using multi-round
gossiping [3] or acceleration methods such as Chebyshev
acceleration [33], [34] this assumption may be satisfied by
FedNDL3 as well and αt and γt can be significantly reduced.

III. CONVERGENCE ANALYSIS

In this section, we state the main theorem providing
an upper bound on the convergence errors of FedNDL1,
FedNDL2, and FedNDL3. The convergence results are for
non-convex L-smooth loss functions and noisy channels.

Theorem 1 (Smooth non-convex cases for Noisy-DFL).

Let LHS =
1

T

T∑
t=1

E[∥∇f(x̄t)∥2] +
L2

T

T∑
t=1

E[(C.E)t].

Suppose Assumptions 1–5, and 6 (only for FedNDL3) hold.
Let ηL < 1

12 , η = O( 1√
T
) and D̄2 = 1

nT

∑T,n
t,i=1,1D

2
t,i, then

• FedNDL1: For ηL < ρ

2
√
6

,

LHS = O
( ρ

n
√
T
σ2 +

ρ2

T
B2 +

T
3
2

ρ
D̄2

)
, (8)

• FedNDL2: For ηL < ρ

4
√
3

,

LHS = O
( ρ

n
√
T
σ2 +

ρ2

T
B2 +

T
3
2

ρ
D̄2

)
, (9)

• FedNDL3:

LHS = O
( 1

n
√
T
σ2 +

1

T

T∑
t=1

γt
αt

+
1√
T
D̄2

)
, (10)

where all expectations are w.r.t. the data and the noise.

Proof. We prove the theorem for FedNDL3. The proofs for
FedNDL1 and FedNDL2 are similar [32]. We start our proof
by upper bounding the second moment of the gradient on
the average of iterates by using the L-the smoothness of
the loss function. The second moment here is bounded by
an inaccurate initialization, the variance of the stochastic
gradients, noise present due to imperfect channels, and the
consensus error function, (C.E)t. Recall that X̄t+1 = X̄t −
η
n

∑n
i=1(∇̃t,i + δt,i). Hence,

f(X̄t+1) ≤ f(X̄t)+⟨∇f(X̄t), X̄t+1−X̄t⟩+
L

2
∥X̄t+1−X̄t∥2

≤ f(X̄t)−η⟨∇f(X̄t),
1

n

n∑
i=1

∇̃t,i⟩︸ ︷︷ ︸
Term (A)

−η⟨∇f(X̄t),
1

n

n∑
i=1

δt,i⟩︸ ︷︷ ︸
Expectation wrt noise=0

+
Lη2

2
∥ 1
n

n∑
i=1

(∇̃t,i + δt,i)∥2︸ ︷︷ ︸
Term (B)

(Using L-smoothness).

Taking the expectation of Term (A) w.r.t noise gives,
E[A] = −η

2

[
E[∥∇̄t∥2] + E[∥ 1

n

∑n
i=1 ∇t,i∥2]−

E[∥∇̄t − 1
n

∑n
i=1 ∇t,i∥2]

]
.

We represent the Term (B) as, B = Lη2

2

[
∥ 1
n

∑n
i=1 ∇̃t,i∥2 +

∥ 1
n

∑n
i=1 δt,i∥2 + 2⟨ 1n

∑n
i=1 ∇̃t,i,

1
n

∑n
i=1 δt,i⟩

]
.

Taking the expectation of Term (B) w.r.t noise, we get.

E[B] ≤ Lη2

2

[
∥ 1
n

n∑
i=1

∇̃t,i∥2 +
1

n

n∑
i=1

D2
t,i

]
.

Taking in the above the expectation w.r.t data gives

E[B] ≤ Lη2

2

[
E[∥ 1

n

n∑
i=1

∇̃t,i∥2] +
1

n

n∑
i=1

D2
t,i

]
≤ Lη2

2
E[∥ 1

n

n∑
i=1

∇̃t,i −∇t,i +∇t,i∥2] +
Lη2

2

1

n

n∑
i=1

D2
t,i

≤ Lη2

2

(σ2

n
+ E[∥ 1

n

n∑
i=1

∇t,i∥2] +
1

n

n∑
i=1

D2
t,i

)
.

Taking the above into account, we obtain

E[f(X̄t+1)] ≤ E[f(X̄t)]−
η

2

[
E[∥∇̄t∥2] +E[∥ 1

n

n∑
i=1

∇t,i∥2]︸ ︷︷ ︸
Term(M)

− E[∥∇̄t −
1

n

n∑
i=1

∇t,i∥2]
]
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+
Lη2

2

[σ2

n
+ E ∥ 1

n

n∑
i=1

∇t,i∥2]︸ ︷︷ ︸
Term(N)

+
1

n

n∑
i=1

D2
t,i

]
.

Dropping Term (M) increases the right-hand side. In the
equation above reducing N using Young’s Inequality gives

N = Lη2 E[∥ 1
n

n∑
i=1

∇t,i − ∇̄t + ∇̄t∥2]

≤ 2Lη2 E[∥∇̄t∥2] + 2Lη2 E[∥ 1
n

n∑
i=1

∇t,i − ∇̄t∥2].

Hence,

E[f(X̄t+1)] ≤ E[f(X̄t)]−
η

2
E[∥∇̄t∥2] +

η

2
E[∥∇̄t

− 1

n

n∑
i=1

∇t,i∥2] +
Lη2

2

σ2

n
+ Lη2 E[∥ 1

n

n∑
i=1

∇t,i − ∇̄t∥2]

+ Lη2 E[∥∇̄t∥2] +
Lη2

2

1

n

n∑
i=1

D2
t,i

≤ E[f(X̄t)]−
η

2
(1− 2Lη)E[∥∇̄t∥2] +

Lη2

2

σ2

n

+
η

2
(1 + 2Lη)E[∥ 1

n

n∑
i=1

∇t,i − ∇̄t∥2]︸ ︷︷ ︸
Term(O)

+
Lη2

2

1

n

n∑
i=1

D2
t,i.

Bounding Term (O), we obtain,

O = E[∥ 1
n

n∑
i=1

∇t,i − ∇̄t∥2] ≤
L2

n
E[∥Xt − X̄t∥2F ].

Substituting back and denoting 1
n∥X̄

t −Xt∥2F = (C.E)t,

E[f(X̄t+1)] ≤ E[f(X̄t)]−
η

2
(1− 2Lη)E[∥∇̄t∥2] +

Lη2

2

σ2

n

+
Lη2

2

1

n

n∑
i=1

D2
t,i +

L2η

2
(1 + 2Lη)E[(C.E)t].

In the next step, we proceed with upper bounding the
(C.E)t+1 followed by defining a potential function to jointly
bound the expected gradient norm and the consensus error
without requiring restrictive and impractical assumptions
such as the bounded gradient norm assumption. Using the
assumption on the consensus error at t+ 1 gives,

E[(C.E)t+1] ≤ αt E[(C.E)t]] + γt.
Let ψt denote a potential function defined as

ψt = E[f(X̄t)] + ϕt E[(C.E)t], where ϕt > 0.
Now, we use the potential function to complete the proof.
ψt+1 − ψt =

{
E[f(X̄t+1)]− E[f(X̄t)]

}
+ ϕt+1 E[(C.E)t+1]− ϕt E[(C.E)t]

≤ −η
2
(1− 2Lη)E[∥∇̄t∥2] +

Lη2

2

[σ2

n
+

1

n

n∑
i=1

D2
t,i

+ (1 + 2Lη)E[(C.E)t]
]
+ ϕt+1αt E[(C.E)t] + ϕt+1γt

− ϕt E[(C.E)t]

≤ −η
2
(1−2Lη)E[∥∇̄t∥2]+

Lη2

2

[σ2

n
+
1

n

n∑
i=1

D2
t,i+ϕt+1γt

]
+

(L2η

2
(1 + 2Lη) + ϕt+1αt − ϕt

)
E[(C.E)t].

Pick ϕt such that, ϕt >
L2η

2
(1 + 2Lη) + ϕt+1αt.

Let ϕt = L2η(1 + 2Lη) + 2ϕt+1αt and ηL < 1
2 , then

E[∥∇̄t∥2] +

(
L2η(1 + 2Lη) + 2ϕt+1αt

)
η(1− 2Lη)

E[(C.E)t]

≤ 2(ψt − ψt+1)

η(1− 2Lη)
+

L

(1− 2Lη)

σ2

n

+
Lη

(1− 2Lη)

1

n

n∑
i=1

D2
t,i +

2ϕt+1γt
η(1− 2Lη)

Let C = L2η(1+2Lη)+2ϕt+1αt

η(1−2Lη) . Solving for ϕt+1 gives

ϕt+1 =
Cη(1− 2ηL)− L2η(1 + 2ηL)

2αt
.

Hence, for C = 2L2 and ηL < 1
6 , we have ϕt+1 =

L2η(1−6ηL)
2αt

. Now, summing the above wrt to T and dividing
by T gives

1

T

T∑
t=1

E[∥∇̄t∥2]

+
1

T

T∑
t=1

(
L2η(1 + 2Lη) + 2ϕt+1αt

)
η(1− 2Lη)

E[(C.E)t]

≤ 1

1− 2Lη

[2∑T
t=1(ψt − ψt+1)

Tη
+
Lσ2

n
+

2
∑T

t=1 ϕt+1γt
Tη

+
Lη

nT

T∑
t=1

n∑
i=1

D2
t,i

]
. (11)

Now, we telescope over the potential function for t =
{1, . . . , T} and dividing it by T , we get

ψT+1 − ψ1

T
≥ f∗ − f(X̄1)− ϕ1(C.E)1

T
.

Using the above inequality along with specific choices of ϕ
and ϕt yields :

1

T

T∑
t=1

E[∥∇f(X̄t)∥2] +
2L2

T

T∑
t=1

E[(C.E)t] ≤

2(f(X̄1)− f∗ + ϕ1(C.E)1)

η(1− 2Lη)T
+

Lη

n(1− 2Lη)
σ2

+
L2(1− 6Lη)

T (1− 2Lη)

T∑
t=1

γt
αt

+
Lη

(1− 2Lη)

1

nT

T∑
t=1

n∑
i=1

D2
t,i.

■

Theorem 1 establishes a worst-case upper bound on the
convergence of the three algorithms studied in the paper.
In particular, the theorem jointly bounds the expected gra-
dient norm, which is a notion of approximate first-order
stationarity of the average iterate x̄t, and the consensus
error. The convergence bounds consist of three terms: the
first term effectively captures the error arising from inaccu-
rate initialization and stochasticity of the first-order oracle,
which matches the error of centralized SGD. The second
term captures the effect of data heterogeneity, and the last
term captures the adverse effect of imperfect communication
modeled as communication noise.
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(a) Fully-connected topology (b) Torus topology (c) Ring topology

Fig. 1: Loss vs. iterations with and without noise for different communication topologies.

(a) Fully-connected topology (b) Torus topology (c) Ring topology

Fig. 2: Consensus error vs. iterations with and without noise for different communication topologies. Note the different
Y-axis scale in Fig (a) as compared with Fig (b) and (c) for better readability.

Theorem 1 also captures the impact of presence channel
noise on the convergence of studied algorithms. Specifically,
(8) and (9) indicate that FedNDL1 and FedNDL2 suffer from
a severe impact of noise on the worst-case convergence: T
increases the guarantee on finding a stationary solution and
consensus error weakens. In fact, the error increases with
T . We verify these results numerically in Section IV. Fur-
thermore, as the connectivity of the communication graphs
decreases (corresponding to a smaller ρ), the impact of noise
increases. This point is further confirmed in numerical sim-
ulations in Section IV. With regard to FedNDL3, Theorem 1
establishes that the algorithm is resilient to the presence of
noise. In particular, in contrast with the convergence bounds
of FedNDL1 and FedNDL2, the last term in (10) decreases
with T . This theoretically-grounded property is linked to
SGD which inherently is a noisy process and thus is more
resilient with respect to noise. Theorem 1 further shows that,
different from FedNDL1 and FedNDL2, the impact of noise
is independent of the communication topology as the last
term in (10) is independent of αt and γt. In Section IV, we
numerically verify these two properties of FedNDL3.

IV. EXPERIMENTS

In this section, we perform several experiments on re-
gression problems to verify the impact of noise on the
convergence of the three proposed algorithms as established
in Theorem 1. We consider the case when the number of

clients, n = 16. The experiments are repeated three times,
and the results (loss/consensus error) are averaged. We use
the mean-squared error loss function with L2 regularization.
The learning rate of the model is set as 0.2 with a decay
of 0.9 with every iteration. We generate data samples (m
= 10000) (xi; yi)

m
i=1 according to yi = ⟨w, xi⟩ + ϵi, where

w ∈ R2000, xi ∼ N (0; I2000) and noise, ϵi ∼ N (0, 0.05).
The experiments are performed with various levels of

noise variance, D2
t,i for all t, i, as described in the algorithms,

for various communication topologies, namely the ring,
torus, and fully connected network. The nonzero weights in
the mixing matrix for ring topology are equal to 1

3 , in the
torus topology 1

5 , and fully connected topology, 1
n .

We first perform the experiments with no noise as a
baseline and then gradually increase the noise variance to
study the robustness of the algorithms. For the purpose of
consistency, we have shown the results of the experiments
with noise variance D2

t,i = 0.005 in Figures 1 and 2 along
with no noise scenario. We observed, see Figure 1, that the
algorithms FedNDL1 and FedNDL2 perform poorly in terms
of convergence due to noise presence which is consistent
with Theorem 1. In addition, as seen in Figure 2, the
consensus error also increases with the noise consistent with
our theoretical analysis presented in Theorem 1.

On the other hand, the algorithm FedNDL3 is observed
to be the most robust as it does not diverge in the presence
of added channel noise. The noise term for the FedNDL3 in
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the upper bound given in Theorem 1 is of order O(T− 1
2 ),

whereas it is of order O(T
3
2 ) for FedNDL1 and FedNDL2.

This effect of the noise can also be observed in Figure 1.
The consensus error depends on the topology of the

communication network. We observed that the consensus
error is low for the fully connected network and high for
the ring topology for the same algorithm in the presence of
noise which is also consistent with Theorem 1.

V. CONCLUSION

We studied the impact of noisy communication channels
on the convergence of DFL. We proposed multiple sce-
narios for establishing consensus in the presence of noise
and provided experimental results on all the algorithms.
Additionally, we provided theoretical results for FedNDL1,
FedNDL2, and FedNDL3, under the assumption of smooth
non-convex function, and we observed that in FedNDL3, the
noise term in the upper bound given by Theorem 1 is of order
O(T− 1

2 ) and is independent of communication topology. In
contrast, the impact of noise on the convergence of FedNDL1
and FedNDL2 increases with T and weaker communica-
tion structures. We conducted numerical experiments and
observed that FedNDL3 is more robust against the added
noise than the other two algorithms analyzed in this paper.
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