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Abstract— In this paper we study an imitation and transfer
learning setting for Linear Quadratic Gaussian (LQG) control,
where (i) the system dynamics, noise statistics and cost function
are unknown and expert data is provided (that is, sequences of
optimal inputs and outputs) to learn the LQG controller, and
(ii) multiple control tasks are performed for the same system
but with different LQG costs. We show that the LQG controller
can be learned from a set of expert trajectories of length n(l+
2) − 1, with n and l the dimension of the system state and
output, respectively. Further, the controller can be decomposed
as the product of an estimation matrix, which depends only on
the system dynamics, and a control matrix, which depends on
the LQG cost. This data-based separation principle allows us
to transfer the estimation matrix across different LQG tasks,
and to reduce the length of the expert trajectories needed to
learn the LQG controller to 2n+m− 1 with m the dimension
of the inputs (for single-input systems with l = 2, this yields
approximately a 50% reduction of the required expert data).

I. INTRODUCTION

Imitation and transfer learning are popular techniques to
learn optimal policies while reducing the amount of labeled
data. In imitation learning, an agent is given access to
samples of expert (optimal) behavior and seeks to learn
a policy that mimics this behavior. In transfer learning, a
model trained on one task is used as the starting point
for a model on a second related task. The key idea is
that certain features learned by the model on the first task
can be used as a general-purpose set of features for the
second task, allowing the model to learn the second task
efficiently. While these techniques have proven useful in
multiple learning scenarios, including image classification
and natural language processing, their use and utility in
control settings have mostly escaped scrutiny.

In this paper we investigate the use of imitation and trans-
fer learning for Linear Quadratic Gaussian (LQG) control,
which seeks a control policy for a stochastic linear system
that minimizes the expected value of a quadratic function of
the state and input [1]. We consider multiple control tasks,
where the system dynamics are fixed but the quadratic cost
function varies.1 We assume that the system dynamics, noise
statistics, and cost functions are unknown, and that datasets
are available containing optimal input and output trajectories
for the different cost functions (source tasks). The questions
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1An example of our setting is the control of autonomous vehicles with
cost functions that capture different levels of fuel consumption and travel
times.

that we answer include whether it is possible to learn the
LQG controllers from expert data, the required size of the
dataset, and whether the source datasets can be leveraged
to learn the controller for a target task. We show that our
data-based controller enjoys a separation property similar to
the well-known separation principle [1], and that the lower-
dimensional data-based estimation module can be transferred
upon changes of the cost function to reduce the amount of
expert data required for control design.
Related work. A number of approaches to direct and
indirect data-driven control have recently been proposed.
Most approaches focus on learning optimal policies from
open-loop data for a fixed task and cost, e.g., see [2]–
[4]. Differently from these works, this paper considers an
imitation and transfer learning framework, where control
policies are constructed by imitating expert demonstrations
and transferring information across multiple, similar control
tasks. Multi-task scenarios have received less attention, with
[5], [6] and [7] being recent exceptions for system identifi-
cation and control design, respectively. In [7], in particular,
the notion of a common lower-dimensional representation
among the tasks is used to reduce the amount of data
required for control design across tasks. Similarly to [7],
this paper also exploits a lower-dimensional representation
for efficient transfer learning. However, differently from [7]
and leveraging [8], this paper focuses on the LQG control
problem and provides a precise, quantitative characterization
of the lower-dimensional representation for multi-task LQG
design from expert demonstrations, as well as tight bounds
on the required data. This paper also differs from [9],
[10], which study the sample complexity of learning LQG
controllers in state-space form from open-loop data.
Contribution of the paper. The main contributions of this
paper are as follows. First, we formalize an imitation and
transfer learning setting for LQG control. We show that
the LQG controller can be learned using an optimal input-
output trajectory of length n(l + 2) − 1, where n denotes
the dimension of the system and l the number of outputs.
Further, we show that the proposed LQG controller is unique
for the case of single-input systems, while it admits multiple
representations for multi-input systems. Second, we prove
the existence of a data-based separation principle since the
data-based LQG controller can be written as the product
of two matrices: the estimation matrix, which depends only
on the system dynamics, and the controller matrix, which
depends on the system dynamics and the quadratic cost
function. Further, for the case of single-input systems, we
show how the estimation matrix can be learned uniquely
using the expert datasets (we also discuss and validate a
procedure for the multi-input case). Third, we show how
the data-based separation principle can be used for transfer
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learning because the estimation matrix remains invariant
upon changes of the LQG cost function. By doing so, we
show that an expert dataset of length 2n+m−1 is sufficient
to learn the LQG controller, thus confirming the benefits
of transfer learning also for control design (for instance,
for single input systems with l = 2, our transfer learning
technique reduces the amount of expert data by about 50%).
As minor results, we show that the estimation matrix is of
full row rank, thus suggesting the minimality of the internal
representation, and that the system dimension can be learned
using a single expert input-output trajectory of finite length.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the discrete-time, linear, time-invariant system

x(t + 1) = Ax(t) + Bu(t) + w(t),

y(t) = Cx(t) + v(t), t ≥ 0,
(1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the control
input, y(t) ∈ Rl the measured output, w(t) the process
noise, and v(t) the measurement noise. We assume that the
process and measurement noise sequences are independent at
all times and satisfy w(t) ∼ N (0,W ) and v(t) ∼ N (0, V ),
with W � 0 and V � 0. Further, we assume that (A,B) and
(A,W

1
2 ) are controllable, and that (A,C) is observable.

For the system (1), the Linear Quadratic Gaussian (LQG)
control problem asks for an input that minimizes the cost

lim
T→∞

E

[
1

T

( T−1∑
t=0

x(t)TQx(t) + u(t)TRu(t)
)]

, (2)

where Q � 0, R � 0 are weight matrices and T is the
control horizon. We assume that (A,Q

1
2 ) is observable.

As a classic result [1], the optimal input that solves the
LQG problem can be generated by a dynamic controller:

x̂(t + 1) = Ex̂(t) + Fu(t) + Gy(t + 1),

u(t) = Hx̂(t),
(3)

where the controller matrices E ∈ Rn×n, F ∈ Rn×m, G ∈
Rn×l and H ∈ Rm×n can be obtained by combining the
Kalman filter for (1) with the static controller that solves
the Linear Quadratic Regulator (LQR) problem for (1) with
weight matrices Q and R (separation principle). In this case,
x̂(t) ∈ Rn denotes the estimate of x(t) generated by the
Kalman filter and the controller matrices that satisfy

E = (I − LfC)A, F = (I − LfC)B,

G = Lf, H = KLQR,
(4)

where KLQR and Lf are the LQR and Kalman gains, respec-
tively. Although different choices are possible, we assume
that the controller (3) uses the matrices (4) for simplicity
and to further highlight the connections between our results
and the classic separation-based solution to the LQG control
problem. Additionally, we make the following technical
assumption.2

Assumption 2.1: (Observability and controllability of the
controller) Let KLQR,i be the i-th row of the LQR gain

2This assumption is satisfied for generic choices of system parameters.

KLQR. Then, the pair (E,KLQR,i) is observable for every
i ∈ {1, . . . ,m}, and the pair (E,Lf) is controllable. �

The optimal inputs generated by the dynamic controller (3)
can also be obtained using a static gain and a finite window
of past inputs and outputs [8]. In particular, the optimal LQG
inputs u∗ satisfy the following relation:

u∗(t + n) = KLQG

[
Un(t)

Yn(t + 1)

]
, (5)

where

KLQG = H
[
Fu + EnF †x(I −Mu) Fy − EnF †xMy

]
, (6)

and Un(t), Yn(t+1) are constructed as follows from u∗ and
its corresponding output y∗ from the system (1),

Un(t) =

 u∗(t)
...

u∗(t + n− 1)

 , Yn(t + 1) =

y
∗(t + 1)

...
y∗(t + n)

 , (7)

and

Mu =


0

HF
...

. . .
HEn−2F · · · HF 0

 , Fx =


H
HE

...
HEn−1

 ,

Fu =
[
En−1F · · · F

]
,

with My and Fy constructed in the same way as Mu and Fu

by replacing F by G. The expression (5) is convenient for
learning purposes and it will be at the basis of our approach.
The next technical result will be useful for our derivations
(a proof can be found in the Appendix).

Lemma 2.2: (Properties of input-output matrices) Let3

Hr,c =

[
Ur(t) · · · Ur(t + c− 1)

Yr(t + 1) · · · Yr(t + c)

]
, (8)

with r ∈ N≥0, t ∈ N≥0, and Ur(t), Yr(t+1) as in (7). Then

Rank(Hr,c) = min{mr + lr, c, n + lr}.

The static LQG controller KLQG can be computed using
the static relation (5) and a sufficiently long, yet finite,
optimal input-output trajectory. In fact, using optimal input
and output sequences, the LQG gain (5) can be written as

KLQG =
[
u∗(t + n) · · · u∗(t + n + c− 1)

]︸ ︷︷ ︸
Ūc

H†n,c, (9)

with c ≥ n(l + 1). Lemma 2.2 implies that the data matrix
Hn,c in (9) is of full row rank for single-input systems. In
this case, the gain KLQG is unique and can be reconstructed
exactly from data. On the other hand, Hn,c in (9) loses rank
for multi-input systems, in which case there exists multiple
static LQG gains that satisfy the relation (5).

The design of the LQG compensator (3) or (5) is typically
done using the system model (1), the noise statistics W and
V , and the cost matrices Q and R. Instead, in this paper

3This result holds also when the input and output sequences are taken
from (3) but are not generated by the optimal LQG compensator, that is,
when the compensator is defined with arbitrary matrices E, F , G, and H .
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we are interested in solving the LQG problem in a data-
driven setting and without identifying the system matrices.
In particular, we consider an imitation and transfer learning
scenario, where an expert provides a sequence of inputs u∗

minimizing the LQG cost (2) and the corresponding outputs
y∗ of the system (1), for different choices of the weight
matrices Q and R. The question that we address is to quantify
the sample complexity of learning the LQG controller. We
show that, after sufficient training with different weight
matrices, as little as 2n + m− 1 expert samples are sufficient
to learn new LQG controllers.

To formalize the considered problem, let Di =
{u∗i , y∗i }

t+T
t be the sequence of expert (optimal) inputs

solving the LQG problem from time t up to time t + T
for the matrices Qi and Ri, and the corresponding outputs
of the system (1). We assume that an expert provides optimal
sequences for N source LQG tasks, that is, D1, . . . , DN , and
one optimal sequence Dtarget = {u∗target, y

∗
target}t+T̄

t of length
T̄ , with (T̄ < T ), for the target LQG task with matrices
Qtarget and Rtarget. The objective is to learn the gain KLQG
for the target task using the data D1, . . . , DN and Dtarget. In
particular, how large should T , T̄ and N be for this design
to be feasible? We remark that the system dynamics and
noise statistics are unknown and remain unchanged across
all source and target tasks, and that the weight matrices
associated with the source and target tasks are not known
nor provided by the expert.

III. SEPARATION PRINCIPLE FOR DATA-DRIVEN LQG
CONTROL AND OPTIMAL INTERNAL REPRESENTATIONS

The separation principle states that the LQG controller
can be designed by combining the solution to two separate
simpler problems, namely, an optimal estimation problem
and a deterministic optimal control problem with quadratic
cost [1]. This insight is at the basis of the model-based design
of the LQG controller. On the other hand, equation (5) shows
that the LQG controller can assume a much simpler, static,
form, but the expression lacks interpretability and does not
hint to any separation of estimation and control. The next
result bridges this gap by revealing a decomposition of KLQG
into independent controller and estimation matrices.

Theorem 3.1: (Data-driven separation principle) Let
KLQG be as in (5). Then, using the notation in Equation (3),

KLQG = [KLQR Im]︸ ︷︷ ︸
K

[
Fu − (a⊗ In)M̃u Fy − (a⊗ In)M̃y

a⊗ Im 0

]
︸ ︷︷ ︸

Lest

,

where

M̃u =


0
F 0
...

. . .
. . .

En−2F · · · F 0

 , M̃y =


0
G 0
...

. . .
. . .

En−2G · · · G 0

 ,

(10)

and a =
[
a0 . . . an−1

]
such that

En = a0I + a1E + · · ·+ an−1E
n−1.

Theorem 3.1 shows how the LQG gain KLQG can be de-
composed as the product of Lest, which depends only on the

system matrices, and K, which depends on the LQR gain.
Thus, Theorem 3.1 shows that the separation principle also
holds when representing the LQG controller as a function of
the input and output sequences. While also interesting as a
standalone result, Theorem 3.1 becomes particularly useful
in our imitation and transfer learning scenario. In fact, since
Lest is independent of the LQR gain, it is also independent of
the weight matrices Q and R. Thus, Lest acts as an invariant
component of the LQG controllers across different LQG
tasks, which can reduce the amount of expert data required
to construct LQG controllers (since Lest is common to all
LQG tasks, only the matrix K needs to be reconstructed for
the LQG controller of the target task). We postpone the proof
of Theorem 3.1 to the Appendix.

The estimation matrix Lest is connected to the Kalman
filter. To see this, notice that the optimal LQG inputs satisfy

u∗(t) = KLQRx̂(t),

where x̂(t) denotes the Kalman estimate of the state x(t).
Similarly, using Theorem 3.1 and (5) we obtain[

KLQR Im
]
Lest

[
Un(t− n)

Yn(t− n + 1)

]
︸ ︷︷ ︸

z(t)

= KLQRx̂(t).

Thus, as the Kalman estimate provides an n-dimensional
internal representation x̂(t) that can be used to generate
optimal LQG inputs via the LQR gain in a model-based
setting, the estimation matrix Lest provides an (n + m)-
dimensional internal representation, z(t), that can be used
to generate optimal LQG inputs in a data-driven setting
(given the matrix K). Yet, while the Kalman filter uses the
whole history of inputs and outputs to generate an optimal
internal representation (encoded in the state of the dynamic
Kalman filter), the estimator Lest uses only a finite window
of past inputs and outputs. Finally, as we show in the proof
of Theorem 3.5, the matrix Lest is of full row rank, thus
suggesting that the internal representation z(t) is of minimal
dimension to compute LQG inputs from data.

Theorem 3.1 provides a model-based expression of the
control and estimation components that form the LQG con-
troller. Next, we provide an expression of the estimation
matrix Lest given data from a set of source LQG tasks. We
start with the case of single-input systems and discuss the
general case afterwards. We make the following technical
assumption.

Assumption 3.2: (Number and diversity of source tasks)
Let D1, . . . , DN be the expert trajectories from the source
LQG tasks with weight matrices {Qi, Ri}Ni=1. Let Ki

LQG =
KiLest be the LQG gain of the i-th source task. Then,

N⋂
i=1

Ker(Ki) = {0}.

�
We observe that the above condition is typically satisfied in
practice when N ≥ n + m and for generic choices of the
weight matrices, as it simply requires the LQR gains to be
independent for different choices of the weight matrices.
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Theorem 3.3: (Learning Lest when m = 1) Let
D1, . . . , DN be the expert trajectories of length T ≥ n(l +
2)− 1. Then,

Ker(Lest) =

N⋂
i=1

Ker(Ū i
csH

i†

n,cs), (11)

where Ū i
cs and Hi

n,cs are constructed as in (8) using the
expert dataset Di with cs = T − n + 1.

Proof: Let Ki
LQG be the LQG controller of the i-th task.

From Theorem 3.1 we have that Ki
LQG = KiLest. Then,

Ker(Ki
LQG) = Ker(Lest) + L†est

(
Im(Lest) ∩Ker(Ki)

)
= Ker(Ū i

csH
i†

n,cs),

where the last equality is due to Lemma 2.2 (since m = 1,
Hi

n,cs is of full row rank and Ki
LQG = Ū i

csH
i†

n,cs . The claimed
statement now follows from Assumption 3.2.

From Theorem 3.3, the kernel of the estimation matrix Lest
can be learned from a finite number of LQG datasets, with
each dataset comprising optimal input and output trajectories
of finite length. Hence, the estimation matrix Lest can also
be learned up to multiplication by an invertible matrix using
a basis of the orthogonal complement to Ker(Lest). That is,

Lest = P · Basis

( N⋂
i=1

Ker(Ū i
csH

i†

n,cs)

)⊥T

︸ ︷︷ ︸
L̂est

,

for some invertible matrix P . Then, using Theorem 3.1
and for any choice of the weight matrices Q and R, the
LQG controller for (1) can always be written as the product
KP−1L̂est, where only the matrix K̂ = KP−1 depends on
the weight matrices Q and R and, from Theorem 3.3, the
estimation matrix L̂est can be learned given a sufficiently
large and diverse dataset of expert trajectories. These obser-
vations imply that the controller for the target LQG task can
be computed by simply learning the control matrix K̂target as
a solution to the linear system

Ū target
ct = K̂targetL̂estH

target
n,ct , (12)

where Ū target
ct and H target

n,ct are constructed as in (8) from the
target dataset Dtarget, with ct = T̄ − n + 1. The next result
quantifies the length of the expert trajectory Dtarget. We make
the following assumption on the target dataset

Assumption 3.4: (Persistency of excitation) For every
value of ct, the target dataset satisfies

Ker(Lest) ∩ Im(H target
n,ct ) = {0}.

�
We remark that Assumption 3.4 is generically satisfied since
the entries of H target

n,ct are driven by the system noise.
Theorem 3.5: (Length of expert trajectory to learn the

target LQG controller) Let T̄ be the length of the expert
trajectory in Dtarget. The LQG controller for the target task
can be learned whenever T̄ ≥ 2n + m− 1.

Proof: We first show that Rank(Fy−(a⊗In)M̃y) = n,
which implies that Lest is of full row rank. With standard
manipulation, the matrix Fy−(a⊗In)M̃y can be rewritten as

[
En−1 · · · I

]︸ ︷︷ ︸
J


1

−an−1 1
...

. . .
. . .

−a1 · · · −an−1 1


︸ ︷︷ ︸

S

G . . .
G


︸ ︷︷ ︸

O

.

Notice that S is invertible and that Rank(JO) = Rank(Fy) =
n due to Assumption 2.1. Then, Rank(Fy − (a⊗ In)M̃y) =
Rank(JSO) = Rank(JO) = n. Due to Assumption 3.4 and
Lemma 2.2, the matrix H target

n,ct has full column rank n + m
(n+m ≤ n(l+1)) when ct = n+m (equivalently, T̄ = 2n+
m− 1) and Ker(Lest) ∩ Im(H target

n,ct ) = {0}. Thus, LestH
target
n,ct

is invertible, and finally Ktarget = Ūtarget(LestH
target
n,ct )−1.

Using (9), we notice that the LQG controller can be learned
uniquely from a single trajectory of length T ≥ n(l+ 2)− 1
for the single-input case, since the data matrix in (9) becomes
of full row rank. This bound reflects the complexity of learn-
ing the LQG controller in an imitation learning framework.
On the other hand, leveraging the separation principle in
Theorem 3.1, the matrix L̂est can be learned from N ≥ n+1
expert datasets and used to learn the LQG controller of any
target task. By doing so, Theorem 3.5 states that the expert
trajectory of the target task needs only to be of length 2n
for the single-input case. This reduced bound reflects the
benefits of the imitation and transfer learning setting, where
data from earlier tasks is used to solve future LQG tasks. For
instance, when m = 1 and l = 2, the imitation and transfer
approach requires about 50% less expert data compared to
the imitation approach alone.

Remark 1: (Learning the dimension of the system from
data) The reconstruction of the LQG gain in (9) and of the
estimation matrix in Theorem 3.3 requires the knowledge
of the dimension of the system to properly construct the re-
quired matrices. If unknown, the dimension of the system can
be learned by solving the following minimization problem:

n = min{r ∈ N : Rank(Hr,r) = Rank(Hr+1,r+1)}.

This follows from Lemma 2.2, since the rank of Hr,r equals
n(l+1) when r = n and the value of l can be easily inferred
from the expert data (l equals the dimension of y∗). We note
that this remark is also valid for multi-input systems. �

Remark 2: (Learning Lest when m > 1) Lemma 2.2
implies that the data matrix in (9) is not full row rank
when m > 1 and that the LQG gain in (5) is not unique.
Although the decomposition in Theorem 3.1 still holds, the
computation of Lest from data is more involved than the
procedure presented in Theorem 3.3. Here we discuss two
different ways for this computation but, in the interest of
space and clarity, we leave a detailed treatment for future
research. First, let Ki

LQG be the LQG controller of the i-th
source task. Then,

Ki
LQG = Ū i

csH
i†

n,cs + XiZi = KiLest (13)

for some matrix Xi, where Zi is a basis of the left null space
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of Hi
n,cs . By stacking these expressions together we obtainK

1

...
KN

Lest =

 Ū1
csH

i†

n,cs + X1Z1

...
ŪN
csH

N†

n,cs + XNZN .

 . (14)

Since Lest has n+m rows, where n is obtained from Remark
1, the row space of every gain Ki

LQG must belong to the same
(n+m)-dimensional subspace. Then, the matrix on the right
hand side of (14) must have a left null space of dimension at
least mN−(n+m) for an appropriate choice of the matrices
X1, . . . , XN . This condition can be used to find the matrices
X1, . . . , XN that satisfy (13) for a sufficiently large number
N . Finally, similar to Theorem 3.3,

Ker(Lest)=

N⋂
i=1

Ker(U i
n,csH

i†

n,cs + XiZi). (15)

Second, using the notation in Theorem 3.3 and (12) and the
fact that vec(U i

cs) = (HiT

n,cs ⊗Ki)vec(Lest), Lest can also be
computed by solving the following bi-linear problem:

min
L,K1,...,KN

N∑
i=1

‖vec(Ū i
cs)− (HiT

n,cs ⊗Ki)vec(L)‖. (16)

The convergence properties of the two approaches above de-
serve a full discussion that is beyond the scope of this letter;
in the next section we provide some numerical evidence. �

IV. ILLUSTRATIVE EXAMPLE
We use the following model of a batch reactor system that

is open-loop unstable:

A =

 1.178 0.001 0.511 −0.403
−0.051 0.661 −0.011 0.061

0.076 0.335 0.560 0.382
0 0.335 0.089 0.849

 , B =

0.004
0.467
0.213
0.213

 ,

C = [−0.44 −0.51 0.09 0.44] ,

(17)

with process and measurement noise covariance W = 1.5I4
and V = 0.6. The weight matrices of the target task are

Qtarget =

 6 1 1 −3
1 1 0 −1
1 0 3 0
−3 −1 0 2

 , and Rtarget = 1.

We compare the model-based approach in Theorem 3.1
with the data-driven approach in Theorem 3.3. Using (6)
we obtain

K
target
LQG =[−0.01 0.16 −0.54 1.02 2.6 −13.34 21.25 −10.60].

For our data-based approach, we have collected expert
trajectories D1, . . . , DN of length T = 11 from N = 5
source tasks, with weighting matrices Qi = iI4 and Ri = I2

respectively. Using Theorem 3.3, we compute the estimation
matrix L̂est as
−0.01 0.09 −0.30 0.45 0.08 −0.42 0.65 −0.30

0.02 −0.18 0.54 −0.61 0.07 −0.30 0.42 −0.19
0.05 −0.34 0.57 0.56 0.12 −0.28 −0.10 0.38
−0.04 0.23 −0.32 −0.29 0.32 −0.60 −0.17 0.52
−0.05 0.17 0.03 −0.04 −0.43 0.26 0.54 0.65


It can be verified that K target

LQG
T ∈ Im(L̂T

est), that is, there
exists a matrix K̂target such that K target

LQG = K̂targetL̂est. This

4 6 8 10 12

100

10−3

10−6

10−9

number of source tasks N

‖K
ta

rg
et

L
Q

G
(I
−

L̂
† es

tL̂
es

t)
‖

eq. (15)
eq. (16)

Fig. 1. This figure shows the error ‖K target
LQG (I − L̂†estL̂est)‖ as a function

of the number of source tasks. The error converges for (15) and (16) as the
number of the source tasks increases, which implies that both approaches
in Remark (2) reconstruct exactly the estimation matrix.

verifies that the estimation matrix L̂est generates an internal
representation from which the LQG inputs can be computed.

Consider now the same system (17) with two inputs, where
the new input matrix and its corresponding cost matrix are:

B =

0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

 , and Rtarget =

[
1 0
0 4

]
.

We follow the same steps as in the single input case to
compute K target

LQG using the model-based approach in (6), and
then following the procedures in Remark (2), we compute
L̂est using (15) and (16) respectively. In Fig. 1 we plot
the error ‖K target

LQG (I − L̂†estL̂est)‖ for both approaches as the
number of source tasks increases. The convergence of the
error implies that L̂est obtained using the methods in Remark
(2) becomes the correct estimation matrix for the target
LQG controller.

V. CONCLUSION

In this paper we study an imitation and transfer learning
setting for LQG control, where expert input-output trajecto-
ries are used to learn a data-based LQG controller. We show
how the LQG controller can be computed from data, quantify
the length of the expert trajectories needed to learn the con-
troller, and show how the controller can be decomposed as
the product of an estimation matrix, which depends only on
the system dynamics, and a controller matrix, which depends
also on the LQG cost. This separation principle allows us
to reuse the estimation matrix across different LQG tasks,
thus reducing the length of the required expert trajectories.
Aspects of this research requiring additional investigation
include a detailed treatment of the multi-input case, the study
of transfer methods when the system dynamics also change,
the extension to more general optimal control problems,
and a proof of the minimality of the proposed internal
representation.

APPENDIX

A. Proof of Lemma 2.2
Proof: From (3) and (7) we have

Ur(t) =


H
HĒ

...
HĒr−1


︸ ︷︷ ︸

F̄x

x̂(t) +


0 0 · · · 0

HG 0 · · · 0
...

. . .
. . .

...
HĒr−2G · · · HG 0


︸ ︷︷ ︸

F̄y

Yr(t + 1),
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where Ē = E + FH . Then, we obtain

Hr,c =

[
F̄x F̄y

0 I

]
︸ ︷︷ ︸

M

[
x̂(t) · · · x̂(t + c− 1)

Yr(t + 1) · · · Yr(t + c)

]
︸ ︷︷ ︸

N

.

Further, Rank(Hr,c) ≤ min{Rank(M),Rank(N)}, and
Rank(Hr,c) = Rank(M) whenever N is of full row rank
[11]. Notice that Rank(M) ≤ min{mr + lr, n + lr}, and
Rank(M) = n + lr if mr ≥ n and the pair (Ē,H)
is observable. To conclude, [12, Corollary 2] implies that
Rank(N) = min{n + lr, c}.

B. Proof of Theorem 3.1

We start with an alternative expression for KLQG.
Lemma 1.1: (Alternative expression for KLQG) Let

KLQG,i and KLQR,i be the i-th row of KLQG and KLQR,
respectively, and define the matrices Pi such that

Pi


KLQR
KLQRE

...
KLQRE

n−1


︸ ︷︷ ︸

Fx

=


KLQR,i
KLQR,iE

...
KLQR,iE

n−1


︸ ︷︷ ︸

F i
x

.

for all i ∈ {1, . . . ,m}. Then,

KLQG,i = KLQR,i

[
Fu + EnF i

x
†
(Pi −M i

u) Fy − EnF i
x
†
M i

y

]
,

(18)

where F i
x = PiFx, M i

u = PiMu, and M i
y = PiMy .

Proof: Using the compensator dynamics (3) we obtain

Un(t) = Fxx̂(t) + MuUn(t) + MyYn(t + 1),

and

x̂(t + n) = Enx̂(t) + FuUn(t) + FyYn(t + 1). (19)

Due to Assumption 2.1, F i
x is invertible so that

x̂(t) = F i
x

† (
(Pi −M i

u)Un(t)−M i
yYn(t + 1)

)
,

for any i ∈ {1, . . . ,m} and, consequently,

x̂(t + n) = EnF i
x
†(

(Pi −M i
u)Un(t)−M i

yYn(t + 1)
)

+FuUn(t) + FyYn(t + 1).
(20)

Notice that the gain KLQR,i must satisfy, at all times,

KLQR,ix̂(t + n) = KLQG,i

[
Un(t)

Yn(t + 1)

]
.

Substituting (20) into x̂(t + n) in (19) yields the result.
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: Notice that (18) can be rewritten as

KLQG,i = [KLQR,i KLQR,i]

[
Fu Fy

EnF i
x
†
(I −M i

u) −EnF i
x
†
M i

y

]
.

Further, using the Cayley-Hamilton Theorem, we have

KLQR,iE
n = KLQR,i

(
a0In + a1E + · · ·+ an−1E

n−1
1

)
=
[
a0 a1 . . . an−1

]︸ ︷︷ ︸
a

F i
x,

where a0, . . . , an−1 are the negative coefficients of the
characteristic polynomial of E. Then, since F i

x is invertible
(Assumption 2.1), we have KLQR,iE

nF i
x
†
(Pi − M i

u) =

a(Pi−M i
u) and KLQR,iE

nF i
x
†
M i

y = aM i
y , and (18) becomes

KLQG,i =
[
KLQR,i 1

] [ Fu Fy

a(Pi −M i
u) −aM i

y

]
. (21)

Notice that

M i
u =

KLQR,i

. . .
KLQR,i


︸ ︷︷ ︸

Kdiag

M̃u, M i
y =

KLQR,i

. . .
KLQR,i

 M̃y ,

where M̃u and M̃y are defined in (10), and

aKdiag = [a0KLQR,i · · · an−1KLQR,i] = KLQR,i (a⊗ In) ,

Thus, (21) becomes

KLQG,i = [KLQR,i 1]

[
Fu − (a⊗ In)M̃u Fy − (a⊗ In)M̃y

aPi 0

]
.

By using
[
(aP1)T · · · (aPm)T

]T
= a⊗ Im, we obtainKLQG,1

...
KLQG,m

=[KLQR Im]

[
Fu − (a⊗ In)M̃u Fy − (a⊗ In)M̃y

a⊗ Im 0

]
.

This concludes the proof of Theorem 3.1. �

REFERENCES

[1] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control.
Prentice Hall, 1996.

[2] B. Recht. A tour of reinforcement learning: The view from contin-
uous control. Annual Review of Control, Robotics, and Autonomous
Systems, 2:253–279, 2019.

[3] K. Zhang, B. Hu, and T. Basar. Policy optimization for H2 linear
control with H∞ robustness guarantee: Implicit regularization and
global convergence. In Learning for Dynamics and Control, volume
120 of Proceedings of Machine Learning Research, pages 179–190,
Virtual, Jun. 2020. PMLR.

[4] I. Markovsky and F. Dörfler. Behavioral systems theory in data-driven
analysis, signal processing, and control. Annual Reviews in Control,
52:42–64, 2021.

[5] L. Xin, L. Ye, G. Chiu, and S. Sundaram. Identifying the dynamics
of a system by leveraging data from similar systems. In American
Control Conference, pages 818–824, Atlanta, GA, USA, June 2022.

[6] Y. Chen, A. M. Ospina, F. Pasqualetti, and E. Dall’Anese. Multi-
task system identification of similar linear time-invariant dynam-
ical systems. In IEEE Conf. on Decision and Control, Marina
Bay Sands, Singapore, December 2023. Submitted. arXiv preprint
arXiv:2301.01430.

[7] T. T. Zhang, K. Kang, B. D. Lee, C. Tomlin, S. Levine, S. Tu, and
N. Matni. Multi-task imitation learning for linear dynamical systems.
arXiv preprint arXiv:2212.00186, 2022.

[8] A. A. Al Makdah, V. Krishnan, V. Katewa, and F. Pasqualetti.
Behavioral feedback for optimal LQG control. In IEEE Conf. on
Decision and Control, Cancún, Mexico, December 2022.

[9] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar. Loga-
rithmic regret bound in partially observable linear dynamical systems.
In Advances in Neural Information Processing Systems, volume 33,
pages 20876–20888, Virtual, Dec. 2020. Curran Associates, Inc.

[10] Y. Zheng, L. Furieri, M. Kamgarpour, and N. Li. Sample complexity of
linear quadratic gaussian (LQG) control for output feedback systems.
In Learning for Dynamics and Control, volume 144 of Proceedings
of Machine Learning Research, pages 559–570, Virtual, Jun. 2021.
PMLR.

[11] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[12] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. M. De Moor.
A note on persistency of excitation. Systems & Control Letters,
54(4):325–329, 2005.

2243


