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Abstract— We coordinate interconnected agents where the
control input of each agent is limited by the control input
of others. In that sense, the systems have to share a limited
resource over a network. Such problems can arise in different
areas and it is here motivated by a district heating example.
When the shared resource is insufficient for the combined need
of all systems, the resource will have to be shared in an optimal
fashion. In this scenario, we want the systems to automatically
converge to an optimal equilibrium. The contribution of this
paper is the proposal of a control architecture where each
separate system is controlled by a local PI controller. The
controllers are then coordinated through a global rank-one anti-
windup signal. It is shown that the equilibrium of the proposed
closed-loop system minimizes the infinity-norm of stationary
state deviations. A proof of linear-domain passivity is given,
and a numerical example highlights the benefits of the proposed
method with respect to the state-of-the-art.

Constrained Control, Energy Systems, Distributed Control

I. INTRODUCTION

In this paper we consider the problem of asymptotically
coordinating a large number of agents that share a central,
limited resource towards an optimal equilibrium. Such prob-
lems arise in many applications, e.g. optimal power flow [1],
the TCP protocol [2], [3] and buffer networks [4]–[6]. We
consider the motivating example of a district heating network
where unfair situations can arise in peak load conditions;
buildings close to heat sources stay warm but peripheral
buildings become cold. Coordinating central buildings to
reduce their heat load in these scenarios would yield a more
fair heat distribution [7]. For a more detailed view on district
heating systems and challenges in district heating control, see
e.g. [8], [9]. We consider a representation of such systems
given by a linear system with saturating control:

ẋ = −x+Bsat (u) + w. (1)

Here x ∈ (x1, . . . , xn) ∈ Rn represents deviations from
reference levels for the agents, w ∈ Rn is a constant
disturbance acting on the system, u ∈ Rn represents the
control actions of the agents and B ∈ Rn×n represents the
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interconnection among the agents. The saturation function
sat (·) represents the limited nature of the resource in the
system. A more detailed description of the system will be
given later. Problems of this form are addressed in [4],
which shows that feedback control on the form u = −BTx
asymptotically minimizes the cost xTx+ vT v for (1) where
v = sat (u). Furthermore [6] designs a controller that asymp-
totically minimizes varying norms of u in the non-saturated
formulation of (1). We extend the asymptotically optimal
control design of these previous authors in three ways. First,
we consider minimizing the cost function ∥x∥∞ = maxi |xi|,
associated with worst-case fairness. In the district heating
example, this objective captures the deviation in the coldest
building, which for the specific application is more important
than minimizing u. Secondly, we approach scalability of the
control strategy in another fashion. Indeed, [4], [6] approach
scalability by considering systems where B has a sparse
structure, so that with u = −BTx, each agent acts on
a few measurements. We consider another scalable control
approach of rank-one coordination as utilized in [10], [11]. In
this scenario, the signals from all the agents are combined
into one scalar value, and then redistributed to the agents.
The advantage of rank-one schemes is that they allow for
implementations that scale well and maintain privacy among
the agents, as well as scalability, even when B is not sparse.
We do this for a specific set of systems (1) where B is
an M-matrix, a property that was not previously exploited
in this context. Finally, we propose a control law where
the results rely only on the structure of B, thus making
the implementation robust to modeling errors. To solve the
problem under consideration we propose a controller where
each agent maintains a local proportional-integral-controller,
and coordination is performed through a global rank-one
anti-windup correction. Anti-windup techniques have a long-
standing tradition of effective use in combination with in-
tegral controllers to improve performance [12]. However,
recent results show a strong connection between anti-windup
schemes and optimization [13], [14], opening the possibility
of considering anti-windup loops for optimal equilibrium
coordination, in line with what we propose here.

In this article we provide several contributions: We pro-
pose the aforementioned controller for driving the system
to an optimal equilibrium. We show that under certain
conditions on the disturbance w, such an equilibrium exists,
is unique, and is in fact uniquely optimal. Analytical proofs
of convergence are left outside the scope of this work as we
have not yet been able to demonstrate them. However, we
provide sufficient conditions for stability in the linear domain
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sat (u) = u. This leads us to formulate a stability conjecture,
subject of future work. A numerical experiment is included
to show the effectiveness of the proposed method.

The paper is organized as follows. The system and prob-
lem under consideration are formally introduced in Section
II, along with the proposed control scheme. The existence
of an equilibrium for this system is considered in Section
III, and the optimality of the system equilibrium is treated
in Section IV. Section V introduces a conjecture on the
convergence properties of the proposed closed loop, based on
a proof of linear-domain stability under suitable conditions
on the PI gains. A numerical example is shown in Section VI.
Finally conclusions and future work are covered in Section
VII.

Notation: If A is a matrix then denote Ai to be row i of A
and Ai,j be the element of A at row i and column j. Let 1
be a column vector of all ones with dimensions taken from
context, and thus 11T is a matrix of all 1’s. Denote sat (·) to
be the saturation function sat (u) = max (min (u, 1) ,−1)
and denote the dead-zone function dz (u) = u − sat (u).
With a slight abuse of notation, the dead-zone and saturation
functions applied to vectors operate element-wise. Let the
superscript x0 denote the state x in an equilibrium point,
and the superscript x∗ to be the value of x which solves an
optimization problem. Let the infinite norm ∥·∥∞ of a vector
v be defined as the maximum magnitude element maxi |vi|.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A. System Description

Consider system (1) where xi ∈ R is the state of each
agent i = 1, . . . , n and ui ∈ R is the controller output of each
agent. B ∈ Rn×n is an M-matrix [15], [16]. Such matrices
have non-positive off-diagonal entries, thus capturing the fact
that each agent negatively impacts the others. Thus, if agent
i increases its control input it receives more resources and
the other agents receive less resources. Denote M = B−1.
M-matrices have non-negative inverses in general and we
will assume that M is strictly positive, thus Mi1 > 0
for all i. Input w denotes a constant, unknown disturbance
affecting the system. In practice the disturbance does not
need to be constant, but sufficiently slowly varying. Let us
also introduce the index k as a maximizing argument of the
following expression

k ∈ K = argmax
i

∣∣∣∣dz (Miw)

Mi1

∣∣∣∣ , (2)

which is, in general, nonunique and characterizes the agent
that is most affected by the disturbance w.

B. Problem Formulation

We address here the unfair allocation of resources when
the agents try to reject a constant disturbance that is too large
to drive the system to the origin in view of input saturation.
We consider a notion of fairness as described in [17] where
”no individual can improve its performance without affecting

at least one user adversely” with regards to the deviations
xi, which we formally describe below.

Definition 1: An equilibrium pair (x0, u0) is fair if there
is no other equilibrium pair (x†, u†) where ∥x†∥∞ < ∥x0∥∞,
or ∥x†∥∞ = ∥x0∥∞ and |x†

i | < |x0
i | for some i.

We therefore consider the following problem formulation.
Problem 1: Design a feedback controller driving system

(1) from any suitable initial condition to an equilibrium pair
(x0, u0), such that x∗ = x0 and v∗ = sat

(
u0

)
solves the

optimization problem

minimize
x, v

∥x∥∞ (3a)

subject to − x+Bv + w = 0, (3b)
− 1 ≤ v ≤ 1 (3c)

uniquely.
As ∥x0∥∞ is minimized uniquely, this equilibrium must be
fair by Definition 1.

C. Proposed Feedback Controller

We propose an individual PI controller for each agent.
Each controller has an integral state zi, and strictly positive
gains pi (proportional gain) and ri (integral gain). These
gains can be tuned locally by the agents. We then introduce
a scalar communication signal exchanged among the agents,
resulting in a rank-one anti-windup correction term such that
each controller adds the sum of all agents’ dead-zones to their
integrator input. The full closed-loop system can be written
as

ẋ = −x+Bsat (u) + w (4a)

ż = x+ β11T dz (u) (4b)
u = −Px−Rz, (4c)

where P and R are diagonal, positive matrices gathering
the controller gains pi, ri, 11T dz (u) is the rank-one anti-
windup signal and β is a positive, scalar anti-windup gain.
One advantage of the proposed structure is that, under normal
circumstances, each PI controller is completely disconnected
from the other ones and acts based on local information
only. If saturation occurs, the central signal activated and
a fairness-oriented coupling emerges from the anti-windup
term. Another advantage of the architecture (4) is that when
coupling occurs, the coupling signal is merely the sum of the
dead-zones for each agent which can be computed efficiently.
The summation hides the individual signals, so that when this
central signal is redistributed to the agents, each agent does
not know the dead-zone values for any of the other individual
agents. As such, this global signal lends itself well to scalable
and privacy-compliant implementations.

III. CLOSED-LOOP EQUILIBRIA

In this section we characterize the equilibria of the pro-
posed closed-loop system (4). From (4), any equilibrium
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(x0, z0) solves the equations

0 = −x0 +Bsat
(
u0

)
+ w (5a)

0 = x0 + β11T dz
(
u0

)
(5b)

u0 = −Px0 −Rz0. (5c)

It is not trivial to show whether a solution to (5) exists. This
section studies conditions for the existence and uniqueness of
such solutions. Note that it is sufficient to study pairs (x0, u0)
satisfying (5a) and (5b), because the positive definiteness of
R implies its invertibility. Hence for any such state-control
pair (x0, u0) satisfying (5a) and (5b), z0 can be uniquely
determined from (5c).

A. Existence of an Equilibrium Point

Recall that M = B−1. We provide below a necessary and
sufficient condition for (4) to admit an equilibrium.

Lemma 1: The closed-loop system (5) admits an equilib-
rium point (x0, z0), if and only if

max
i

Miw − 1

Mi1
≤ min

j

Mjw + 1

Mj1
. (6)

Proof: Let us begin with showing that (6) is necessary
for the existence of an equilibrium point. (5a) and (5b) can
be combined to

Mw + sat
(
u0

)
= −βM11T dz

(
u0

)
. (7)

Thus

Miw + sat
(
u0
i

)
Mi1

= −β1T dz
(
u0

)
, ∀i = 1, . . . , n. (8)

If (6) does not hold, then there exist i and j such that

Miw − 1

Mi1
>

Mjw + 1

Mj1
. (9)

However, (8) implies that

Miw + sat
(
u0
i

)
Mi1

=
Mjw + sat

(
u0
j

)
Mj1

. (10)

As sat
(
u0
i

)
≥ −1 and sat

(
u0
j

)
≤ 1, (9) and (10) cannot

simultaneously hold, which establishes a contradiction thus
proving that there is no equilibrium. This proves that (6)
is necessary for the existence of an equilibrium. For the
sufficiency, first recall the definition of k, given by (2). Then
consider the candidate equilibrium x0, u0 given by

x0 = 1
dz (Mkw)

Mk1
(11a)

u0
k = −sat (Mkw)−

dz (Mkw)

βMk1
(11b)

u0
i = −Miw +

Mi1

Mk1
dz (Mkw) , ∀i ̸= k. (11c)

We show below that when (6) holds, the candidate equilib-
rium (11) solves (5). Consider 3 scenarios. (i): dz (Mkw) =
0, (ii): dz (Mkw) > 0 and (iii): dz (Mkw) < 0. In scenario
(i), x0 = 0, and u0 = −Mw. As dz (Mkw) = 0 in this
scenario, dz (Miw) = 0 for all i. Otherwise (2) would not
be maximized by k. This implies that sat

(
u0

)
= u0 = −Mw

and dz
(
u0

)
= 0. It is thus easy to verify that (5) holds. In

scenario (ii), note that the left side of (6) is maximized by
index k and can be reformulated as

dz (Mkw)

Mk1
≤ Miw + 1

Mi1
∀i = 1, . . . , n. (12)

Returning to the candidate equilibrium and (11c) for i ̸= k,

u0
i = −Miw +

Mi1

Mk1
dz (Mkw) ≤ 1 (13)

where the inequality is derived from (12). Thus u0
i ≤ 1. In

addition,

u0
i = −Miw +

Mi1

Mk1
dz (Mkw)

= −sat (Miw)− dz (Miw) +
Mi1

Mk1
dz (Mkw)

= −sat (Miw) +Mi1

(
dz (Mkw)

Mk1
− dz (Miw)

Mi1

)
≥ −1,

(14)

where the last inequality holds because k maximizes (2).
This means that −1 ≤ u0

i ≤ 1 for all i ̸= k. Thus

sat
(
u0
i

)
= u0

i = −Miw+
Mi1

Mk1
dz (Mkw) , ∀i ̸= k, (15)

and
dz (ui) = 0, ∀i ̸= k. (16)

For index k, (11b) provides

sat
(
u0
k

)
= −sat (Mkw) = −Mkw + dz (Mkw) (17)

and

dz
(
u0
k

)
= −dz (Mkw)

βMk1
. (18)

Combining (15), (16), (17) and (18) yields

sat
(
u0

)
= −Mw +M1

dz (Mkw)

Mk1
(19)

and

1T dz
(
u0

)
= −dz (Mkw)

βMk1
. (20)

which allows us to easily verify that (x0, u0) from (11) solves
(5) in scenario (ii). An equal argument can be made for
scenario (iii), which we omit for brevity. This shows that
given any scenario for dz (Mkw), the candidate equilibrium
(11) is valid when (6) holds. Thus (6) is both necessary and
sufficient for the existence of an equilibrium.

To interpret (6), note that it is satisfied when all entries wi

are similar to each other. For instance, w = s1 for any scalar
s trivially satisfies the condition. This makes it a sensible
assumption when the disturbance w affects all agents in
a similar way. This is for instance the case in the district
heating example, where the outdoor temperature is likely to
be quite similar for all the buildings located in a specific
area. To simplify our follow-up definitions, we will assume
that (6) holds with a strict inequality, as formulated below.
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Assumption 1: The disturbance w satisfies (6) strictly,
namely

max
i

Miw − 1

Mi1
< min

j

Mjw + 1

Mj1
. (21)

We assume the strict inequality to enforce uniqueness of the
equilibrium, which is studied in the next section.

B. Uniqueness of the Equilibrium

Lemma 1 shows that under Assumption 1, there is an equi-
librium for the closed-loop system. We study here conditions
for this equilibrium to be unique. To enforce the uniqueness
of this equilibrium, we assume the following.

Assumption 2: Either dz (Mw) = 0, or the maximizing
argument k given by (2) is unique.
If k is non-unique, an arbitrarily small perturbation of B or
w would make it so. In practical applications, w is expected
to vary slowly over time. This makes it unlikely that k
would be non-unique for an extended period of time, but
may also cause k to shift between agents. The analysis of
such scenarios requires to study the transient behavior of the
system, which is outside the scope of the paper, but will be
the subject of future work.

Lemma 2: If Assumptions 1 and 2 hold, then (11) is the
unique equilibrium of the closed-loop system (4).

Proof: Recall from the proof of Lemma 1 that for any
equilibrium inducing input u0, identity (7) must hold. Now
denote

t = β1T dz
(
u0

)
, (22)

which allows (7) to be rewritten as

sat
(
u0
i

)
= −Miw −Mi1t, ∀i = 1, . . . , n. (23)

Note that if t > 0, there must exist an i ∈ {1, . . . , n}
such that sat

(
u0
i

)
= 1. Similarly, if t < 0, there exists

an i ∈ {1, . . . , n} such that sat
(
u0
i

)
= −1. Also note

that (21) implies that there cannot exist i and j such that
Miw ≥ 1 and Mjw ≤ −1. This in turn implies that
either dz

(
u0

)
≥ 0 or dz

(
u0

)
≤ 0, where the inequality

should be understood componentwise. Now, recalling that k
in (2) is unique by assumption, consider 3 scenarios; (i):
dz (Mkw) = 0, (ii): dz (Mkw) > 0 and (iii): dz (Mkw) < 0.
In scenario (i), we see that dz (Miw) = 0 for all i = 1, . . . , n,
as otherwise |dz (Miw) | > 0 for some i, implying that (2)
would be maximized by this i. Thus |Miw| ≤ 1 for all i.
Through (23), we prove next that this implies t = 0. Indeed,
assume by an absurd argument that t > 0. Then (23) yields
sat

(
u0
i

)
= −Miw−Mi1t < −Miw ≤ 1 for all i = 1, . . . , n.

But if sat
(
u0
i

)
< 1 for all i, then dz

(
u0
i

)
≤ 0 for all i and

thus t cannot be positive. A parallel contradiction can be
built for t < 0. Thus we conclude that t = 0. In turn, t = 0
implies that dz

(
u0

)
= 0, because (22) shows that t is the

sum of the entries of dz
(
u0

)
= 0, multiplied by the positive

scalar β. As the entries of dz
(
u0

)
are either all positive or

all negative, t can only be 0 if all of the entries of dz
(
u0

)
are 0. This uniquely fixes u0 = −Mw, which is the same
as the candidate solution (11). This in turn uniquely fixes x0

through (5b), and uniquely fixes z0 through (5c).

In scenario (ii), (23) implies t ≤ − dz(Mkw)
Mk1

, because
otherwise sat

(
u0
k

)
< −1. If t = dz(Mkw)

Mk1
then sat

(
u0
k

)
=

−1. For i ̸= k,

sat
(
u0
i

)
= −Miw +

Mi1

Mk1
dz (Mkw)

= −sat (Miw)− dz (Miw) +
Mi1

Mk1
dz (Mkw)

= −sat (Miw) +Mi1

(
dz (Mkw)

Mk1
− dz (Miw)

Mi1

)
> −1.

(24)

The last inequality holds because k uniquely maximizes (2)
and Mi1 > 0 due to non-negativity and invertibility of M .
Thus we conclude that t = − dz(Mkw)

Mk1
, because otherwise

sat
(
u0
i

)
> −1 for all i, contradicting the fact that t is

negative. For this scenario (ii), (21) can be written as

dz (Mkw)

Mk1
<

Miw + 1

Mi1
, ∀i ̸= k, (25)

Which can be combined with t = − dz(Mkw)
Mk1

to show that,
for i ̸= k,

sat
(
u0
i

)
= −Miw +

Mi1

Mk1
dz (Mkw) < 1. (26)

Inequality (26) implies |sat
(
u0
i

)
| < 1 for all i ̸= k, and thus

dz
(
u0
i

)
= 0 for all i ̸= k. This implies

t = β1T dz
(
u0

)
= βdz

(
u0
k

)
(27)

and thus

dz
(
u0
k

)
= −dz (Mkw)

βMk1
. (28)

Equations (26) and (28) uniquely determine u0, and, together
with (11), x0 and z0 are uniquely determined. For scenario
(iii), a symmetric argument can be followed, which is omitted
for brevity, thus completing the proof.

IV. OPTIMALITY

We proved in the previous section that under Assumptions
1 and 2, the proposed closed-loop system has a unique
equilibrium, given by (11). In this section, we will prove
that this equilibrium is also the unique, optimal solution to
(3).

Theorem 1: If Assumptions 1 and 2 hold, then x∗ = x0

and v∗ = sat
(
u0

)
is the unique solution to (3) where x0 and

u0 are given by (11).
Proof: Lemma 2 proves that under Assumptions 1 and

2, (x0, u0) is a state-input equilibrium pair. This means that
(x∗, v∗) = (x0, sat

(
u0

)
) satisfies the constraints (3b) and

(3c) and is therefore feasible. What remains is only to show
that it is not only feasible but also uniquely optimal. Consider
for establishing a contradiction that there exists ξ ̸= 0,
such that x† = x∗ + ξ, along with v† = v∗ + Mξ is also
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feasible and provides a lower or equal cost than (x∗, v∗). An
equivalent rewriting of (3) using ξ is

minimize
ξ

∥1dz (Mkw)

Mk1
+ ξ∥∞ (29a)

subject to ∥M(ξ − w + 1
dz (Mkw)

Mk1
)∥∞ ≤ 1. (29b)

First note that if dz (Mkw) = 0, then ξ = 0 is trivially
optimal as any ξ ̸= 0 would yield a higher cost and thus not
be an optimizer. Then consider the case where dz (Mkw) >
0. For ξ to provide a lower or equal cost, it must hold that
ξi ≤ 0 for all i. However, analyzing constraint (29b) for
index k yields

| −Mkw + dz (Mkw) +Mkξ| ≤ 1. (30)

Since we are focusing on the case dz (Mkw) > 0, (30)
reduces to

| − 1 +Mkξ| ≤ 1. (31)

Since ξ ≤ 0, inequality (31) can only hold for xi = 0 as
Mk has strictly positive entries. Therefore ξ = 0 is uniquely
optimal when dz (Mkw) > 0. A parallel reasoning can be
performed for the case dz (Mkw) < 0. Thus (x∗, v∗) is the
optimal solution to (3).

V. STABILITY PROPERTIES

The results of Sections III and IV established that under
Assumptions 1 and 2, the unique equilibrium of the closed-
loop system (4) solves the optimization problem (3). In this
section we formulate the following conjecture regarding its
stability properties.

Conjecture 1: Under Assumptions 1 and 2, if pi > ri for
all i = 1, . . . , n, then the proposed controller (4) globally
solves Problem 1.
Conjecture 1, subject to its proof, would provide strong
properties for the proposed control law, granting stability and
optimality for a large family of systems subject to a simple
control tuning constraint. The proof however is non-trivial
and requires results for saturated systems operating deeply in
the saturated regime, which is why it is left outside the scope
if this work. Our confidence in Conjecture 1 arises from
numerous simulations of randomized systems. In addition,
the specific choice of pi > ri provides notions of stability
for our problem through the following lemma.

Lemma 3: Assume that pi > ri for all i and w ∈ L2.
Then system (4) is asymptotically stable in the region of
linearity where sat (u) = u.

Proof: Define y = −Bu. When sat (u) = u and thus
dz (u) = 0, the closed loop system (4) can be reformulated
in the frequency domain as

sX = −X − Y +W (32a)
sU = (P −R)X + PY − PW. (32b)

These equations are fully diagonal, and can for each agent i
be combined to form

Ui =
ri + pis

s(s+ 1)
(Yi −Wi) = Gi(s)(Yi −Wi). (33)

B D

DD

G

G

G

.

.

.

n
(s)

2
(s)

1

-

--
(s)

u y w w-1

Fig. 1: Block diagram, showing the interconnection used in
the proof of Lemma 3.

This feedback interconnection is represented in Figure 1.
When pi > ri, the transfer function (33) is positive real,
making it a passive component [18]. In addition, due to B
being an M-matrix, we know that there exists a positive,
diagonal matrix D such that −DB−BTD ≺ 0. This means
that the combined upper block of Figure 1 is strictly passive.
The multiplication by the positive, diagonal matrix D−1 does
not affect the passivity properties of G1(s) . . . Gn(s). The
feedback interconnection between the strictly passive upper
block and the passive lower block means that for any w ∈ L2,
we have u ∈ L2 [19]. This means that limt→∞ w(t) = 0,
limt→∞ u(t) = 0 and thus clearly limt→∞ x(t) = 0 by (4a).

To prove or refute Conjecture 1 in future work, we believe
that these passivity properties may be a useful tool. While it
can be shown that the condition P > R is conservative, we
have also found examples of sufficiently large integral gains
causing instability, thereby suggesting that our conjecture is
reasonable.

VI. NUMERICAL EXAMPLE

To demonstrate the usefulness of the proposed con-
troller, we investigate n = 250 agents interconnected
through the matrix B = D(1.2nI − 11T ) where D =
diag(d1, d2, . . . , dn) and d1, . . . , dn are distributed at even
intervals between 0.5 and 1.5. w(t) = 1n sin (t/2π)

2 . We
compare three strategies: First the coordinated strategy, con-
sisting in the controller proposed in this paper using the
gains pi = 1, ri = 1.5 for all i and β = 1. Secondly

Fig. 2: Envelopes of the states x for each strategy. The dashed
lines constitute the minimum mini xi(t) and the solid lines
the maximum maxi xi(t).
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Fig. 3: Histogram of maximum absolute deviations
maxt |xi(t)| experienced under each strategy. From deviation
20 to 80, the red and blue bars overlap.

the uncoordinated strategy, namely the same PI-controllers
as those of the coordinated case, only equipped with a
local anti-windup action: żi = xi + βdz (ui). Finally the
linear saturated decentralized (lsd) controller u = −BTx
as proposed by [4]. The systems are simulated using the
DifferentialEquations toolbox [20] in Julia. Figure
2 shows the envelopes of the time series over the simulation.
In the coordinated case (green), all of the states x are nearly
completely synchronized. Under both the uncoordinated
(blue) and the lsd (red) strategy, there is a large discrepancy
between the maximum and minimum states. Furthermore,
the lsd strategy is optimal with regards to a tradeoff between
states x and control action u, and therefore no states are
driven to the origin with large disturbances w. Figure 3
shows histograms of the worst magnitude deviations in each
strategy. We see that both the uncoordinated (blue) and lsd
(red) strategies have several agents with larger deviations
than any of the agents in the coordinated case. However, both
the uncoordinated and lsd strategies also have many agents
with lower deviations than that of the coordinated case.

VII. CONCLUSION

In this paper we have presented a controller for coordinat-
ing the control actions of agents that share a central resource.
We proved that the only equilibrium of this closed-loop
system is optimally fair. This optimality concerns the states
x, an important extension of the literature which has mainly
focused on properties of the control input u. A conjecture
was proposed giving conditions for stability of this optimal
equilibrium, motivated by passivity of the closed-loop system
in the linear domain.

Subject to the proof of Conjecture 1, the proposed method
has many advantages. Each agent could tune the gains of
a PI-controller locally while maintaining global guarantees
of stability. These guarantees are only dependent on the
structure of the system and not the model itself (i.e. the B-
matrix does not have to be known, only that it has certain
properties). The rank-one communication scheme ensures
scalability of the implementation which does not require
sparsity of B.

Extensions of the work include exploiting the proven pas-
sivity property to prove stability with regards to the optimal

equilibrium. Further system structures could be considered,
for instance more general A-matrices, output feedback, or
non-linear interconnections B(u) which maintain similar
properties to the current B-structure. Finally, one can con-
sider analyzing and improving transient performance.
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